用户名: 密码: 验证码:
部分重熔处理及稀土Y对ZL205A合金组织与性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文系统研究了部分重熔处理、稀Y对ZL205A合金组织、力学性能及热裂抗力的影响规律,通过对部分重熔处理、添加Y的ZL205A合金高温粘度、凝固特性、力学性能和热裂抗力变化规律的分析,揭示了添加不同比例重熔料和Y、重熔料和Y复合添加处理对ZL205A合金组织与性能的影响机理。通过复合添加重熔料及Y处理,在保证ZL205A合金力学性能的基础上显著降低其热裂倾向性。
     研究了重熔料对ZL205A合金铸态及热处理状态下组织与性能的影响,结果表明:重熔料的添加细化了合金晶粒,晶粒尺寸随着重熔料含量的增加呈先减小后增大的变化趋势。添加少量及过量重熔料的ZL205A合金热处理后基体内第二相主要沿晶界析出;添加20wt.%重熔料时合金晶粒最为细小,由原始合金的60μm左右降低至33μm左右,热处理后合金基体内弥散、均匀的析出第二相ZL205A合金的力学性能则随着重熔料含量增加呈先增大后减小趋势;添加20wt.%重熔料时,力学性能达到最优,热处理状态下,抗拉强度由原始ZL205A合金的501Mpa提高到525MPa,屈服强度由原始合金的421MPa提高到445MPa,延伸率高达14%。但是由于重熔料的添加增加了ZL205A合金中异质形核质点的数量,从而减小了初生α(Al)的形核过冷度,提高了合金的液相线温度,增大了固液共存区间,增加了合金的热裂倾向性。
     研究发现,重熔料的添加没有改变ZL205A合金的主要相组成。根据重熔料所携带细化剂和重熔料本身对ZL205A合金组织与性能的影响研究,结果表明:重熔料本身的组织结构遗传性是造成添加不同比例重熔料后ZL205A合金组织与性能变化的主要原因;重熔料携带的Al-Ti-B细化剂在合金重熔过程中有一定的遗传性,但不是主要影响因素。
     应用扭转式高温粘度仪对添加不同比例重熔料的ZL205A合金的粘度进行了研究。原始ZL205A合金熔体在较高的温度范围内粘度随着温度降低呈指数增加,变化关系符合Arrhenius方程;添加不同比例重熔料后,在968K-1088K温度范围内,合金熔体粘度随温度降低的变化符合Arrhenius方程,但是合金熔体粘度随着温度降低而增加的幅度高于原始ZL205A合金;当温度降至923K-953K范围时,合金熔体粘度随温度的降低而增加的幅度则低于原始ZL205A合金,变化规律偏离Arrhenius方程,表明重熔料添加导致ZL205A合金熔体结构发生变化。
     综合分析部分重熔处理后ZL205A合金粘度随温度变化、铸态组织、液淬组织及热分析结果,表明:重熔料添加增加了ZL205A合金熔体中能够充当异质形核质点的原子团簇,是细化合金晶粒的主要原因。添加适量重熔料时,熔体中存在一定量的原子团簇,当达到一定过冷度时熔体中瞬时有大量质点被同时激发,进行形核长大,导致短时间内晶粒相互接触并阻碍其生长,晶粒显著细化;而添加过量重熔料时,由于原子团簇间彼此聚合使其尺寸达到及超过临界形核尺寸时直接生长为晶粒,导致晶粒粗大,细化效果降低。
     Y可显著细化ZL205A合金的铸态显微组织,并且随着Y含量增加合金晶粒尺寸逐渐减小。TEM分析表明,在晶粒内部三角晶界处存在密排六方结构的灰色块状AlCuY相,DSC分析显示,该相形成温度为592.1℃,高于固相线温度,因此,AlCuY相的形成占用了晶界处Cu原子,减少了共晶组织数量;计算表明,Y与Ti、V之间的电负性差和相互作用强度高于Al与Ti、V之间的电负性差和相互作用强度,使之容易吸附在一起,从而减小了初生α(Al)的形核率,增大了其形核过冷度,降低了液相线温度。
     研究了Y对ZL205A合金热裂抗力的影响。Y可明显降低ZL205A合金的热裂倾向性,添加0.05wt.%Y和0.1wt.%Y时,热裂抗力由原始合金的330N分别提高至380N和450N。Y降低ZL205A合金热裂倾向性机理包括以下三个方面:①降低了ZL205A合金的液相线温度,减小了固液共存区间;②细化了合金晶粒组织,增大了晶粒间结合面积从而使得晶间结合力提高;③减少了共晶相数量,使得由于晶间液相存在引起的有效表面能的减小对晶界的弱化作用降低,提高了裂纹扩展的临界应力;另外,合金共晶组织形态由网状结构转变为长条状,增加了凝固后期枝晶间液体的流动性及补缩能力。
     研究了复合添加重熔料和Y对ZL205A合金力学性能和热裂抗力的影响规律,通过控制重熔料和Y的复合添加可获得所需的合金性能。复合添加20wt.%重熔料和0.1wt.%Y时对ZL205A合金具有强烈的组织细化效果,获得了平均晶粒尺寸为25μm的ZL205A合金;同时ZL205A合金热裂倾向性显著降低,热裂抗力由原始ZL205A合金的330N提高至670N。
In this paper, effects of partial remelting treatment and Y on microstructure, mechanical properties and hot tearing resistance of ZL205A alloy were studied in detail. The variation of viscosity, solidification characteristic, mechanical properties and hot tearing resistance of ZL205A alloy after adding returns or Y were investigated. The influence mechanisms of returns, Y, as well as their contents, returns and Y on microstructure and mechanical properties of ZL205A alloy were discussed. The hot tearing susceptibility of ZL205A alloy decreased significantly, meanwhile, maintained the basic mechanical properties by adding returns and Y.
