用户名: 密码: 验证码:
Al-TM-RE基非晶合金的非晶形成能力、晶化及其性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要选择Al-TM-RE(TM表示过渡族金属元素,RE表示稀土元素)基非晶合金为研究对象,分别研究了其非晶形成能力(GFA)与元素添加、热膨胀行为和耐腐蚀性的关系。此外,还研究了不同退火气氛(氢气(H2)、空气(air)、氩气(Ar)和氮气(N2))对Al基非晶合金的晶化、微观硬度和耐腐蚀性的影响。
     利用X射线衍射仪(XRD)、差示扫描量热仪(DSC)和高温粘度仪分析了Si元素的添加对Al-Fe-La合金非晶形成能力和热稳定性的影响,发现Al88-xFe6La6Six(x=0,0.5,1-4)合金系都为完全的非晶结构,且Al86Fe6La6Si2合金的GFA最好,Al87Fe6La6Si1合金的热稳定性最好。这是因为适量Si的加入会引起:(1)大的原子尺寸差进而增加了Al-Fe-La非晶合金的密排密度;(2)更负的混合焓;(3)化学钝化熔体中引起异质形核的杂质(如氧和碳),从而提高了合金的GFA。但是当Si含量大于2 at.%时会降低合金的热稳定性和GFA,这是因为多余的Si会与其他元素形成硅化物,引起异质形核,从而降低了GFA。另外,随着Si含量的增加,Al-Fe-La合金的晶化过程发生改变,由两次晶化过程转变为三次晶化过程。
     利用XRD、DSC、透射电子显微镜(TEM)、交流梯度磁力计(AGM)和微观硬度仪等研究了相似元素Ni-Co和La-Ce替代对Al86Ni9La5非晶合金的GFA、磁性和硬度的影响。研究发现试样的GFA的大小关系为:Al86(Ni0.5Co0.5)9(La0.5Ce0.5)5     利用高温粘度仪和热膨胀仪研究了Al86Ni9La5和Al86Ni9(La0.5Ce0.5)5非晶合金的动力学粘度和热膨胀行为,从自由体积出发,发现无论在液态或非晶态,Al86Ni9(La0.5Ce0.5)5合金中含有的自由体积都比Al86Ni9La5合金的少,表明Ce的加入降低了Al-Ni-La合金的自由体积,提高了原子尺寸的连续性,从而提高了GFA。同时也证实了熔体结构和非晶结构存在着相关性。另外,还研究了Al84Ni10RE6(RE=Y,Ce,Gd和Er)非晶合金的热膨胀行为。发现Al86Ni9La5、Al86Ni9(La0.5Ce0.5)5和Al84Ni10RE6(RE=Y,Ce,Gd和Er)六种Al基非晶合金的线性热膨胀系数(αas)与液相线温度(T1)的比值θ′,即αas/T1,与合金的GFA成正的相关性。还发现在Cu基和Gd基非晶合金中也存在这一现象,说明在同一合金系中,可以用新参数θ′来判断合金的GFA,θ′越大,GFA越好。此外,根据自由体积理论,GFA好的合金一般含有较小的自由体积。
     利用XRD、DSC、电化学工作站、扫描电镜(SEM)、能谱分析(EDS)和X-ray光电子能谱(XPS)研究了Al94-xNixGd6(x=6,8,10,12)非晶合金的GFA和电化学行为。研究发现:(1)随着Ni含量的增加,Al-Ni-Gd合金的热稳定性和GFA是逐渐增加的,Al-Ni-Gd合金的GFA的大小关系为:Al82Ni12Gd6>Al84Ni10Gd6>Al86Ni8Gd6>Al88Ni6Gd6;(2)Al-Ni-Gd合金在3.5 wt.%NaCl和0.1 mol/L NaOH溶液中的耐腐蚀性要优于在0.1 mol/L HCl溶液中的耐腐蚀性;(3)Al-Ni-Gd合金的非晶形成能力越好,合金的耐腐蚀性越优异;(4)阳极极化区间内在-0.5~-0.25V范围内的电流密度峰总是出现在含有Cl-的电解液中,这是Ni2+的氧化和Cl-共同作用的结果。
     在不同退火气氛(H2、air、Ar和N2)下对Al86Ni9La5非晶合金进行退火,并用XRD和TEM分析其析出相。研究发现:(1)在523 K(第一次晶化峰Tp1附近)退火时,初晶相Al与退火气氛无关;(2)在584 K(第二次晶化开始温度Tx2附近)退火时,晶体的最终产物为:Al、Al11La3和Al3Ni相,也与退火气氛无关;(3)在523 K退火时,H2和air能明显提高Al86Ni9La5非晶合金的共晶过程,引发亚稳相Al3Ni2的形成,所研究的气氛对晶化影响的大小关系为:H2>air>Ar>N2。随后利用硬度计和电化学工作站研究了退火后合金的微观硬度和电化学行为,发现在523 K下,与在Ar和N2中退火的条带相比,在H2和air中退火的条带显示了较高的硬度和较好的耐腐蚀性。退火试样性能的改善与在退火过程中形成的纳米晶相相关,这有助于该合金在海水环境中应用的研究。
In the present thesis, Al-TM-RE-based (TM:transition metal; RE:rare earth) amorphous alloys were mainly chosen for the study of the relationships between glass-forming ability (GFA) and elements addition, thermal expansion behavior and corrosion resistance, respectively. In addition, the effect of different annealing atmospheres (H2, air, Ar and N2) on crystallization behavior, microhardness and corrosion resistance of Al-Ni-La amorphous alloy was also investigated.
