用户名: 密码: 验证码:
热稳定冰结构蛋白提高冷冻面团体系抗冻性的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首先从冷诱导女贞树叶(Ligustrum vulgare)中提取、分离出具有热稳定性和热滞活性(THA)的蛋白质——热稳定冰结构蛋白(TSISP),然后考察TSISP对冷冻面团及其关键组分(蛋白质、酵母、淀粉)抗冻性的影响;最后分析了TSISP改善冷冻面团及其烘焙产品质量的内在机理。
     将女贞树叶在4℃冷诱导,然后用pH7.4、20mmol/LTris-HCl缓冲液提取蛋白质,将热提法和冰提法相结合从上清液中提取具有热稳定性(100℃)的冰结构蛋白(ISPs),经凝胶过滤层析和离子交换层析技术分离后得到一种具有热稳定性的冰结构蛋白(TSISP),应用差示扫描量热仪(DSC)、基质辅助激光解析串联飞行时间质谱仪(MALDI-TOF-MS)和圆二色性光谱仪(CD)等对TSISP的THA值、分子量、氨基酸组成、蛋白质同源性和二级结构进行分析,结果发现:1)TSISP的THA为0.269;2)TSISP的分子量约为66kDa;3)TSISP氨基酸组成中亲水氨基酸多于疏水性氨基酸;4)TSISP与具有抗病性的PRR1_TOBAC和具有营养储存活性的VCLB_PEA和VCLC_PEA具有同源性,可能由女贞树叶中具有抗病性和营养储存活性的蛋白质经冷诱导转变而成;5)TSISP的二级结构以β-折叠和无规卷曲结构为主,分别占43.3%和36.9%,β-转角结构相对较少,约为18.5%,而α-螺旋结构最少,只占1.3%。
     应用TSISP保护冷冻湿面筋蛋白质体系:通过核磁共振成像仪(NMR)和衰减全反射傅立叶变换红外光谱仪(ATR-FTIR)等方法研究了TSISP对湿面筋蛋白质体系中水分子弛豫时间(T2)、质子密度、蛋白质水合度和蛋白质二级结构、麦谷蛋白亚基组成和动态流变学特性的影响,结果发现:冷冻和冻藏过程引起1)冷冻湿面筋蛋白质体系水分子重新分布,主要体现在面筋蛋白质水合度减小和水分子T2增大,质子密度发生变化;2)蛋白质二级结构发生变化,麦谷蛋白逐渐降解,主要体现在α-螺旋结构显著减少、β-折叠结构和HMW-GS/LMW-GS比例显著增加,并最终导致冷冻湿面筋蛋白质体系粘性模量(G'')和弹性模量(G')均显著减小。引入TSISP后,上述参数的变化趋势得到了明显延缓,即TSISP显著地提高了冷冻湿面筋蛋白质体系的冻藏稳定性。
     将TSISP用于保护冷冻酵母细胞:采用DSC和F3发酵流变仪等方法考察了酵母细胞存活率、细胞内冰晶形成量(IIF)、细胞释放谷胱甘肽(GSH)量、冷冻酵母面团中可溶性蛋白质和面团发酵流变学特性等参数在冷冻和冻藏过程中发生的变化及受TSISP的影响,结果发现:1)冷冻和冻藏过程中,酵母细胞存活率显著减少,细胞释放GSH量显著增加,面团中可溶性蛋白的SDS-PAGE谱带染色强度显著增加,F3发酵流变参数面团总产气量AT、持气量A1、持气率R、气体开始释放时间Tx、面团最大发酵高度Hm、气体形成曲线最大高度H′m和发酵最后高度h显著地减小了;2)引入TSISP后,冷冻和冻藏过程对上述参数的影响显著地变弱了,说明TSISP对酵母细胞具有较好的保护作用。
     TSISP调控冻融淀粉凝胶体系:应用扫描电子显微镜(SEM)和质构仪等研究了冻融淀粉凝胶冰晶熔化焓(ΔHs-ice)、回生焓(ΔHret)和回生率(RR)、析水率、超微结构和硬度等参数受TSISP的影响,结果发现:1)随着冻融循环次数增加,淀粉凝胶的ΔHs-ice、ΔHret、RR、析水率和凝胶硬度都显著地增加了,淀粉凝胶的超微结构遭到明显破坏;2)当冻融循环次数相同时,与空白(含0%TSISP)淀粉凝胶样品相比,含0.5%TSISP淀粉凝胶的ΔHs-ice、ΔHret、RR、析水率和凝胶硬度显著地减少了,淀粉凝胶的超微结构也明显得到了改善,说明TSISP提高了淀粉凝胶的冻融稳定性。
     TSISP调控冷冻面团体系:采用热重分析仪(TGA)和Avrami方程等方法分析TSISP对冷冻面团体系冰晶熔化焓(ΔHd-ice)、水分子存在状态、超微结构、发酵流变学特性(AT,A1、Hm和h)和烘焙特性(包括未醒发和预烘焙冷冻面团面包比容、质构、气孔结构和硬化速率等)的调控作用,结果发现:冻藏条件相同时,TSISP显著地减小了冷冻面团的ΔHd-ice、改善了冷冻面团超微结构和发酵流变学特性(AT、A1、Hm和h)、缩短了冷冻面团醒发时间、增大了冷冻面团面包比容、减小了面包硬度和Avrami方程拟合的面包硬化速率k,说明在TSISP调控下,冷冻面团及其烘焙产品的质量都得到了明显改善。
The protein with thermostability and thermal hysteresis activity (THA), so calledthermostable ice structuring protein (TSISP), was extracted and isolated from acclimatedChinese Privet (Ligustrum vulgare) leaves. The effects of the TSISP on frozen dough and itskey components such as protein, yeast and starch were studied and the mechanism of theimproving effect of TSISP on frozen dough and its baking properties were also investigated.