     Effects of returns on as-cast and heat treatment microstructure and mechanical properties of ZL205A alloy by partial remelting treatment were investigated. The results show that the grain size of ZL205A alloy decreases at different degree. The grain size increases first and then decreases with increasing of returns content. The effect of returns on microstructure of ZL205A alloys under the condition of heat treatment was also studied. Analysis reveals that precipitation of second-phase of ZL205A alloys after adding small and excess amount returns is similar with that of primary ZL205A alloy which precipitates along the grain boundary. The most refinement is achieved when the content of returns increased up to 20 wt.%. The average grain size of the primary ZL205A alloy was measured to be about 60μm, and the good result can be got of the ZL205A alloys with the average particle size ofα(Al) phase being about 33μm after adding 20wt.% returns. The precipitation of second-phase in the matrix of ZL205A alloy with 20 wt.% returns is dispersed and uniform. The mechanical properties of the alloys increase first and then decrease with increasing of returns content. The ZL205A alloy with 20 wt.% returns has a considerably high tensile strength and yield strength of 525MPa and 445 MPa, respectively, which is much higher than 501 MPa and 421 MPa of primary ZL205A alloy, meanwhile the elongation level is up to14%. However, the number of nucleations increased after adding returns which results in the decreases of nucleation undercooling for primaryα(Al) and the increases of liquidus temperature. Therefore, the hot tearing susceptibility of alloy increases after adding returns due to the wider crystallization range.
     The main phases of ZL205A alloy do not changed after adding returns. The changes of microstructure and properties of alloys are caused by the heredity of returns to ZL205A alloy through analyzing the effects of returns without or with refiner on microstructure and mechanical properties of ZL205A alloy. In addition, Al-Ti-B refiner has heredity in certain during remelting process of the alloy, but is not a major factor.
     The viscosity of ZL205A alloy melt with different returns content was measured by a torsional oscillation viscometer and the effect of returns on the viscosity of ZL205A alloy melt was studied. It suggests that the viscosity of primary ZL205A alloy increases exponentially as temperature decreases, which follows the Arrhenius formula. At temperature range of 968 K-1088 K, the viscosity of ZL205A alloy melt with different returns content follows the Arrhenius formula, however, the increasing extent is higher than that of primary ZL205A alloy. At 923 K-953 K range, the increasing extent of viscosity is smaller than that of primary ZL205A alloy, and the trend deviates from Arrhenius formula. It shows that addition of returns causes the liquid structural change of ZL205A alloy.