     The effect of Si addition on the GFA and thermal stability of melt-quenched Al-Fe-La alloys has been investigated systematically by using X-ray diffraction (XRD), differential scanning calorimetry (DSC) and viscometer. Results show that all the Alg88-xFe6La6Six (x= 0,0.5,1-4) alloys are full amorphous structure, moreover Al86Fe6La6Si2 alloy has the best GFA, and Al87Fe6La6Si1 alloy has the best thermal stability. That is because appropriate Si addition can induce:(1) larger packing density of the Al-Fe-La amorphous alloys due to large atomic size difference; (2) a larger negative heat of mixing; (3) the passivation of impurities (such as oxygen and carbon) which trigger heterogeneous nucleation in the melt, which increases the GFA. However, when Si content (csi) is beyond 2 at.%, the addition of Si reduces the GFA and thermal stability of the alloys. The reason is that the redundant Si atoms incline to form silicides with Al and Fe, i.e. increase the number of final phases which may serve as heterogeneous nucleation sites, then deteriorate the GFA. In addition, it is also found that the addition of Si influences the crystallization behaviors of the alloys, transforming from two-step crystallization process to three-step crystallization process.
     The effects of similar element pairs:La-Ce and Ni-Co, on the GFA, magnetic properties and hardness of Al-Ni-La alloy were investigated using XRD, transmission electron microscopy (TEM), DSC, magnetometer and hardness-tester. The results show that the GFA of the samples in the order of Al86Ni0.5Co0.5)9(La0.5Ce0.5)< Al86Ni9La5< Al86Ni9(La0.5Ce0.5)5, implying that similar element substitution has a limited enhancing effect on the GFA of the present Al-Ni-La alloy. In addition, the measured samples display a diamagnetic behavior at room temperature. The variations of diamagnetic behavior as well as the microhardness of the samples are strongly dependent on the microstructure, i.e. the amounts of the icosahedral structure and precipitates, after the similar element substitution in Al-Ni-La alloy.
     The dynamic viscosities and thermodynamic dilatometric behaviors of Al86Ni9La5 and Al86Ni9(La0.5Ce0.5)5 amorphous alloys were investigated using viscometer and conventional dilatometer. Results show that based on free volume theory, less free volume is found in Al86Ni9(La0.5Ce0.5)5 alloy than Al86Ni9La5 alloy in both melt and glassy states, suggesting that the partial substitution La by Ce decreases the quantity of free volume in Al-Ni-La system by improving the continuous degree of atomic size, which leads to the improvement of GFA. Meanwhile, it can be confirmed than the properties of a glass are closely related to the properties of a liquid. In addition, the dilatometric of Al-Ni-RE (RE=Y, Ce, Gd and Er) amorphous alloys were also investigated. It is found that the ratio of the linear thermal expansion coefficient (aas) and the liquidus temperature (T1) (aas/T1), defined byθ', has a good positive correlation with GFA in Al86Ni9La5, Al86Ni9(La0.5Ce0.5)5 and Al-Ni-RE (RE=Y, Ce, Gd and Er) amorphous alloys. A similar phenomenon is also found in Gd-and Cu-based amorphous alloys. Consequently, the parameterθ' can be applied to predict the GFA in the system with same main element. Based on the free volume model, it is found that the amorphous alloy which exhibits better GFA contains less free volume.
     The GFA and corrosion behaviors of Al94-xNixGd6 (x=6,8,10,12) amorphous alloys were investigated using XRD, DSC, electrochemistry experiment, SEM, EDS and XPS. The results show that:(1) with the increasing of Ni content, the thermal stability and GFA of Al-Ni-Gd alloys increase continually, and the GFA is in the order of Al82Ni12Gd6> Al84Ni1oGd6> Al86Ni8Gd6> Al88Ni6Gd6; (2) the corrosion resistance of Al-Ni-Gd alloys is better in 3.5 wt.% NaCl and 0.1 mol/L NaOH solutions than in 0.1 mol/L HC1 solution due to the formation of wide passive region; (3) the higher the GFA of Al-Ni-Gd alloy, the better the corrosion resistance; (4) the current density peak at-0.5 -0.25 V always appears in the Cl- containing solutions, which results from the co-function of the oxidation process of Ni2+ and Cl-.
     The Al86Ni9La5 amorphous ribbons were annealed in different annealing atmospheres (H2, air, Ar and N2), and the precipitated phases were investigated using XRD and TEM. Results show that:(1) during annealing at 523 K (about the peak temperature of first crystallization Tp1), the primary crystallized Al is independent on the annealing atmospheres; (2) during annealing at 584 K (about the onset temperature of second crystallization Tx2), the final crystalline phases, i.e. Al+Al11La3+Al3Ni, are also independent on the different annealing atmospheres; (3) during annealing at 523 K, H2 and air can promote the eutectic crystallization process, and induce the formation of metastable Al3Ni2 phase, and the promoting effect of different annealing atmospheres is in the order of H2> air> Ar> N2. In addition, the microhardness and corrosion resistance in the 3.5 wt.% NaCl solution of the annealed samples were also investigated by micro-hardness tester and electrochemistry experiment. Comparing with the ribbons annealed at 523 K in Ar and N2, the ribbons annealed in H2 and air show a higher microhardness and a better corrosion resistance. The property promotion caused by annealing process can be ascribed to the formation of nano-crystalline phases, which is possibly helpful to develop the alloy's application in the seawater environment.
引文
[1]J. Kramer, The preparation of amorphous Sb by vapor deposition in vacuum [J]. Ann. Phys., 1934,19 (5):37-39.
    [2]A. Brenner, D.E. Couch, E.K. Williams, Electro-deposition of alloys of phosphorus and nickel or cobalt [J]. J. Res Nat. Bur. Stand.,1950,44:109-112.
    [3]M.H. Cohen, D.Turnbull, Molecular transport in liquids and glasses [J]. J. Chem. Phys.,1959,31: 1164-1169.
    [4]张荣生,刘海洪,快速凝固技术[M].北京:冶金工业出版社,1994,p.1-11.
    [5]A. Inoue, Bulk amorphous alloys with soft and hard magnetic properties [J]. Mater. Sci. Eng. A, 1997,226-228:357-363.
    [6]H.S. Chen, Metallic glasses [J]. Mater. Sci. Eng. A,1976,25(1-2):59-69.