     Proteins were extracted from Chinese Privet (Ligustrum vulgare) leaves acclimated for4weeks at4℃by using Tris-HCl buffer (pH7.4、20mmol/L). The supernantant was heated in100℃water bath and was isolated by using ice affinity method. Through Sephadex G-100gel filtration and DEAE-cellulose-52anion exchange chromatography, the TSISP wasobtained. Differential Scanning Calorimetry (DSC), Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry (MALDI-TOF-MS), Circular Dichroism (CD),and so on were used to measure molecular weight, THA value, amino acid composition,protein homology and secondary structure of TSISP, respectively. Results showed that:1) itsmolecular weight was about66kDa;2) THA value was0.269;3) Hydrophilic amino acid wasmore than hydrophobic one;4) The TSISP and PRR1_TOBAC, VCLB_PEA, VCLC_PEAwere homologous;5) β-sheet structure, random coil, β-turn structure and α-helix structurewere43.3%,36.9%,18.5%and1.3%, respectively.
     The cryoprotective effect of the TSISP on frozen hydrated gluten was found. The effectsof the TSISP on the state of water molecule, dehydration and secondary structure of proteins,glutenin subunit and dynamic rheological properties of hydrated gluten were studied mainlyby using Magnetic Resonance Imaging (NMR) and Attenuated Total Reflection FourierTransform Infrared Spectrometer (ATR-FTIR). Results showed that1) Water molecule infrozen gluten-water redistributed in the system during frozen storage, which was indicated bythe increase in the dehydration of water and relaxation time of water molecule;2) Secondarystructure changed and glutenin degraded during frozen storage, which was indicated by asignificant decrease of α-helix, an significant increase in β-sheet structure and a significantdecrease in high molecule weight/low molecular weight (HMW-GS/LMW-GS) ratio;3) Asignificant decrease in viscous modulus (G'') and elasticity modulus (G') of gluten-watersystem was found;4) The introduction of the TSISP improved the cryoprotecive activity forthe gluten-water system.
     The protection of TSISP on frozen yeast: DSC, F3rheofermentmeter, and so forth wereused to study the effects of the TSISP on survival ratio of yeast cells, intracellular iceformation (IIF), glutathione (GSH) released, soluble proteins and fermentation capacity ofdough made with frozen yeast suspension, respectively. Results showed that1) After5weeks frozen storage, survival ratio of yeast cells decreased significantly. GSH amountreleased from the yeast cells increased significantly. Relative intensity of SDS-PAGE spectraof soluble proteins increased significantly. F3rhofermentation parameters such as totalproduction volume (AT), retention volume (A1), retention ratio (R) of gas, time of gas start torelease (Tx), maximum height of dough (Hm), maximum height of gas release curve (H′m) and final height of dough (h) decreased significantly;2) The addition of the TSISP into theyeast suspension weakened the damage caused by freezing and frozen storage on theseparameters. These findings showed that the TSISP protected frozen yeast cells effectively.
     The improvement of freeze-thaw stability of starch gel by TSISP: Scanning ElectronMicroscope (SEM), Txture Analyzer, etc. were used to investigate the effects of the TSISP onice melting enthalpy (ΔHs-ice), retrogradation enthalpy (Hret), retrogradation ratio (RR),syneresis, microstructure and hardness of starch gel during frozen storage. Results showedthat:1) when the freeze-thaw cycles increased, ΔHs-ice, Hret, RR, syneresis and hardness ofstarch gel increased significantly, and microstructure of starch gel damaged gradually;2)when the frozen storage time was kept the same, the addition of TSISP not only significantlydecreased the ΔHs-ice, Hret, RR, syneresis and hardness values of starch gel, but alsoimproved the microstructure of starch gel. These observations indicated the improvement ofTSISP on the freeze-thaw stability of starch gel.
     The improvement results of the TSISP on frozen dough system and its baking propertieswere also discovered. The effects of the TSISP on ΔHd-ice, microstructure, fermentationcapacity (AT、A1、Hm and h) of frozen dough and breadbaking properties of the frozendoughs such as specific volume, texture, cell structure and hardening rate (k) wereinvestigated mainly by Thermal Gravimetric Analysis (TGA) and Avrami function method,respectively. It was found that the addition of the TSISP into frozen dough system decreasedΔHd-icevalue and proofing time significantly, improved the microstructure and fermentationcapacity (AT,A1、Hm and h) obviously, increased specific volume and decreased hardnessand k of frozen dough bread, indicating that the TSISP improved the cryoprotective effects offrozen dough system and the quality of frozen dough bread.
引文
1.尹明安,崔鸿文,樊代明,等.抗冻蛋白及其在植物抗冻基因工程中的应用[J].西北植物学报,2001,21(1):8-13.
    2. Ramsay, J. A. The rectal complex of the mealworm Tenebrio molitor L.(Coleoptera, Tenebrionidae)[J],Philosophical Transactions of the Royal Society of London Series B,1964,248:279-314.
    3. Grimstone, A.V., Mullinger, A. M., Ramsay, J. A. Further studies on the rectal complex of themealworm Tenebrio molitor, L.(Coleoptera, Tenebrionidae)[J], Philosophical Transactions of theRoyal Society of London Series B-Biological Sciences,1968,253:343-382.
    4. DeVries, A. L. Glycoproteins as biological antifreeze agents in Antarctic fishes[J], Science,1971,172:1152-1155.
    5. DeVries, A. L., Wohlschlag, D. E. Freezing resistance in some Antarctic fishes[J], Science,1969,163:1073-1075.
    6. Raymond, J. A., DeVries, A. L. Adsorption inhibition as a mechanism of freezing resistance in polarfishes[J], Proceedings of the National Academy of Sciences of the United States of America,1977,74:2589-2593.