     Based on the researches of viscosity, as-cast microstructure, thermal analysis results and liquid quenching analysis of ZL205A alloy by partial remelting treatment, the main reason of grain refinement of ZL205A alloy was due to the increase of the number of atom clusters which can act as nucleation after adding different returns contents. Certain amount atom clusters formed in the melt when adding the appropriate amount of returns, a large number of particles are excited for nucleation and growth once the undercooling reaches a certain extent, which results in refinement significantly. However, the atom clusters will segregate to meet or exceed the critical size of nucleation and growth for the grain when adding excessive returns, and resulting in lower refining effect.
     Y addition into as-cast ZL205A alloy leads to the refined microstructures. The grain size decreases with increasing of Y content. TEM results show that the morphology of AlCuY phase exhibits bulk structure, the crystal structure is close-packed hexagonal (HCP) structure, and located in triangular grain boundary. DSC analysis shows that AlCuY phase formed at 592.1℃which is higher than the liquidus temperature. The formation of AlCuY phase took up Cu atoms which results in the reduction of the quantity of eutectic structure. In addition, theory calculation shows that the electronegativity difference and interaction strengths between Y and Ti, V are higher than that of between Al and Ti, V, which makes them segregated easily. Therefore, the precipitation of AlCuY phase decreases the nucleation frequency of primaryα(Al) and increases the nucleation undercooling, finally, reduces the liquidus temperature.
     The effect of Y on hot tearing resistance of ZL205A alloy was studied. It is found that the hot tearing resistance of ZL205A alloy with 0.05 wt.%Y and 0.1 wt.%Y achieves up to 380 N and 450 N, respectively, while that of primary ZL205A alloy was 330 N. The reasons of Y reduces the hot tearing susceptibility were investigated. Firstly, Y addition causes a depression of the begin-solidifying temperature ofα(Al) which shortens the crystallization range. Secondly, Y addition refines grain size which increases bonding areas between grains and results in large intergranular bonding. Finally, addition of Y reduces the quantity of eutectic structure and changes the eutectic structure from mesh to strip. The critical stress of fracture propagation is improved due to the decrease of grain boundary weakness which due to the decrease of effective surface energy caused by the existence of liquid in the grain boundary.
     The effects of returns and Y additions on the mechanical properties and hot tearing susceptibility of ZL205A alloy were investigated. It indicates that the requirement of ZL205A alloy properties can be achieved by controlling returns and Y addition. The addition of returns and Y has very strong effect on microstructure refinement of ZL205A alloy, and the grain size decreases from 60μm to 25μm when contents of returns and Y are 20 wt.% and 0.1 wt.%, respectively. It shows that the hot tearing susceptibility of ZL205A alloy with 20 wt.% returns and 0.1 wt.%Y decreases significantly, and the hot tearing resistance increases from 330 N to 670 N.