    [7]H.S. Chen, The influence of structural relaxation on the density and Young's modulus of metallic glasses [J]. J. Appl. Phys.,1978,49(6):3289-3291.
    [8]A. Inoue, K. Ohtera, K. Kita, T. Masumoto, New amorphous Mg-Ce-Ni alloys with high strength and good ductility [J], Jpn. J. Appl. Phys.,1988,27(12):L2248-2251.
    [9]A. Inoue, T. Nakamura, N. Nishiyama, T. Masumoto, Mg-Cu-Y bulk amorphous-alloys with high-tensile strength produced by a high-pressure die-casting method [J]. Mater. Trans. JIM., 1992,33:937-945.
    [10]H. Ma, E. Ma, J. Xu, A new Mg65Cu7.5Zn5Ag5Y10 bulk metallic glass with strong glass-forming ability [J]. J. Mater. Res.,2003,18:2288-2291.
    [11]A. Inoue, T. Zhang, T. Masumoto, Production of amorphous cylinder and sheet of La55Al25Ni20 alloy by a metallic mold casting method [J]. Mater. Trans. JIM,1990,31:425-428.
    [12]B. Zhang, D.Q. Zhao, M.X. Pan, W.H. Wang, A.L. Greer, Amorphous metallic plastic [J]. Phys. Rew. Lett.,2005,94:205502-1-205502-3.
    [13]A.J. Drehman, A.L. Greer, D. Turnbull, Bulk formation of a metallic glass:Pd40Ni40P20 [J].Appl. Phys. Lett.,1982,41:716-717.
    [14]H.W. Kui, D. Turnbull, Melting of Ni40Pd40P20 glass [J]. Appl. Phys. Lett.,1985,47:796-797.
    [15]A. Inoue, N. Nishiyama, T. Matsuda, Preparation of bulk glassy Pd40Ni10Cu30P20 alloy of 40 mm in diameter by water quenching [J]. Mater. Trans. JIM,1996,37(2):181-184.
    [16]A. Inoue, T. Zhang, T. Masumoto, Zr-Al-Ni amorphous alloys with high glass transition temperature and significant supercooled liquid region [J]. Mater. Trans. JIM,1990,31(3): 177-183.
    [17]T. Zhang, A. Inoue, T. Masumoto, Amorphous Zr-Al-TM (TM= Co, Ni, Cu) alloys with significant supercooled liquid region of over 100 K [J]. Mater. Trans. JIM,1991,32: 1005-1010.
    [18]A. Peker, W.L. Johnson, A highly processable metallic glass:Zr41.2Ti13.8Cui2.5Ni10.0Be22.5 [J]. Appl. Phys. Lett.,1993,63:2342-2344.
    [19]A. Inoue, T. Shibata, T. Zhang, Effect of additional elements on glass transition behavior and glass formation tendency of Zr-Al-Cu-Ni alloys [J]. Mater. Trans. JIM,1995,36(12): 1420-1426.
    [20]K.F. Jin, J.F. Loffler, Bulk metallic glass formation in Zr-Cu-Fe-Al alloys [J]. Appl. Phys. Lett.,2005,86:241909-1-241909-3.
    [21]X.H. Lin, W.L. Johnson, Formation of Ti-Zr-Cu-Ni bulk metallic glasses [J]. J. Appl. Phys., 1995,78:6514-6517.
    [22]A. Inoue, Y. Shinohara, G.S. Gook, Thermal and magnetic properties of bulk Fe-based glassy alloys prepared by copper mold casting [J]. Mater. Trans. JIM,1995,36(12):1427-1433.
    [23]A. Inoue, T. Zhang, T. Itoi, New Fe-Co-Ni-Zr-B amorphous alloys with wide supercooled liquid regions and good soft magnetic properties [J]. Mater. Trans. JIM,1997,38(4):359-362.
    [24]X. Wang, E. Yoshii, A.Inoue, Y.H. Kim, I.B. Kim, Ni75-xNb5MxP20-yBy (M= Cr, Mo) alloys with large supercooling and high strength [J], Mater. Trans. JIM.,1999,40:1130-1136.
    [25]A. Inoue, N. Nishiyama, H. Kimura, Preparation and thermal stability of bulk amorphous Pd4oCu3oNi10P20 alloy cylinder of 72 mm in diameter [J]. Mater. Trans. JIM.,1997, (38): 179-183.
    [26]N. Nishiyama, A. Inoue, Direct comparison between critical cooling rate and some quantitative parameters for evaluation of glass-forming ability in Pd-Cu-Ni-P alloys [J]. Mater. Trans. JIM., 2002,(43):1913-1917.
    [27]A. Inoue, Stabilization and high strain-rate superplasticity of metallic supercooled liquid [J]. Mater. Sci. Eng. A,1999,267:171-183.
    [28]郭贻城主编,非晶态物理学[M],北京:科学出版社,1984.
    [29]A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys [J]. Acta Mater.,2000,48:279-306.
    [30]A. Inoue, B.L. Shen, C.T. Chang, Super-high strength of over 4000 MPa for Fe-based bulk glassy alloys in FeCoBSiNb system [J]. Acta Mater.,2004,52:4093-4099.
    [31]A. Inoue, B.L. Shen, H. Koshiba, H. Kato, A.R. Yavari, Ultra-high strength above 5000 MPa and soft magnetic properties of Co-Fe-Ta-B bulk glassy alloys [J]. Acta Mater.,2004,52: 1631-1637.
    [32]Y.H. Liu, G. Wang, R.J. Wang, D.Q. Zhao, M.X. Pan, W.H. Wang, Super plastic bulk metallic glasses at room temperature [J]. Science,2007,315:1385-1388.
    [33]J. Schroers, Processing of bulk metallic glass [J]. Adv. Mater.,2009,21:1-32.
    [34]A. Inoue, J.S. Gook, Fe-based ferromagnetic glassy alloys with wide supercooled liquid region [J]. Mater. Trans. JIM.,1995,36(9):1180-1183.