    7. Bar, M., Scherf, T., Fass, D. Two dimensional surface display of functional groups on a beta-helicalantifreeze protein scaffold[J]. Protein Engineering Design&Selection,2008,21:107-114.
    8. Raymond, J. A., DeVries, A. L. Freezing behavior of fish blood glycoproteins with antifreezeproperties[J], Cryobiology,1972,9:541-547.
    9. Hall, D. G., Lips, A. Phenomenology and mechanism of antifreeze peptide activity[J], Langmuir,1999,15:1905-1912.
    10. Li, Q., Luo, L. The kinetic theory of thermal hysteresis of a macromolecule solution[J], ChemicalPhysics Letters,1993,216:453-457.
    11. Li, Q. Luo, L. Further discussion on the thermal hysteresis of the ice growth inhibitor, ChemicalPhysics Letters,1994,223:181-184.
    12. Kristiansen, E., Zachariassen, K. E. The mechanism by which fish antifreeze proteins cause thermalhysteresis[J]. Cryobiology,2005,51:262-280.
    13. Yang, D. S. C., Sax, M., Chakrabartty, A. Crystal structure of an antifreeze polypeptide and itsmechanistic implications[J]. Nature,1988,333:232-237.
    14. DeVries, A. L. Wohlschlag, D. E. Freezing resistance in some Antarcticfishes[J], Science,1969,163:1073-1075.
    15. Duman, J. G. The role of macromolecular antifreeze in the darkling beetle, Mera-cantha contracta[J],Journal of Comparative Physiology B,1977,115:279-286.
    16. Tomchaney, A. P., Morris, J. P., Kang, S. H., et al. Purification, composition, and physical properties ofa thermal hysteresis “antifreeze”protein from larvae of the beetle Tenebrio molitor[J], Biochemistry,1982,21:716-721.
    17. Tursman, D., Duman, J. G., Knight, C. A. Freeze tole ranc e ad apta ti on s in the centipede, Lithobiusfor fi catus[J], Journal of Experimental Zoology,1994,268:347-353.
    18. Block, W., Duman, J. G. Presence of thermal hysteresis producing antifreeze proteins in the Antarcticmite[J], Alaskozetes antarcticus, Journal of Experimental Zoology,1989,250:229-231.
    19. Duman, J. G. Subzero temperature tolerance in spiders: the role of thermal-hysteresis-factors[J],Journal of Comparative Physiology B,1979,131:347-352.
    20. Duman, J. G., Olsen, T. M. Thermal hysteresis protein activity in bacteria, fungi, and phylogeneticallydiverse plants[J], Cryobiology,1993,30:322-328.
    21. Urrutia, M. E., Duman, J. G., Knight, C. A. Plant thermal hysteresis proteins[J], Biochimica etBiophysica Acta,1992,1121:199-206.
    22. Amornwittawat, N., Wang, S., Duman, J. G., et al. Polycarboxylates enhance beetle antifreeze proteinactivity[J]. Biochimica et Biophysica Acta,2008,1784:1942-1948.
    23. Bar, M., Scherf, T., Fass, D. Two dimensional surface display of functional groups on a beta-helicalantifreeze protein scaffold. Protein Engineering Design&Selection,2008,21:107-114.
    24. Graham, L. A., Liou, Y. C., Walker, V. K., et al. Hyperactive antifreeze protein from beetles[J].Nature,1997,388(21):727-728.
    25. Liou, Y. C., Thibault, P., Walker, V. K., et al. Complexfamily of highly heterogeneous and internallyrepetitive hyperactive antifreeze proteins from the beetle Tenebrio molitor[J]. Biochemistry,1999,38(35):11415-11424.
    26.尉姗姗,尹林克,牟书勇,鲁春芳,赵峰侠.新疆沙冬青抗冻蛋白的提取分离及其热滞活性测定[J].云南植物研究,2007,29(2):251-255.
    27. Marshall, C. B., Chakrabartty, A., Davies, P. L. Hyperactive antifreeze protein from winter flounder is avery long rod-like dimer of β-Helices[J]. Journal of Biological Chemistry,2005,280(18):17920-17929.
    28. Gauthier, S. Y., Marshall, C. B., Fletcher, G. L., et al. Hypeactive antifreeze protein in flounder speciesthe sole freeze protectant in American plaice[J]. FEBS Journal,2005,272(17):4439-4449.
    29. Kristiansena, E., Ramlov, H., Hagen, L., et al. Isolation and characterization of hemolymph antifreezeproteins from larvae of the longhorn beetle Rhagiuminquisitor[J]. Comparative Biochemistry andPhysiology B,2005,142(1):90-97.
    30. Pudney, P. D. A., Buckley, S. L. C., Sidebottom, M., et al. The physico-chemical characterization of aboiling stable antifreeze protein from a perennial grass (Lolium perenne)[J]. Archives of Biochemistryand Biophysics,2003,410:238-245.
    31.郭丽红,仝向荣,王德斌,陈善娜.小麦幼苗抗冻蛋白的分离及其抗氧化活性的研究[J].昆明师范高等专科学校学报,2006,28(4):71-74.
    32. Kontogiorgos, V., Regand, A., Tada, R., et al. Isolation and characterization of ice structuring proteinsfrom cold-acclimated winter wheat grass extract for recrystallization inhibition in frozen foods[J].Journal of Food Biochemistry,2007,31:139-160.
    33. DeVries, A. L. Glycoproteins as Biological Antifreeze Agents in Antarctic Fishes[J]. Science,1971,172:1152-1155.
    34. Low, W. K., Lin, Q. S., Hew, C. L. The Role of N and C Termini in the Antifreeze Activity of WinterFlounder (Pleuronectes americanus) Antifreeze Proteins. The Journal of Biological Chemistry[J],2003,278(12):10334-10343.