引文
1张君尧.铝合金材料的新发展,轻合金加工技术. 1998.26(5):1-10
    2 E. L. Rooy. Metals Handbook, ASM International, Materials Park,Ohio.1988, 15: 743-770
    3 Y. Kim, G. R. Buchheit. A Characterization of the Inhibiting Effect of Cu on the Metastable Pitting in Dilutee Al-Cu Solid Solution Alloys. Electrochimica Acta. 2007, 52: 2437-2446
    4贾泮江,王强.高强度铝铜合金ZL205A复杂支座铸件铸造工艺.稀有金属. 1999, 23(2): 153-156
    5 A. L. Kearney, J. Raffin. Mechanical Properties of Castings Aluminum Alloys X206. 02T4 and XA206. 02T7 vs Comparable Alloys at Various Cooling Rates. AFS Trans. 1997, 85: 559-570
    6丁浩,傅恒志,罗栓柱等.化学成分对定向凝固Al-Cu合金热裂倾向性的影响.金属学报. 1995, 31A (8): 376-380
    7丁浩,博恒志,刘忠元等.浇注温度对定向凝固Al-Cu合金热裂倾向性的影响.材料工程. 1996, (4): 32-47
    8边秀房,邹新国,刘广荣,刘相法,马家骥.金属晶粒自身细化.金属学报. 1997, 33(6): 602-608
    9 A. Knuutinen, K. Nogita, S.D. McDonald, A. K. Dahle. Porosity Formation in Aluminum Alloy A356 Modified with Ba, Ca, Y and Yb. Journal of Light Metals. 2001, 1: 241-249
    10刘伯操. ZL205A高强度铸造铝合金的研究.第六研究院第六研究所技术总结. 1976: 10-15
    11袁成祺.铸造镁铝合金标准手册.中国环境出版社, 1994
    12贾泮江,陈邦峰. ZL205A高强度铸造铝合金性能及应用.轻合金加工技术. 2009, 37(1): 10-13
    13贾利晓,兰晔峰,朱正锋.铸造有色合金的发展趋势.铸造设备研究. 2004, 5: 46-49
    14马鸣图,李志刚,易红亮,向晓峰,方平.汽车轻量化及铝合金的应用.技术与装备应用. 2006, 10: 11-15
    15于桂林.高强度ZL205A铝合金飞机挂架铸造工艺.材料工程. 2001, 1: 43-46
    16贾泮江,陈邦峰. ZL205A合金高强优质铸件在大飞机上的应用.中国航空学会2007年学术年会. 2007: 1-5
    17骞西昌,杨守杰,张坤,戴圣龙.铝合金在运输机上的应用与发展.轻合金加工技术. 2005, 33(10): 1-7
    18边秀房,刘相法.铸造金属遗传学.山东科学技术出版社, 1999: 1-95
    19顾景诚,孙兴信.原料组织遗传性对铝及铝合金显微组织的影响.轻合金加工技术. 1995(23): 32-36
    20 P. K. Mitra, I. N. Bhattacharya. Trans India Inst Met, 1986, 39(2): 150
    21王永海,张发明,高革译.变形铝合金的细化处理.北京冶金工业出版社. 1988: 201
    22 M. C. Flemings. Solidification Processing. New York; Mc Graw Hill. 1974: 155
    23 H. W. Gillett. Heredity in Cast Iron. Metals and Alloys. 1934, (5): 152-156
    24 A. Levi. Heredity In Cast Iron. The Iron Age. 1927, 6: 960-963
    25赵宇,杨永,周宏,丛福官.镁合金重熔后组织与性能.铸造技术. 2005, 26(6): 500-502
    26侯艳嫔,刘根生,贾鹏.重熔对高铬白口铁遗传性的影响.河北工业大学学报. 2004, 33(1): 32-35
    27 A. Maltails, D. Dube, M. Fiset. Improvements in the Metallography of As-Cast AZ91 Alloy. Materials Characterization. 2004, 52: 103-119
    28 P. J. Li, Y. F. Zhang, V. I. Nikitin. Heredity Effect of Al-Based Modifier and Grain Refiners on Structure and Properties of A356.2 Alloy. Trans Nonferrous Met Soc China. 2002, 12(2): 233-237
    29 M. C. Flemings, R. G. Riek, K. P. Young. Rheocasting. Materials Science and Engineering. 1976, 25: 103-117
    30 Z. Fan, X. Fang, S. Ji. Microstructure and Mechanical Properties of Rheo-diecast (RDC) Aluminium Alloys. Materials Science and Engineering A. 2005, 412: 298-306
    31 Z. Fan, G. Liu. Solidification Behaviour of AZ91D Alloy under Intensive Forced Convection in the RDC Process Acta Materialia. 2005, 53(16): 4345-4357