    [35]A. Inoue., H. Koshiba, T. Zhang, Thermal and magnetic properties of Fe56Co7Ni7Zr10-xNbxB20 amorphous alloys with wide supercooled liquid range [J]. Mater. Trans., JIM,1997,38 (7): 577-582.
    [36]A. Inoue, A. Katsuya, Multicomponent Co-based amorphous alloys with wide supercooled liquid region [J]. Mater. Trans. JIM,1996,37 (6):1332-1336.
    [37]H. Jones, Rapid solidification of metals and alloys [M]. London:Inst. of Metallurgists,1982.
    [38]王成,张庆生,江峰,张海峰,胡壮麒,Zr55Al10Cu30Ni5非晶合金在NaOH溶液中的腐蚀行为[J].稀有金属材料与工程,2003,32(10):814-817.
    [39]A. Gebert, V. Haehnel, E.S. Park, D.H. Park, D.H. Kim, L. Schultz, Corrosion behaviour of Mg65Cu7.5Ni7.5Ag5Zn5Gd5Y5 bulk metallic glass in aqueous environments [J]. Electrochemi. Acta,2008,53:3403-3411.
    [40]D. Turnbull, M.H. Cohen, Reconstructive transformation and formation of glass [J]. J. Chem. Phys.,1958,29:1049-105.
    [41]D.R. Uhlmann, Glass formation [J]. J. Non-Cryst. Solids,1977,25:42-85.
    [42]Z.P. Lu, C.T. Liu, Glass formation criterion for various glass-forming systems [J]. Phys. Rev. Lett.,2003,91:115505-1-115505-3.
    [43]G. Fonteneau, A. Bouaggau, J. Lucas,4th Int. Symp. on Hallide glasses, Monterey, CA., Jan. 1987.
    [44]A. Inoue, Slowly-cooled bulk amorphous alloys [J]. Mater. Sci. Forum,1995,179-181: 691-700.
    [45]A. Inoue, T. Zhang, Thermal stability and glass-forming ability of amorphous Nd-Al-TM (TM= Fe, Co, Ni or Cu) alloys [J]. Mater. Sci. Eng. A,1997,226-228:393-396.
    [46]A. Inoue, High-strength bulk amorphous-alloys with low critical cooling rates [J]. Mater. Trans. JIM.,1995,(36):866-875.
    [47]T.A. Waniuk, J. Schroers, W.L. Johnson, Critical cooling rate and thermal stability of Zr-Ti-Cu-Ni-Be alloys [J]. Appl. Phys. Lett.,2001,78:1213-1215.
    [48]T.D. Shen, Y. He, R.B. Schwarz, Bulk amorphous Pd-Ni-Fe-P alloys:preparation and characterization [J]. J. Mater. Res.,1999,14:2107-2115.
    [49]B.S. Murty, K. Hono, Formation of nanocrystalline particles in glassy matrix in melt-spun Mg-Cu-Y based alloys [J]. Mater. Trans. JIM.,2000,41:1538-1544.
    [50]Z.P. Lu, C.T. Liu, A new glass-forming ability criterion for bulk metallic glasses [J]. Acta. Mater.,2005,50:3501-3512.
    [51]M.H. Cohen, D. Turnbull, Composition requirements for glass formation in metallic and ionic systems [J]. Nature,1961, (189):131-132.
    [52]M.H. Cohen, D. Turnbull, Molecular transport in liquids and glasses [J]. J. Chem. Phys.,1959, (31):1164-1169.
    [53]P. Duwez, R.H. Willens, R.C. Crewdson, Amorphous phase in palladium-silicon alloys [J]. J. Appl. Phys.,1965,36:2267-2269.
    [54]W.J. Boettinger, J.H. Perepezko, Rapidly solidified alloys:processes, structures, properties, applications [M].1993, New York:Marcel Deckker, Inc, p17-78.
    [55]L.L. Shi, J. Xu, E. Ma, Alloy compositions of metallic glasses and eutectics from an idealized structural model [J]. Acta Mater.,2008,56:3613-3621.
    [56]A.L. Greer, Confusion by design [J]. Nature,1993,366:303-304.
    [57]B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng. A,2004,375-377:213-218.
    [58]H. Ma, L.L. Shi, J. Xu, Y. Li, E. Ma, Improving glass-forming ability of Mg-Cu-Y via substitutional alloying:effects of Ag versus Ni [J]. J. Mater. Res.,2006,21:2204-2214.
    [59]H. Ma, L.L. Shi, J. Xu, Y. Li, E. Ma, Discovering inch-diameter metallic glasses in three-dimensional composition space [J]. Appl. Phys. Lett.,2005,87:181915-1-181915-3.
    [60]M.X. Xia, S.G Zhang, C.L. Ma, Evaluation of glass-forming ability for metallic glasses based on order-disorder competition [J]. Appl. Phys. Lett.,2006,89:091917-1-091917-3.
    [61]E.S. Park, D.H. Kim, W.T. Kim, Parameter for glass forming ability of ternary alloy systems [J]. Appl. Phys. Lett.,2005,86:061907-1-061907-3.
    [62]E.S. Park, D.H. Kim, Effect of atomic configuration and liquid stability on the glass-forming ability of Ca-based metallic glasses [J]. Appl. Phys. Lett.,2005,86:201912-1-201912-3.
    [63]D. Turnbull, Under what condition can a glass be formed [J]. Contemp. Phys.,1969,10: 473-477.
    [64]X.F. Bian, B.A. Sun, L.N. Hu, Y.B. Jia, Fragility of superheated melts and glass-forming ability [J]. Phys. Lett. A,2005,335:61-67.
    [65]Q.G. Meng, J.K. Zhou, H.X. Zheng, J.G. Li, Fragility of superheated melts and glass-forming ability in Pr-based alloys [J]. Scripta Mater.,2006,54:777-781.