    35. Yamashita, Y., Miura, R., Takemoto, Y., et al. Type II antifreeze protein from a mid-latitude freshwaterfish, Japanese smelt (Hypomesus nipponensis)[J]. Bioscience Biotechnology and Biochemistry,2003,67:461-466.
    36. Graether, S. P., Kuiper, M. J., Gagné, S. M., et al. β-Helix structure and ice-binding properties of ahyperactive antifreeze protein from an insect[J]. Nature,2000,406:325-328.
    37. Leinala, E. K., Davies, P. L., Jia, Z. Crystal structure of beta-helical antifreeze protein points to ageneral ice binding model[J]. Structure,2002,10(5):619-627.
    38. Li, N., Kendrick, B. S., Manning, M. C., et al. Secondary structure of antifreeze proteins fromoverwintering larvae of the beetle Dendroides canadensis[J]. Archives of Biochemistry and Biophysics,1998,360(1):25-32.
    39. Huang, T., Duman, J. G. Cloning and characterization of a thermal hysteresis (antifreeze) protein withDNA-binding activity from winter bittersweet nightshade, Solanum dulcamara[J]. Plant MolecularBiology,2002,48(4):339-350.
    40. Kuiper, M. J., Davies, P. L., Walker, V. K. A theoretical model of a plant antifreeze protein from Loliumperenne[J]. Biophysical Journal,2001,81(6):3560-3565.
    41. Yamashita, Y., Nakamura, N., Omiya, K., et al. Identification of an antifreeze lipoprotein fromMoraxella sp. of Antarctic origin[J]. Bioscience Biotechnology and Biochemistry,2002,66(2):239-247.
    42. Cheng, C. H. C., DeVries, A. L. Structures of antifreeze peptides from the Antarcticeel pout,Austrolycicthys brachycephalus, Biochim[J]. Biophysica Acta,1989,997:55-64.
    43. Li, X., Hew, C. L. Structure and function of an antifreeze polypeptide from oceanpout, Macrozoarcesamericanus: role of glutamic acid residues in protein stability and antifreeze activity by site-directedmutagenesis[J]. Protein Engineering,1991,4:1003-1008.
    44. Li, X., Trinh, K. Y., Hew, C. L. Expression and characterization of an active and thermally more stablerecombinant antifreeze polypeptide from ocean pout, Macrozoarces americanus,in Escherichia coli:improved expression by the modification of the secondary structure of the mRNA[J]. ProteinEngineering,1991,4:995-1002.
    45. Li, N., Andorfer, C. A., Duman, J. G. Enhancement of insect antifreeze protein activity by solutes oflow molecular mass[J]. Journal of Experimental Biology,1998,201:2243-2251.
    46. Marshall, C. B., Chakrabartty, A., Davies, P. L. Hyperactive antifreeze protein from winter flounder is avery long rod-like dimer ofa-helices[J]. Journal of Biological Chemistry,2005,280:17920-17929.
    47. Wharton, D. A., Barrett, J., Goodall, G., et al. Ice-active proteins from the Antarctic nematodePanagrolaimus davidi[J]. Cryobiology,2005,51:198-207.
    48. Salvay, A. G., Santos, J., Howard, E. I. Electro-optical properties characterization of fish type IIIantifreeze protein[J]. Journal of Biological Physics,2007,33:389-397.
    49. Kawahara, H., Iwanaka, Y., Higa, S., et al. A novel, intracellular antifreeze protein in an antarcticbacterium, Flavobacterium xanthum[J]. CryoLetters,2007,28(1):39-49.
    50. Qiu, L. M., Ma, J., Wang, J.,et al. Thermal stability properties of an antifreeze protein from the desertbeetle Microdera punctipennis[J]. Cryobiology,2010,60(2):192-197.
    51. Pudney, P. D. A., Buckley, S. L., Sidebottom, C. M. S., et al. The physico-chemical characterization ofa boiling stable antifreeze protein from a perennial grass (Lolium perenne)[J]. Archives ofBiochemistry and Biophysics,2003,410:238-245.
    52. Sidebottom, C., Buckley, S., Pudney, P., et al. Heat-stable antifreeze protein from grass[J]. Nature,2000,406(20):256.
    53. GrahamL, A., Liou,Y C., Walker, V. K., et al. Hyperactive antifreeze protein from beetles[J]. Nature,1997,388:727-728.
    54. Duman, J. G., Li, N., Verleye, D., et al. Molecular characterizationandsequencing of antifreeze proteinsfrom larvae of thebeetle Dendroides canadensis[J]. Journal of Comparative Physiology B,1998,168:225-232.
    55.陈晓光,王巍.抗冻蛋白[J].生物学教学,2008,33(7):11-12.
    56.周素梅,廖红.未来的食品原料——抗冻蛋白[J].冷饮与速冻食品工业,2011,7(4):37-38.
    57.冯从经,陆剑锋,吕文静,等.抗冻蛋白研究进展[J].江苏农业学报,2007,23(5):481-486.
    58. Wang, S. Y., Damodaran, S. Ice-structuring peptides derived from bovine collagen[J]. Journal ofAgricultural and Food Chemistry,2009,57:5501-5509.
    59.孙琳杰.新疆荒漠昆虫抗冻蛋白在酿酒酵母低温保存中的应用[D].乌鲁木齐:新疆大学,2008:9-12.
    60. Jia, Z. C., Davies, P. L. Antifreeze proteins: an unusual receptor-ligand interaction[J]. Trands inBiochemical Sciences,2002,27:101-106.
    61. Bhattacharya, M., Langstaff, T. M., Berzonsky, W. A. Effect of frozen storage and freeze-thaw cycleson the rheological and baking properties of frozen doughs[J]. Food Research International,2003,36:365-372.