    32 J. Fukai, T. Ando. Microstructure Development in Alloy Splats during Rapid Solidification. Materials Science and Engineering A. 2004, 383: 175-173
    33 I. I. Noviko, I. A. Nikiforov. Study on the Microstructure of Ingot of Aluminum Alloys. Foundry Product. 1965, 7: 6-7
    34王晓强,李培杰,曾大本.镁合金废料再生标准的制定.轻金属. 2004,6:42-45
    35 Brown, E. Robert. Magnesium Recycling Yesterday, Today, Tomorrow. Processing of the TMS Fall Extraction and Processing Conference. 2000: 1317-1329
    36 J. Robert, V. Fleteren. Magnesium Supply and Demand-Changes in Reporting of Recycled Magnesium. Die casting engineer. 2001,45(9): 48-50
    37胡小琳,王先娥,刘相法.一种从Al-Si合金中除Ca的新方法.内燃机配件. 2005, 5: 24-25
    38神尾彰彦.溶汤成分变动と制品品质.フルシニウム合金铸物.タイカストの溶汤品质欠陷对策.素形材セリタ. 1997: 22
    39乔国进. Ca对Al-Si合金磷变质效果的影响.铸造. 2004, 1: 38-40
    40 H.S. Dai, X.F. Liu. Refinement Performance and Mechanism of an Al-50Si alloy. Materials Characterization. 2008, 59(11): 1559-1563
    41 H. Iwahori. Occurring Behavior of Porosity and Feeding Capabilities of Sodium and Strontium Modified Al-Si alloys. AFS Trans. 1990, 98: 79-90
    42刘相法,边秀房,马家骥.铝硅合金原锭中气孔的遗传现象及控制.铸造技术. 1994, 4: 5-8
    43王肇径.铸造铝合金中的气体和非金属夹杂.兵器工业出版社. 1989: 35-68
    44 G. F. Mi, P. Xin, S.Y. Zeng. Effect of Solidification Condition on Secondary Dendrite Arm Spacing of the A357 Alloy under Counter-Pressure Casting. Journal of Wu Han University of Technology-Mater. Ed. 2009, 24(01): 119-122
    45 J. A. Wang. J. G. Qi. H. L. Du. L. Y. Cao. Heredity of Aluminum Melt Caused by Electric Pulse Modification (I). Journal of Iron and Steel Research, International. 2007, 14(4): 75-78
    46 Y. Birol. The Effect of Holding Conditions in the Conventional Halide Salt Process on the Performance of Al-Ti-B Grain Refiner Alloys. Journal of Alloys and Compounds. 2007, 427: 142-147
    47张军,何良菊,李培杰, E.G. Kandalova.炉料微观组织对AZ91D镁合金重熔行为的影响.中国有色金属学报. 2006, 16(3): 428-435
    48 I. G. Brodova, P. S. Popel, G.I. Eskin. Liquid Metal Processing: Applications to Aluminum Alloy Production. London and New York. Gordon & Breach. 2004: 269
    49边秀房,邹新国,刘广荣,刘相法,马家骥.金属晶粒自身细化.金属学报. 1997, 33(6): 602-608
    50 Y. Birol. Effect of the Salt Addition Practice on the Grain Refining Efficiencyof Al–Ti–B Master Alloys. Journal of Alloys and Compounds. 2006, 420: 207-212
    51 J. G. Li, M. Huang, M. Ma. Performance Comparison of AlTiC and AlTiB Master Alloys in Grain Refinement of Commercial and High Purity Aluminum. Transactions of Nonferrous Metals Society of China. 2006, 16: 242-253
    52陈禅平.重熔料对亚共晶铝硅合金组织与性能的影响.哈尔滨工业大学博士论文. 2006: 17-37
    53 P. J. Li, D. B. Zeng, J. J. Ma, Q. C. Li. Thermodynamics Analysis of Heredity Phenomena in Alloy Melt. Foundry. 1999, 10: 12-15
    54 D. H. Li, R.A. Moore, S. Wang. A Computer and Analytic Study of the Metallic Liquid-Glass Transition,Ⅱ: Structure and Mean Square Displacements. J. Chem. Phys. 1988, 89(7): 4309-4314