    [66]B.A. Sun, X.F. Bian, J. Hu, T. Mao, Y. Zhang, The fragility of superheated melts in Al-RE (Ce, Nd, Pr) system [J]. Mater. Charact.,2008,59:820-823.
    [67]Q.G. Meng, S.G. Zhang, M.X. Xia, J.G. Li, J.K. Zhou, Superheated liquid fragility and thermodynamic refinement for metallic glass-forming ability evaluation [J]. Appl. Phys. Lett., 2007,90:031910-1-031910-3.
    [68]P. Predecki, B.C. Giessen, N.J. Grant, New metastable alloy phases of gold, silver, and aluminium [J]. Trans. Metall. Soc. AIME.,1965,233:1438-1439.
    [69]A. Inoue, Amorphous, nanoquasicrystalline and nanocrystalline alloys in Al-based systems.
    Prog. Mater Sci.,1998,43:365-520.
    [70]K. Chattopadyay, R. Ramachandrarao, S. Lele, T.R. Anantharaman, Proceedings of 2nd International Conference on Rapidly Quenched Metals [M]. In:Grant NJ, Giessen BC, editors. Cambridge, MA:MIT Press, p.157.
    [71]P. Furrer, H. Warlimont, Crystalline and amorphous structures of rapidly solidified Al-Cr alloys [J]. Mater. Sci. Eng. A,1977,28:127-134.
    [72]A. Inoue, A. Kitamura., T. Masumoto, The effect aluminum on mechanical properties and thermal stability of (Fe, Co, Ni)-Al-B ternary amorphous alloys [J]. J. Mater.Sci.,1981,16(7): 1895-1899.
    [73]R.O. Suzuki, Y.Komstsu, K.F. Kobayashi, P.H. Shingu, Formation and crystallization of Al-Fe-Si amorphous alloy [J]. J. Mater. Sci.,1983,18:1195-1201.
    [74]A. Inoue, Y. Bizen, H.M. Kimura, M. Yamamoto, A.P. Tsai, T. Masumoto, Development of compositional short-range ordering in an Al50Ge40Mn10 amorphous alloy upon annealing [J]. J. Mater. Sci. Lett.,1987,6:811-814.
    [75]A. Inoue, M. Yamamoto, H.M. Kimura, T. Masumoto, Ductile aluminium-base amorphous alloys with two separate phases [J]. J. Mater. Sci. Lett.,1987,6:194-198.
    [76]A.P. Tsai, A. Inoue, T. Masumoto, Formation of metal-metal type aluminum-based amorphous alloys [J]. Metall. Trans. A.,1988,19:1369-1376.
    [77]A.P. Tsai, A. Inoue, T. Masumoto, Ductile Al-Ni-Zr amorphous alloys with mechanical strength [J]. J. Mater. Sci. Lett.,1988,7:805-811.
    [78]A. Inoue, K. Ohtera, A.P. Tsai, T. Masumoto, New amorphous alloys with good ductility in Al-Y-M and Al-La-M (M= Fe, Co, Ni or Cu) systems [J]. Jpn. J. Appl. Phys.,1988,27: 280-286.
    [79]A. Inoue, K. Ohtera, T. Masumoto, New amorphous alloys with good ductility in Al-Ce-M (M= Nb, Fe, Co,Ni or Cu) systems [J]. Jpn. J. Appl. Phys.,1988,27:1796-1781.
    [80]A. Inoue, K. Ohtera, T. Masumoto, New amorphous Al-Y, Al-La and Al-Ce alloys prepared by melt spinning [J]. Jpn. J. Appl. Phys.,1988,27:736-742.
    [81]A. Inoue, K. Ohtera, T. Zhang, T. Masumoto, New amorphous Al-Ln (Ln= Pr, Nd, Sm or Gd) alloys prepared by melt spinning [J]. Jpn. J. Appl. Phys.,1988,27:1583-1588.
    [82]A. Inoue, T. Zhang, K. Kita, T. Masumoto, Mechanical Strengths, Thermal Stability and Electrical Resistivity of Aluminum-Rare Earth Metal Binary Amorphous Alloys [J]. Mater. Trans. JIM.,1989,30:870-877.
    [83]W.S. Sanders, J.S. Warner, D.B. Miracle, Stability of Al-rich glasses in the Al-La-Ni system [J]. Intermetallics,2006,14:348-351.
    [84]Metals databook [M]. Japan Institute of Metals, Maruzen, Tokyo,1983. p.175.
    [85]C.T. Liu, Z.P. Lu, Effect of minor alloying additions on glass formation in bulk metallic glasses [J]. Intermetallics,2005,13:415-418.
    [86]A. Inoue, X.M. Wang, Bulk amorphous FC20 (Fe-C-Si) alloys with small amounts of B and their crystallized structure and mechanical properties [J]. Acta. Mater.2000,48:1383-1395.
    [87]H. Choi-Yim, R. Busch, L.W. Johnson, The effect of silicon on the glass forming ability of the Cu47Ti34Zr11Ni8 bulk metallic glass forming alloy during processing of composites [J]. J. Appl. Phys.,1998,83:7993-7995.
    [88]A.A. Kundig, D. Lepori, A.J. Perry, S. Rossmann, A. Blatter, A. Dommann, P.J. Uggowitzer, Influence of low oxygen contents and alloy refinement on the glass forming ability of Zr52.5Cu17.9Ni14.6Al10Ti5 [J]. Mater. Trans.,2002,43:3206-3210.
    [89]Z.P. Lu, C.T. Liu, W.D. Porter, Role of yttrium in glass formation of Fe-based bulk metallic glasses [J]. Appl. Phys. Lett.,2003,83:2581-2584.
    [90]Z.P. Lu, C.T. Liu, Bulk glass formation in Fe-Y-Zr-M (M= Cr, Co, Al)-Mo-B system [J]. J. Mater. Res.,2004,19:921-929.
    [91]T. Zhang, K. Kurosaka, A. Inoue, Thermal and mechanical properties of Cu-based. Cu-Zr-Ti-Y bulk glassy alloys [J]. Mater. Trans. JIM.,2001,42:2042-2045.