    62.周美玲,邹奇波,黄卫宁,金亮秀,等.冰结构蛋白影响冷冻面团及面包体系发酵烘焙与热力学特性的研究[J].食品科学,2008,29(11):125-128.
    63.潘振兴,邹奇波,黄卫宁,金亮秀,等.冰结构蛋白对长期冻藏冷冻面团抗冻发酵特性与超微结构的影响[J].食品科学,2008,29(8):39-42.
    64. Xu, H. N., Huang, W., Jia, C. L., et al. Yangsoo Kim, Huiping Liu. Evaluation of water holdingcapacity and breadmaking properties for frozendough containing ice structuring proteins from winterwheat[J]. Journal of Cereal Science,2009,49:250-253.
    65. Kontogiorgos, V., Goff, H. D. Effect of aging and ice structuring proteins on the morphology of frozenhydrated gluten networks[J]. Biomacromolecules.2007,8:1293-1299.
    66. Kontogiorgos, V., Goff, H. D., Kasapis, S. Effect of aging and ice-structuring proteins on the physicalproperties of frozen flour-water mixtures[J]. Food Hydrocolloids,2008,22:1135-1147.
    67. Li, L. L., Kim, Y. S., Huang, W. N.,et al. Effects of ice structuring proteins on freeze-thaw stability ofcorn and wheat starch gels[J]. Cereal Chemistry,2010,87(5):497-503.
    68. Cai, Y. J., Liu, S., Liao, X. R., et al. Purification and partial characterization of antifreeze proteins fromleaves of Ligustrum lucidum Ait. Food and Bioproducts Processing,2011,89:98-102.
    69. Cheng, C. H. C., and DeVries, A. L. Structures of antifreeze peptides from the Antarctic eel pout,Austrolycicthys brachycephalus. Biochimica et biophysica acta.1989,997:55-64.
    70. Li, X., and Hew, C. L. Structure and function of an antifreeze polypeptide from ocean pout,Macrozoarces americanus: role of glutamic acid residues in protein stability and antifreeze activity bysite-directed mutagenesis. Protein Engineering,1991,4:1003-1008.
    71. Qiu, L.M., Ma, J., Wang, J., Zhang, F.C., and Wang, Y. Thermal stability properties of an antifreezeprotein from the desert beetle Microdera punctipennis. Cryobiology,2010,60:192-197.
    1. DeVries, A. L., Wohlschlag, D. E. Freezing resistance in some Antarctic fishs[J]. Science,1969,163:1073-1075.
    2. DeVries, A. L. Glycoproteinsasbiologicalantifreezeagents inantarctic fishes[J]. Science,1971,172(988):1152-1155.
    3. DeVries, A. L. Antifreeze glycopeptides and peptides: interaction with ice and water[J]. MethodsEnzymol,1986,127:293-303.
    4. Amornwittawat, N., Wang, S., Duman, J. G., et al. Polycarboxylates enhance beetle antifreeze proteinactivity[J]. Biochimica et Biophysica Acta,2008,1784:1942-1948.
    5. Weiser, G. J. Cold resistance and injury in woody plants[J]. Science,1970,169:1269-1278.
    6. Graham, L. A., Liou, Y. C., Walker, V. K., et al. Hyperactive antifreeze protein from beetles[J]. Nature,1997,388(21):727-728.
    7. Liou, Y. C., Thibault, P., Walker, V. K., et al. A complex family of highly heterogeneous and internallyrepetitive hyperactive antifreeze proteins from the beetle Tenebrio molitor[J]. Biochemistry,1999,38(35):11415-11424.
    8. Marshall, C. B., Chakrabartty, A., Davies, P. L. Hyperactive antifreeze protein from winter flounder is avery long rod-like dimer of β-Helices[J]. Journal of Biological Chemistry,2005,280(18):17920-17929.
    9. Gauthier, S. Y., Marshall, C. B., Fletcher, G. L., et al. Hypeactive antifreeze protein in flounder speciesthe sole freeze protectant in American plaice[J]. FEBS J,2005,272(17):4439-4449.
    10. Zhang, D. Q., Liu, B., Feng, D. R., et al. Expression, purification, and antifreeze activity of carrotantifreeze protein and its mutants[J]. Protein Expression and Purification,2004,35:257-263.
    11. Byler, D. M., Brouillette, J. N. Quantitative studies of protein structure by FTIR spectra disconsolationand curve-fitting[J]. Spectroscopy,1986,3:29-32.
    12. Watanabe, R., Masui, R., Mikawa, T., et al. Interaction of Escherichia coli RecA protein with ATP andits analogues[J]. Journal of Biochemistry,1994,116:969-966.
    13. Bar, M., Scherf, T., Fass, D. Two-dimensional surface display of functional groups on a beta-helicalantifreeze protein scaffold[J]. Protein Engineering Design and Selection,2008,21(2):107-114.
    14.刘尚,廖祥儒,张建国,苗会娟.一种女贞叶抗冻蛋白的分离纯化[J].植物学通报,2007,24(4):505-510.
    15. Cai, Y. J., Liu, S., Liao, X. R., et al. Purification and partial characterization of antifreeze proteins fromleaves of Ligustrum lucidum Ait. Food and Bioproducts Processing,2011,89:98-102.
    1. Dachkevitch, T., Autran, J. C. Prediction of baking quality of bread wheats in breeding programs bysize-exclusion high-performance liquid chromatography[J]. Cereal Chemistry,1998,66:448-456.
    2. Wang, J. S., Zhao, M. M., Zhao, Q. Z. Correlation of glutenin macropolymer with viscoelasticproperties during dough mixing[J]. Journal of Cereal Science,2007,45:128-133.