    55 I. Etxbarria, R.M. Lynden-Bell, J. M. Perrz-Mato. Molecular-Dynamics Study of Successive Phase Transitions in Potassium Selenate. Phys. Rev. B. 1992, 46(21): 13687-13692
    56 C. Bennemann, C. Donati, J. Baschnagel. C. Sharon, Glotzer. Growing Range of Correlated Motion in a Polymer Melt on Cooling Towards the Glass Transition. Nature. 1999, 399: 246-251
    57 J. K. Zhou, X. F. Bian, W. M. Wang, X. Y. Xue, S. H. Wang, Y. Zhao, K. B. Yin. Medium-Range Order and Crystallization in Amorphous Al-Ni-P Alloys. Materials letters. 2004, 58: 2559-2563
    58 Y. Zhao, X. F. Bian, X. B. Qin, J. Y. Qin, X. X. Hou. X-Ray Diffraction Experiments on In30Sn70 from Normal Liquid to Solidus. Physics Letters A. 2006, 356: 385-391
    59秦敬玉,边秀房,王伟民.液态亚共晶铝铁合金结构因子的预峰.科学通报. 1998, 13: 1445-1450
    60王伟民,边秀房,秦敬玉. Al-Si合金中的共价键及Sr的影响.金属学报. 1998, 36: 6-12
    61管仁国,马伟民.金属半固态成形理论与技术.北京:冶金工业出版社. 1995: 47-57
    62 M. Born, H. S. Green. A General Kinetic Theory of LiquidsⅢ: Dynamical Properties, Proc. R. Soc. A. 1947, 190: 455-473
    63 K. Kakimoto, T. Hibiga. Temperature Dependence of Viscosity of Molten GaAs by an Oscillating Cup Method. Appl. Phys. Lett. 1987, 50: 1249-1251
    64 F. Lihl, A. Schwaiger. Umwandlungen in Flussigen Aluminium. Z. Metallkde. 1967, 58: 776-779
    65 Y. Q. Wang, Y. Q. Wu, J. T. Liu, X. F. Bian. Discontinuous Structural Phase Transition Behaviour in Multiple Alloy Melts. China Phys, Lett. 2006, 23: 2513-2517
    66 K. Kakimoto, T. Hibiga. Composition Dependence of Viscosity for Molten Ga (1-x)Asx(0.0≤x≤0.53). Appl. Phys. Lett. 1988, 52: 1576-1578
    67 Y. Q. Wang, Y. Q. Wu, X. F. Bian. Composition Dependence of Viscosity for Al(1-x)Mgx(0≤x≤0.10) Alloys. China Sic. Bull. 2007, 3: 364-267
    68 H. Neumann, F. Herwig, W. Hoyer. The Short Range Order of Liquid Eutectic AⅢ-Te and AⅣ-Te Alloys. J.Non-Cryst. Solids. 1996, 205: 438-442
    69 X. Y. Xue, X.F.Bian, H. X. Geng, X. B. Qin. Structural Evolution of Medium Range and Short- Range Order with Temperature in Cu-25 wt.% Sn. Materials Science and engineering A. 2003, 363: 134-139
    70王玉青.合金熔体的粘滞特性研究.山东大学博士学位论文. 2007: 39-58
    71孙春静.金属熔体的粘滞特性及相关物性研究.山东大学博士学位论文. 2007: 59-76
    72 S. Lawrence, K. Kramer. Scandium in Aluminium Alloys. Advanced Materials & Process. 1977, 10: 23-24
    73 L. Meng, X. L. Zheng. Overview of the Effects of Impurities and Rare Earth Elements in Al-Li Alloys. Materials Science and Engineering A. 1997, 237: 109-118
    74 I. S. Hirchhorn. Recent Application of the Rare Earth Metals in Nonferrous Metallurgy. J. Matal. 1970, 22(10): 40-44
    75曹大力,石忠宁,杨少华,王吉坤,王兆文,邱竹贤.稀土在铝及铝合金中的作用.稀土. 2006, 27(5): 88-93
    76魏晓伟,曾明.稀土对高强度铸造铝铜合金的影响.四川工业学院学报. 1996,15(3): 21-25
    77胡鹏飞,张伟.稀土在铝合金中的应用.材料能源. 2006, 1: 35-36
    78与桂复,程家宁.铝-铜系合金中稀土元素作用的研究.金属科学与工艺. 1983, 2(3): 55-64
    79 M. Dowling, J. M. Corbett. H. Wkerr. Growth Mechanisms of Modified Eutectic Silicon. Journal of Materials Science, 1987, 22: 4504-4513
    80 G. L. Song, S. J. David. The Effect of Zirconium Grain Refinement on the Corrosion Behaviour of Magnesium-Rare Earth Alloy MEZ. Journal of Light Metals. 2002, 2(1): 1-16