    [92]Y. Zhang, M.X. Pan, D.Q. Zhao, R.J. Wang, W.H. Wang, Formation Zr-Ni-Cu-Al bulk metallic glasses with low purity elements [J]. Mater. Trans. JIM.,2000,41:1410-1414.
    [93]W.Y. Liu, H.F. Zhang, Z.Q. Hu, H. Wang, Formation and mechanical properties of Mg65Cu25Er10 and Mg65Cu15Ag10Er10 bulk amorphous alloys [J]. J. Alloys Compd.,2005.397: 202-206.
    [94]H. Ma, L.L. Shi, J. Xu, Y. Li, E. Ma, Discovering inch-diameter metallic glasses in three-dimensional composition space [J]. Appl. Phys. Lett.,2005,87:181915-1-181915-3.
    [95]K. Amiya, A. Inoue, Formation and Thermal Stability of Ca-Mg-Ag-Cu Bulk Glassy Alloys [J]. Mater. Trans. JIM.,2002,43:2578-2581.
    [96]C.L. Dai, H. Guo, Y. Shen, Y. Li, E. Ma, J. Xu, A new centimeter-diameter Cu-based bulk metallic glass [J]. Scripta Mater.,2006,54:1403-1405.
    [97]B.L. Shen, A. Inoue, C.T. Chang, Super high strength and good soft-magnetic properties of (Fe, Co)-B-Si-Nb bulk glassy alloys with high glass-forming ability [J]. Appl. Phys. Lett.,2004,85: 4911-4913.
    [98]K. Takenaka, T. Wada, N. Nishiyama, H.M. Kimura, A. Inoue. Bulky La-Al-TM (TM=Transition Metal) Amorphous Alloys with High Tensile Strength Produced by a High-Pressure Die Casting Method [J]. Mater. Trans. JIM,1993,34:351-358.
    [99]J. Schroers, W.L. Johnson, Highly processable bulk metallic glass-forming alloys in the Pt-Co-Ni-Cu-P system [J]. Appl. Phys. Lett.,2004,84:3666-3668.
    [100]Q.K. Jiang, X.D. Wang, X.P. Nie, GQ. Zhang, H. Ma, H.J. Fecht, J. Bendnarcik, H. Franz, Y.G. Liu, Q.P. Cao, J. Z. Jiang, Zr-(Cu,Ag)-Al bulk metallic glasses [J]. Acta. Mater.,2008,56: 1785-1796.
    [101]F. Guo, H. Wang, S.J. Poon, G.J. Shiflet. Ductile titanium-based glassy alloy ingots [J]. Appl. Phys. Lett.,2005,86:091907-1-091907-3.
    [102]R. Li, S.J. Pang, H. Men, C.L. Ma, T. Zhang:Formation and mechanical properties of (Ce-La-Pr-Nd)-Co-Al bulk glassy alloys with superior glass-forming ability [J]. Scripta. Mater.,2006,54:1126.
    [103]B.A. Sun, M.X. Pan, D.Q. Zhao, W.H. Wang, X.K. Xi, M.T. Sandor, Y. Wu. Aluminum-rich bulk metallic glasses [J]. Scripta Mater.,2008,59:1159-1162.
    [104]N.O. Gonchukova, A.N. Drugov. Thermal expansion of amorphous alloys [J]. Glass Phys. Chem.,2003,29:184-187.
    [105]D. Schermeyer, H. Neuhauser. Dilatometric measurements on metallic glass ribbons with a wide glass transition range [J]. Mater. Sci. Eng. A.,1997,226-228:846-850.
    [106]K. Ota, W.J. Botta, G Vaughan, A.R. Yavari. Glass transition Tg, thermal expansion, and quenched-in free volume △Vf in pyrex glass measured by time-resolved X-ray diffraction [J]. J. Alloys Compd.,2005,388:L1-L3.
    [107]G. Wilde, S.G. Klose, W. Soellner, GP. Gorler, K. Jeropoulos, R. Willnecker, H.J. Fecht, On the stability limits of the undercooled liquid state of Pd-Ni-P [J]. Mater. Sci. Eng. A.,1997, 226-228:434-438.
    [108]C. Nagel, K. Ratzke, E. Schmidtke, F. Faupel, Positron-annihilation studies of free-volume changes in the bulk metallic glass Zr65Al7.5Ni10Cu17.5 during structural relaxation and at the glass transition [J]. Phys. Rev. B.,1999,60:9212-9215.
    [109]X. Hu, S.C. Ng, Y.P. Feng, Y. Li, Cooling-rate dependence of the density of Pd40Ni10Cu30P20 bulk metallic glass [J]. Phys. Rev. B.,2001,64:172201-1-172201-4.
    [110]C.H. Shek, G.M. Lin, Dilatometric measurements and calculation of effective pair potentials for Zr41Ti14Cu12.5Ni10Be22.5 bulk metallic glass [J]. Mater. Lett.,2003,57:1229-1232.
    [111]T. Lin, X.F. Bian, J. Jiang, Relation between calculated Lennard-Jones potential and thermal stability of Cu-based bulk metallic glasses [J]. Phys. Lett. A.,2006,353:497-499.
    [112]Q.G Meng, S.G. Zhang, J.G. Li, X.F. Bian, Dilatometric measurements and glass-forming ability in Pr-based bulk metallic glasses [J]. Scripta Mater.,2006,55:517-520.
    [113]J. Guo, X.F. Bian, Y. Zhao, S.J. Zhang, T.B. Li, C.D. Wang. Correlation between the fragility of supercooled liquids and thermal expansion in the glassy state for Gd-based glass-forming alloys [J]. J. Phys.:Condens. Matter,2007,19:116103-1-116103-6.
    [114]J. Guo, X.F. Bian, T. Lin, Y. Zhao, T.B. Li, B. Zhang, B.A. Sun, Formation and interesting thermal expansion behavior of novel Sm-based bulk metallic glasses [J]. Intermetallics,2007, 15:929-933.