    3. Weegels, P. L., Van de Pijpekamp, A. M., Graveland, A., et al. Depolymerisation and re-polymerisationof wheat glutenin during dough processing. I. Relationships between glutenin macropolymer contentand quality parameters[J]. Journal of Cereal Science,1996,23:103-111.
    4. Esselink, E. F. J., van Aalst, H., Maliepaard, M., et al. Long-term storage effect in frozen dough byspectroscopy and microscopy[J]. Cereal Chemistry,2003,80(4),396-403.
    5. R s nen, J., Blanshard, J., Mithell, J., et al. Properties of frozen wheat dough at subzerotemperatures[J]. Journal of Cereal Science,1998,28:1-14.
    6. R s nen, J., Blanshard, J. M. V., Siitari Kamppi, M., et al. Water distribution of frozen and wheatdoughs[J]. Cereal Chemistry,1996,74:806-813.
    7. Inoue, Y., Bushuk, W. Studies on frozen dough. II. Flour quality requirements for bread productionfrom frozen dough[J]. Cereal Chemistry,1992,69(4):423-428.
    8. R s nen, J., Blanshard, J. M. V., Mitchell, J. R., et al. Properties of frozen wheat doughs at subzerotemperatures[J]. Journal of Cereal Science,1998,28:1-14.
    9. Selomulyo, V. O., Zhou, W. Frozen bread dough: Effects of freezing storage and dough improvers[J].Journal of Cereal Science,2007,45:1-17.
    10. Berglund, P., Shelton, D., Freeman, T. Frozen bread dough ultrastructure as affected by duration offrozen storage and freeze-thaw cycles[J]. Cereal Chemistry,1991,68(1):105-107.
    11. Inoue, Y., Bushuk, W. Studies on frozen dough. I. Effects of frozen storage and freeze-thaw cycles onbaking rheological properties[J]. Cereal Chemistry,1991,68(6):627-631.
    12. Kline, L., Sugihara, T. Factors affecting the stability of the frozen bread dough. I. Prepared by straightdough method[J]. Baker’s Digest1968,42:44-50.
    13. Ribotta, P. D., Pérez, G. T., León, A. E., et al. Effect of emulsifier and guar gum on micro structural,rheological and baking performance of frozen bread dough[J]. Food Hydrocolloids,2004,18:305-313.
    14. AACC International2010. Approved Methods of AACC International,10th ed. The Association: St.Paul, MN.
    15. Gupta, R. B., Khan, K., MacRitchie, F. Biochemical basis of flour properties in bread wheat. I. Effectsof variation in the quality and size distribution of polymeric protein[J]. Journal of Cereal Science1993,18:23-41.
    16. Kim, Y. R., Cornillon, P. Effects of temperature and mixing time on molecular mobility in wheatdough[J]. Lebensmittel-Wissenschaft und-Technologie,2001,34(7):417-423.
    17. Ruan, C., Chen, J.1998. In: Water in Food and Biological Materials: A NMR Approach. TechnomicPublishing: Lancaster, PA. pp.149-228.
    18. Wang, X., Choi, S, G., Kerr, W. L. Water dynamics in white bread and starch gels as affected by waterand gluten content[J]. Lebensmittel-Wissenschaft und-Technologie,2004,37:377-84.
    19. Wagner, J. R., Anon, M. C. Effect of frozen storage on protein denaturation in bovine muscle1Myofibrillar ATPase activity and differential scanning calorimetric studies[J]. International Journal ofFood Science and Technology,1986,21(1):9-18.
    20. Cai, S., Singh, B. R. Identification of β-turn and random coil amide III infrared bands for secondarystructure estimation of proteins[J]. Biophysical Chemistry,1999,80(1):7-20.
    21. Jood, S., Schofield, J. D., Tsiami, A. A., et al. Effect of glutenin subfractions on bread-making qualityof wheat[J]. International Journal of Food Science and Technology,2001,36:573-584.
    22. Costas, E. S., Amalia, A. T., Bodgan, J. D., et al. Effect of heat on rheology of gluten fractions fromflours with different bread-making quality[J]. Journal of Cereal Science,2006,43:322-330.
    23. Verbruggen, I. M., Veraverbeke, W. S., Delcour, J. A. Significance of LMW-GS and HMW-GS fordough extensibility:‘addition’ versus ‘incorporation’ protocols[J]. Journal of Cereal Science,2001,33:253-260.
    24. Wang, J. S., Zhao, M. M., Zhao, Q. Z. Correlation of glutenin macropolymer with viscoelasticproperties during dough mixing[J]. Journal of Cereal Science,2007,45:128-133.
    25. Kenny, S., Wehrle, K., Dennehy, T., et al. Correlation between empirical and fundamental rheologymeasurements and baking performance of frozen bread dough[J]. Cereal Chemistry,1999,76(3):421-425.
    26. Ribotta, P, D., León, A. E., A ón, M. C. Effect of freezing and frozen storage of doughs on breadquality[J]. Journal of Agricultural Food Chemistry,2001,49:913-918.
    27. Bot, A. Differential scanning calorimetric study on the effects of frozen storage on gluten and dough[J].Cereal Chemistry,2003,80:366-370.
    28. R s nen, J., Blanshard, J., Mithell, J., et al. Properties of frozen wheat dough at subzerotemperatures[J]. Journal of Cereal Science,1998,28:1-14.
    29. Khatkar, B. S., Bell, A. E., Schofield, J. D. The dynamic rheological properties of gluten and glutensub-fractions from wheats of good and poor bread making quality[J]. Journal of Cereal Science,1995,22:29-44.
    30. Hayta, M. Schofield, D. Dynamic rheological behavior of wheat glutens during heating[J]. Journal ofthe Science of Food and Agriculture,2005,85:1992-1998.