    81 K. Xia, W. Li, C. Liu. Effects of Addition of Rare Earth Element Gd on the Lamellar Grain Sizes of a Binary Ti-44Al alloy. Scripta Materialia. 1999,44(1): 67-73
    82 B. J. Ye, C. R. Loper, D. Y. Yu, C.S. Kang. An Assessment of the Role of Rare Earth in the Eutectic Modification of Cast Aluminum-Silicon Alloys. AFS Transactions. 1985, 93: 533-544
    83 J. Y. Chang, G. H. Kim, I.G. Moon, C. S. Choi. Rare Earth Concentration in the Primary Si Crystal Rare Earth Added Al-12wt.%Si Alloy. Scripta Materialia. 1998, 39(3): 307-314
    84 A. Knuutinen, K. Nogita, S. D. McDonald. A. K. Dahle. Modification of Al–Si Alloys with Ba, Ca, Y and Yb. Journal of Light MetalsⅠ. 2001, 1: 229-240
    85 H. K. Yi, D. Zhang. Morphologies of Si Phase and La-Rich Phase in As-Cast Hypereutectic Al–Si–xLa alloys. Materials Letters. 2003, 57: 2523-2529
    86 K. Nogita, A. Knuutinen, S. D. McDonald. A.K. Dahle. Mechanisms of Eutectic Solidification in Al-Si Alloys Modified with Ba, Ca, Y and Yb. Journal of Light MetalsⅠ. 2001, 1: 219-228
    87赵宇光,李道韫.稀土在Al-Si合金中的固氢作用.金属学报. 1993, 29(1): A16-A19
    88倪红军,黄明宇,朱昱,孙宝德.稀土溶剂对铝熔体的覆盖保护作用.上海交通大学学报. 2005, 39(1): 23-26
    89张伟成.稀土在铝合金中的行为.北京:兵器工业出版社. 1992: 142-143
    90 N. Hatami, R. Babaei, M. Dadashzadeh, P. Davami. Modeling of Hot Tearing Formation during Solidification. Journal of Materials Processing Technology. 2008, 59(10): 1434-1439
    91 P. N. Hansen, P. R. Sahm. How to Select and use Criterion Functions in Solidification Simulation. AFS Transaction. 1993, 51: 443-446
    92 T. W. Clyne, G. J. Davies. The Influence of Composition on Solidification Cracking Susceptibility in Binary Alloy Systems. The British Foundryman. 1981, 74: 65-73
    93 M. Rappaz, J. M. Drezet, M. A. Gremaud. A New Hot-Cracking Criterion Metallurgical and Materials Transactions A. 1993, 30A (2): 448-455
    94王业双,王渠东,丁文东,卢晨.合金的热裂机理及其研究进展.特种铸造及有色合金. 2000, (2): 48-50
    95 V. Davies, L. De. The Influence of Grain Size on Hot Tearing. The British Foundryman. 1970, 4: 93-101
    96 D. G. Eskin, Suyiton, L. Katgerman. Mechanical Properties in the Semi-Soild State and Hot Tearing of Aluminium Alloys. Progress in Materials Science. 2004, 49: 629-711
    97 Y. S. Wang, Q. D. Wang, G. H. Wu, Y. P. Zhu, W. J. Ding. Hot-Tearing Susceptibility of Mg-9Al-xZn Alloy. Materials Letters. 2002, 57: 929-934
    98 M. Rappaz, J. M. Drezet, M. Gremaud. A New Hot-Cracking Criterion. Metallurgical and Materials Transactions A, 1999 30A (2) : 448- 455
    99孙伟成,张淑荣,侯爱芹.稀土在铝合金中的行为.兵器工业出版社. 1992, 2: 75-90
    100曾松岩,陈魁英,李庆春.稀土对Al-5Cu合金固液共存区流变性为的影响.稀土. 1990, 11(4): 8-12
    101龚磊清,金长庚,刘发信,李文林.中南工业大学出版社.铸造铝合金金相图谱. 1987: 6-7
    102崔忠圻,刘北兴编.金属学与热处理原理.哈尔滨工业大学出版社. 2004, 2: 156-157
    103武玉琴.金属凝固过程中过渡态现象研究.山东大学博士学位论文. 2008: 20-123
    104Я.И.弗仑克耳著.何寿安译.金属理论概要.北京:科学出版社. 1957: 36-44
    105 H. Neumann, F. Herwig, W. Hoyer. The Short Range Order of Liquid Eutectic AⅢ-Te and AⅣ-Te Alloys. J. Non-Cryst. Solids. 1996, 205: 438-442