    [115]N. Mattern, U. Kuhn, H. Hermann, S. Roth, H. Vinzelberg, J. Eckert, Thermal behavior and glass transition of Zr-based bulk metallic glasses [J]. Mater. Sci. Eng. A.,2004,375-377: 351-354.
    [116]L.F. Chua, C.W. Yuen, H.W. Kui, Correlations for the thermal expansion coefficients of molten glass forming systems [J]. Appl. Phys. Lett.,1995,67:615-617.
    [117]H. Kato, H.-S. Chen, A. Inoue, Relationship between thermal expansion coefficient and glass transition temperature in metallic glasses [J]. Scripta Mater.,2008,58:1106-1109.
    [118]Z.C. Zhong, X.Y. Jiang, A.L. Greer, Nanocrystallization in Al-based amorphous alloys [J]. Philos. Mag. B.,1997,76:505-510.
    [119]Z.C. Zhong, X.Y. Jiang, A.L. Greer, Microstructure and hardening of Al-based nanophase composites [J]. Mater. Sci. Eng. A.,1997,226-228:531-535.
    [120]B.C. Ko, P. Wesseling, O.L. Vatamanu, G.J. Shiflet, J.J. Lewandowski, Effects of annealing at high pressure on structure and mechanical properties of Al87Ni7Gd6 metallic glass [J]. Intermetallics,2002,10:1099-1103.
    [121]K.L. Sahoo, R. Sahu, M. Ghosh, S. Chatterjee, Studies on crystallization behaviour and mechanical properties of Al-Ni-La metallic glasses [J]. Bull. Mater. Sci.,2008,31:433-426.
    [122]V. Ronto, L. Battezzati, A.R. Yavari, M. Tonegaru, N. Lupu, G. Heunen, Crystallization behaviour of Al87Ni7La6 and Al87Ni7Sm6 amorphous alloys [J]. Scripta. Mater.,2004,50: 839-843.
    [123]L. Battezzati, P. Rizzi, V. Ronto, The difference in devitrification paths in Al87Ni7Sm6 and Al87Ni7La6 amorphous alloys [J]. Mater. Sci. Eng. A.,2004,375-377:927-931.
    [124]K.L. Sahoo, M. Wollgarten, K.B. Kim, J. Banhart, Crystallization behavior and microhardness evolution in Al92-xNi8Lax amorphous alloys [J]. J. Mater. Res.,2005,20:2927-2933.
    [125]Z.H. Huang, J.F. Li, Q.L. Rao, Y.H. Zhou, Effects of La content on the glass transition and crystallization process of Al-Ni-La amorphous alloys [J]. Intermetallics,2007,15:1139-1146.
    [126]F Ye, K Lu, Pressure effect on crystallization kinetics of an Al-La-Ni amorphous alloy [J]. Acta. Mater.,1999,47:2449-2454.
    [127]Y. X. Zhuang, J.Z. Jiang, T.J. Zhou, H. Rasmussen, L. Gerward, M. Mezouar, W. Crichton, A. Inoue. Pressure effects on Al89La6Ni5 amorphous alloy crystallization [J]. Appl. Phys. Lett., 2000,77:4133-4135.
    [128]J.H. Yang, X.Y. Liu, L.L. Yang, YX. Wang, YJ. Zhuang, J.J. Lang, M. Gao, M.B. Wei, Effect of different annealing atmospheres on the structure and optical properties of ZnO nanoparticles [J]. J. Alloys Compd.,2009,485:743-746.
    [1]神户博太郎编,刘振海译,热分析,北京:化学出版社,1985.
    [2]王一禾,杨赝善编,非晶态合金,北京:冶金工业出版社,1989.
    [3]于伯龄,姜胶东,实用热分析,北京:纺织工业出版社,1990.
    [1]A. Inoue, K. Ohtera, A.P. Tsai, T. Masumoto, New amorphous alloys with good ductility in Al-Y-M and Al-La-M (M= Fe, Co, Ni or Cu) systems [J]. Jpn. J. Appl. Phys.,1988,27: L280-L282.
    [2]Y. He, S.J. Poon, G.J. Shiflet, Synthesis and properties of metallic glasses that contain aluminum [J]. Science,1988,241:1640-1642.
    [3]Robert W. Cahn, Aluminium-based glassy alloys [J]. Nature,1989,341:183-184.
    [4]A. Inoue, Slowly-cooled bulk bmorphous alloys [J]. Mater. Sci. Forum,1995,179-181:691-700.
    [5]B.J.Yang, J.H. Yao, J. Zhang, H.W. Yang, J.Q. Wang, E. Ma, Al-rich bulk metallic glasses with plasticity and ultrahigh specific strength [J]. Scripta Mater.,2009,61:423-426.
    [6]A.L. Greer, Confusion by design [J]. Nature,1993,366:303-304.
    [7]C.T. Liu, Z.P. Lu, Effect of minor alloying additions on glass formation in bulk metallic glasses [J]. Intermetallics,2005,13:415-418.
    [8]H. Choi-Yim, R. Busch, L.W. Johnson, The effect of silicon on the glass forming ability of the Cu47Ti34Zr11Ni8 bulk metallic glass forming alloy during processing of composites [J]. J. Appl. Phys.,1998,83:7993-7995.
    [9]A.A. Kundig, D. Lepori, A.J. Perry, S. Rossmann, A. Blatter, A. Dommann, P.J. Uggowitzer, Influence of low oxygen contents and alloy refinement on the glass forming ability of Zr52.5Cu17.9Ni14.6Al10Ti5 [J]. Mater. Trans.,2002,43:3206-3210.
    [10]W.Y. Liu, H.F. Zhang, Z.Q. Hu, H. Wang, Formation and mechanical properties of Mg65Cu25Er10 and Mg65Cu15Ag10Er10 bulk amorphous alloys [J]. J. Alloys Compd.,2005.397: 202-206.