    31. Kokini, J. L., Cocero, A. M., Madeka, H., et al. The development of state diagrams for cereal proteins[J]. Trends i n Food Science and Technology,1994,5:281-288.
    1. Huang, W. N., Kim, Y. S., Li, X. Y., et al. Rheofermentometer parameters and bread specific volume offrozen sweet dough influenced by ingredients and dough mixing temperature. Journal of CerealScience,2008,48:639-646.
    2. Huang, W. N., Yuan, Y. L., Kim, Y. S., et al. Effects of Transglutaminase on rheology, microstructure,and baking properties of frozen dough. Cereal Chemistry,2008,85(3):301-306.
    3. Selomulyo, V. O., Zhou, W. Frozen bread dough: Effects of freezing storage and dough improvers.Journal of Cereal Science,2007,45:1-17.
    4. Autio, K., Sinda, E. Frozen doughs: Rheological changes and yeast viability. Cereal Chemistry,1992,69:409-413.
    5. Ribotta, P., León, A., A on, M. C. Effect of freezing and frozen storage of doughs on bread quality.Journal of Agricultural and Food Chemistry,2001,49:913-918.
    6. Ribotta, P. D., León, A. E., A ón, M. C. Effects of yeast freezing in frozen dough. Cereal Chemistry,2003,80:454-458.
    7. Wolt, M., D’Appolonia, B. Factors involved in the stability of frozen dough. II. The effects of yeasttype, and dough additives on frozen-dough stability. Cereal Chemistry,1984,61:213-221.
    8. Mazur, P., Pinn, I. L., Kleinhans, F. W. Intracellular ice formation in mouse oocytes subjected tointerrupted rapid cooling. Cryobiology,2007,55:158-166.
    9. Seki, S., Kleinhans, F. W., Mazur, P. Intracellular ice formation in yeast cells vs. cooling rate:Predictions from modeling vs. experimental observations by differential scanning calorimetry.Cryobiology,2009,58:157-165.
    10. Beutler, E., Duron, O., Kelley, B. M. Methodology for the estimation of reduced glutathione. Journalof Laboratory and Clinical Medicine,1963,61:882-888.
    11. AACC International2010. Approved Methods of AACC International,10th ed. The Association: St.Paul, MN.
    12. Laemmli, U. Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature,1970,227:681-684.
    13. Mazur, P. Kinetics of water loss from cells at subzero temperatures and the likelihood of intracellularfreezing. The Journal of General Physiology,1963,47:347-369.
    14. Lorenz, K., Kulp, K.(1995). Frozen and refrigerated doughs and batter. Minnesota: AmericanAssociation of Cereal Chemists,(Pages135-153).
    15. Zhang, C., Zhang, H., Wang, L. Effect of carrot (Daucus carota) antifreeze proteins on thefermentation capacity of frozen dough. Food Research International,2007,40:763-769.
    1. Hermansson, A. M., Svegmark, K. Developments in the understanding of starch functionality. Trendsin Food Science&Technology,1996,7:345-353.
    2. Yuan, R. C., Thompson, D. B. Freeze-thaw stability of three waxy maize starch pastes measured bycentrifugation and calorimetry. Cereal Chemistry,1998,75:571-573.
    3. Karim, A. A., Norziah, M. H., Seow, C. C. Methods for the study of starch retrogradation. FoodChemistry,2000,71:9-36.
    4. Rahman, M. S. Food preservation by freezing[M]. In M. S. Rahman (Ed.), Handbook of foodpreservation (pp.259-284). New York: Marcel Dekker,1999.
    5. Baker, L. A., Rayas-Duarte, P. Freeze-thaw stability of amaranth starch and the effects of salt andsugars. Cereal Chemistry.1998,75:301-307.
    6. Takeiti, C., Fakhouri, F., Ormenese, R., et al. Freeze-thaw stability of gels prepared from starches ofnonconventional sources. Starch/St rke,2007,59:156-160.
    7. Arunyanart, T., Charoenrein, S. Effect of sucrose on the freeze-thaw stability of rice starch gels:Correlation with microstructure and freezable water. Carbohydrate Polymer,2008,7:514-518.
    8. Muadklay, J., Charoenrein, S. Effects of hydrocolloids and freezing rates on freeze-thaw stability oftapioca starch gels. Food Hydrocolloid,2008,22:1268-1272.
    9. Pongsawatmanit, R., Srijunthongsiri, S. Infuence of xanthan gum on rheological properties andfreeze-thaw stability of tapioca starch. Journal of Food Engineering,2008,88:137-143.
    10. Sae-kang, V., Suphantharika, M. Infuence of pH and xanthan gum addition on freeze-thaw stability oftapioca starch pastes. Carbohydrate Polymers,2006,65:371-380.
    11. Li, L. L., Kim, Y. S., Huang, W. N., et al. Effects of ice structuring proteins on freeze-thaw stability ofcorn and wheat starch gels. Cereal Chemistry,2010,87(5):497-503.
    12. Hansen, T. N., Baust, J. G. Differential scanning calorimetric analysis of antifreeze protein activity inthe common mealworm, Tenebrio molitor. Biochimicaet Biophysica Acta,1988,957:217-221.
    13. Arunyanart, T., Charoenrein, S. Effect of sucrose on the freeze-thaw stability of rice starch gels:Correlation with microstructure and freezable water. Carbohydrate Polymers,2008,74:514-518.
    14. Wang, L., Yin, Z. H., Wu, J., et al. A study on freeze–thaw characteristics and microstructure ofChinese water chestnut starch gels. Journal of Food Engineering,2008,88:186-192.
    15. Akon, H., Toshir, L. DSC investigation of the states of water in poly (vinyl2alcohol) membranes.Polymer,1985,26(8):1207-1211.