    106李言祥,胡晓.冷却曲线人工智能识别与新一代铸造合金熔体质量评估技术.铸造. 1999, 7: 4-6
    107 D. Apelian, G. K. Sigworth, K. R. Whaler. Assessment of Grain Refinement and Modification of Al-Si Foundry Alloys by Thermal Analysis. AFS Transaction. 1984, 92: 297-307
    108胡汉起编著.金属凝固原理.北京:机械工业出版社. 2000, 2: 87-93
    109ПпопелъПС,ПреснякоьаЕЛ.ОприродемикрорасслоенияэвтектическихрасплавовPb-Sn.Экспериментальныеиседованияжидкииаморфныхметаллов.Свердловск:Иэд-воУНЦАНСССР, 1983, c. 360
    110李培杰.铝硅合金熔体的物性及结构遗传.哈尔滨工业大学博士论文. 1995: 58-63
    111 J. W. Cahn, J. E. Hilliard. Free Energy of a Non-Uniform System. I. Interfacial Free Energy. J. Chem. Phys. 1958, 28 (2): 25
    112桂满昌. Al-Si合金液态若干物性及其与凝固组织的相关性.哈尔滨工业大学博士学位论文, 1994
    113 B. G. Moore, A. A. Al-Quraishi. The Structure of Liquid Clusters of Lennard-Jonesa toms, Hem. Phy. 2000, 252: 337-347
    114 A. R. E. Singer, S. A. Cottrell. Properties of Aluminum-Silicon Alloys at Temperatures in the Region of the Solidus. J Jnst Met. 1946, 73: 33
    115 W. I. Prokhorov, P. H. Jennings. A Consideration of the Nature of Brittleness and Temperature above the Solidus in Castings and Welds in Aluminum Alloys. J Jnst Met. 1948, 75: 235
    116刘驰.铝铜合金准固态力学行为和凝固过程应力应变及热裂纹数值模拟.哈尔滨工业大学博士学位论文. 1987: 16-32
    117刘江南,薛飞,董晟全. 0.2%Ce合金化对铸造Al-Cu合金热裂倾向的影响.机械科学与技术. 2001, 20(5): 732-736
    118 .Nielsen, Sintef L. Arnberg, A. Mo, H. Thevik. Experimental Determination of Mushy Zone Permeability in Aluminum-Copper Alloys with Equiaxed Microstructures. Metallurgical and Mater. Trans. 1999, 30(9): 2445-2453
    119任俊,陶钦贵,马颖.铝合金用细化剂的探讨.铸造技术. 2006, 27(8): 847-851
    120韩青有,胡汉起.多元合金中溶质浓度对二次枝晶臂间距的影响.北京钢铁学院学报. 1985, 1: 1-7
    121 Y. Wang, B. Sun, Q. Wang, Y. Zhu, W. Ding. An Understanding of the Hot Tearing Mechanism in AZ91 Magnesium Alloy. Materials Letters. 2002, 53: 35-39
    122董晟全,周敬恩,严文,梁艳峰,杨通. Al-4.5Cu合金热裂倾向的研究.兵器材料科学与工程. 2003, 26(1): 44-48
    123 T. W. Clne, G. J. Davies. The Influence of Comparison on Solidification Cracking Susceptibly in Binary Alloy Systems. The British Foundryman, 1981, 74: 6753-6759
    124 S. A. Metz,M. C. Flemings. Hot Tearing in Cast Metals. Trans. Am. Foundrymens's Soc. 1969, 77: 329-334
    125 S. A. Metz, M. C. Fleming. A Fundamental Study of Hot Tearing. Trans. Am. Foundrymens's Soc. 1970, 78: 453-460
    126 NovikovⅡ. Hot shortness of non-ferrous metals and alloys Moscow: Nauka: 1966: 299
    127 J. A. Williams. The Effect of Temperature on the Fracture Characteristics of a Single-Phase Aluminium-20% zine Alloy. J. Inst.Metals. 1968, 96(5):154-156
    128 R. Eborall, M.A. Member, P. Gregory, A. I. M. Member. The Mechanism of Embrittlement by a Liquid phase. J. Inst. Metals. 1955-56, 84:88-90
    129张家泉,金山同,于震宗,林家骝.合金热裂的凝固力学判据.北京科技大学学报. 1995, 17(1): 36-40
    130 M. C. Fleming. Hot Tearing in Cast Metals. AFS Trans. 1969, 77: 329-332
    131 S. A. Metz. A Fundamental Study of Hot Tearing. AFS Trans.1970,78:453-460

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700