    16. Tommi, J., Laaksonen, H. Y. Thermal, dynamic-mechanical, and dielectric analysis of phase and statetransitions of frozen wheat doughs. Journal of Cereal Science,2000,32:281-292.
    17. Pablo, D., Alberto, E., Maria, C. A. Effect of freezing and frozen storage on the gelatinization andretrogradation of amylopectin in dough baked in a differential scanning calorimeter. Food ResearchInternational,2003,36:357-363.
    1. Dubois, D., Blockolsky, D. Frozen bread dough. Effect of dough mixing and thawing methods.American Institute of Baking Technol. Bull,1986,8:1-7.
    2. Inoue, Y., Bushuk, W. Studies on frozen dough. II. Flour quality requirements for bread productionfrom frozen dough. Cereal Chemistry,1992,69:423-428.
    3. Neyreneuf, O., Van Der Plaat, J. B. Preparation of frozen French bread dough with improved stability.Cereal Chemistry,1991,68:60-66.
    4. R s nen, J., Laurikainen, T., Autio, K. Fermentation stability and pore distribution of frozenprefermented lean wheat doughs. Cereal Chemistry,1997,74:56-62.
    5. Ribotta, P., León, A., A on, M. C. Effect of freezing and frozen storage of doughs on bread quality.Journal of Agriculture Food Chemistry,2001,49:913-918.
    6. Ribotta, P. D., León, A. E., A ón, M. C. Effects of yeast freezing in frozen dough. Cereal Chemistry,2003,80:454-458.
    7. Wolt, M., D’Appolonia, B. Factors involved in the stability of frozen dough. II. The effects of yeasttype, and dough additives on frozen-dough stability. Cereal Chemistry,1984,61:213-221.
    8. Kontogiorgos, V., Goff, H. D. Effect of aging and ice structuring proteins on the morphology of frozenhydrated gluten networks. Biomacromolecules,2007,8:1293-1299.
    9. Xu, H. N., Huang, W. N. Jia, C. L., et al. Evaluation of water holding capacity and breadmakingproperties for frozen dough containing ice structuring proteins from winter wheat. Journal of CerealScience,2009b,49:250-253.
    10. Zhang, C., Zhang, H., Wang, L., et al. Effect of carrot (Daucus carota) antifreeze proteins on textureproperties of frozen dough and volatile compounds of crumb. Lebensmittel-Wissenschaftund-Technologie,2008,41:1029-1036.
    11. AACC International.2010. Approved Methods of Analysis,11th Ed. Methods44-15,08-01, and46-12.Available online only. AACC International, St. Paul, MN.
    12. Zhou, Z. K., Robards, K., Helliwell, S., et al. Effect of rice storage on pasting properties of rice flour.Food Research International,2003,36:625-634.
    13. Gobbetti, M., Corsetti, A., Rossi, J. The sourdough microflora. Study of the interactions between lacticacid bacteria and yeasts on the basis of rheofermentometer assays. World Journal of MicrobialBiotechnology,1995,11:625-630.
    14. Bhattacharya, M., Langstaffa, T. M., Berzonsky, W. A. Effect of frozen storage and freeze-thaw cycleson the rheological and baking properties of frozen doughs. Food Research International,2003,36:365-372.
    15. Xu, H. N., Huang, W. N. Jia, C. L., et al. Evaluation of water holding capacity and breadmakingproperties for frozen dough containing ice structuring proteins from winter wheat. Journal of CerealScience,2009,49:250-253.
    16. Fessas, D., Schiraldi, A. Water properties in wheat four dough I: Classical thermogravimetry approach.Food Chemistry,2001,72:237-244.
    17. Kontogiorgos, V., Goff, H. D. Effect of aging and ice structuring proteins on the morphology of frozenhydrated gluten networks. Biomacromolecules,2007,8:1293-1299.
    18. Esselink, E. F. J., van Aalst, H., Maliepaard, M., et al. Long-term storage effect in frozen dough byspectroscopy and microscopy. Cereal Chemistry,2003,80:396-403.
    19. Baier-Schenk, A., Handschin, S., Conde-Petit, B. Ice in prefermented frozen bread dough-aninvestigation based on calorimetry and microscopy. Cereal Chemistry,2005,82:251-255.
    20. Berglund, P., Shelton, D., Freeman, T. Frozen bread dough ultrastructure as affected by duration offrozen storage and freeze-thaw cycles. Cereal Chemistry,1991,68:105-107.
    21. Ribotta, P. D., Pérez, G. T., León, A. E., et al. Effect of emulsifier and guar gum on micro structural,rheological and baking performance of frozen bread dough. Food Hydrocolloids,2004,18:305-313.
    22. Zhang, C., Zhang, H., Wang, L. Effect of carrot (Daucus carota) antifreeze proteins on the fermentationcapacity of frozen dough. Food Research International,2007,40:763-769.
    23. Kenny, S., Wehrle, K., Denehy, T., et al. Correlation between empirical and fundamental rheologymeasurements and baking performance of frozen bread dough. Cereal Chemistry,1999,76:421-425.
    24. Sharadanant, R., Khan, K. Effect of hydrophilic gums on the quality of frozen dough: II. Breadcharacteristics. Cereal Chemistry,2003,80:773-780.
    25. Huang, W. N., Yuan, Y. L., Kim, Y. S., et al. Effects of transglutaminase on rheology, microstructure,and baking properties of frozen dough. Cereal Chemistry,2008,85:301-306.
    26. Gaines, C. S., Kassuba, A., Finney, P. L., et al. Instrumental measurement of cookie hardness. II.Application to product quality variables[J]. Cereal Chemistry,1992,69(2):120-125.
    27. Armero, E., Collar, C. Crumb firming kinetics of wheat breads with antistaling additives[J]. Journal ofCereal Science,1998,28:165-174.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700