    [11]H. Ma, L. L. Shi, J. Xu, Y. Li, E. Ma, Discovering inch-diameter metallic glasses in three-dimensional composition space [J]. Appl. Phys. Lett.,2005,87:181915-1-181915-3.
    [12]K. Amiya, A. Inoue, Formation and thermal Stability of Ca-Mg-Ag-Cu Bulk Glassy Alloys [J]. Mater. Trans. JIM,2002,43:2578-2581.
    [13]E.S. Park, D.H. Kim, Effect of atomic configuration and liquid stability on the glass-forming ability of Ca-based metallic glasses [J]. Appl. Phys. Lett.,2005,86:201912-1-201912-3.
    [14]C.L. Dai, H. Guo, Y. Shen, Y. Li, E. Ma, J. Xu, A new centimeter-diameter Cu-based bulk metallic glass [J]. Scripta Mater.,2006,54:1403-1408.
    [15]B.L. Shen, A. Inoue, C.T. Chang, Super high strength and good soft-magnetic properties of (Fe, Co)-B-Si-Nb bulk glassy alloys with high glass-forming ability [J]. Appl. Phys. Lett.,2004,85: 4911-4913.
    [16]K. Takenaka, T. Wada, N. Nishiyama, H.M. Kimura, A. Inoue, Bulky La-Al-TM (TM= transition metal) amorphous alloys with high tensile strength produced by a high-pressure die casting method [J]. Mater. Trans. JIM,1993,34:351-358.
    [17]J. Schroers, W.L. Johnson, Highly processable bulk metallic glass-forming alloys in the Pt-Co-Ni-Cu-P system [J]. Appl. Phys. Lett.,2004,84:3666-3668.
    [18]Q.K. Jiang, X.D. Wang, X.P. Nie, G.Q. Zhang, H. Ma, H.J. Fecht, J. Bendnarcik, H. Franz, Y.G. Liu, Q.P. Cao, J.Z. Jiang, Zr-(Cu,Ag)-Al bulk metallic glasses [J]. Acta. Mater.,2008,56: 1785-1796.
    [19]F. Guo, H. Wang, S. J. Poon, G.J. Shiflet, Ductile titanium-based glassy alloy ingots [J]. Appl. Phys. Lett.,2005,86:091907-1-091907-3.
    [20]R. Li, S.J. Pang, H. Men, C.L. Ma, T. Zhang, Formation and mechanical properties of (Ce-La-Pr-Nd)-Co-Al bulk glassy alloys with superior glass-forming ability [J]. Scripta Mater.,2006,54:1123-1134.
    [21]B.A. Sun, M.X. Pan, D.Q. Zhao, W.H. Wang, X.K. Xi, M.T. Sandor, Y. Wu, Aluminum-rich bulk metallic glasses [J]. Scripta Mater.,2008,59:1159-1162.
    [22]A. Inoue, Amorphous, nanoquasicrystalline and nanocrystalline alloys in Al-based systems [J]. Prog. Mater Sci.,1998,43:365-520.
    [23]A. Inoue, T. Zhang, Thermal stability and glass-forming ability of amorphous Nd-Al-TM (TM= Fe, Co, Ni or Cu) alloys [J]. Mater. Sci. Eng. A.,1997,226-228:393-403.
    [24]K.K. Song, X.F. Bian, Jing Guo, S.H. Wang, B.A. Sun, X.L. Li, C.D. Wang, Effects of Ce and Mm additions on the glass forming ability of Al-Ni-Si metallic glass alloys [J]. J. Alloys Compd.,2007,440:L8-L12.
    [25]A. Inoue, T. Zhang, A. Takeuchi, Bulk amorphous alloys with high mechanical strength and good soft magnetic properties in Fe-TM-B (TM= Ⅳ-Ⅷ group transition metal) system [J]. Appl. Phys. Lett.,1997,71:464-466.
    [26]M.X. Xia, S.G. Zhang, C.L. Ma, J.G. Li, Evaluation of glass-forming ability for metallic glasses based on order-disorder competition [J]. Appl. Phys. Lett.,2006,89:091917-1-091917-3.
    [27]H. A. Davies, in:F. E. Luborsky (Ed.), Amorphous Metallic Alloys, Butterworths, London, 1993, p.8.
    [28]A. Inoue, Stabilization of supercooled liquid and opening-up of bulk glassy alloys [J]. Proc. Jpn. Acad. B,1997,73:19-24.
    [29]L. Wang, H.R. Cong, J.X. Zhang, X.F. Bian, H. Li, J.Y. Qin, Medium-range order structure in Al80Fe20 alloy during rapid solidification [J]. Phys. Lett. A,2002,301:477-483.
    [30]L. Wang, H.R. Cong, X.F. Bian, Medium-range order in liquid Al5Fe2 alloy [J]. Mater. Sci. Eng. A,2002,341:197-201.
    [31]A. Inoue, T. Zhang, T. Masumoto, Glass-forming ability of alloys [J]. J. Non-Cryst. Soilds,1993, 156-158:473-480.
    [32]D TurnBull, Under what conditions can a glass be formed [J]. Contemp Phys.,1969,10: 473-477.
    [33]Z.P. Lu, C.T. Liu, A new glass-forming ability criterion for bulk metallic glasses [J]. Acta. Mater.,2002,50:3501-3512.
    [34]A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys [J]. Acta. Mater.,2000,48:279-306.
    [35]W.M. Wang, A. Gebert, S. Roth, U. Kuehn, L. Schultz, Glass formability and fragility of Fe61Co9-xZr8Mo5WxB17 (x= 0 and 2) bulk metallic glassy alloys [J]. Intermetallics,2008,16: 267-272.
    [36]T. Klein, C. Bergor, D.Mayou, F. Cyrot-lackmann, Proximity of a metal-insulator transition in icosahedral phases of high structural quality [J]. Phys. Rev. Lett.,1991,66:2907-2910.
    [37]W.M. Wang, Y.C. Niu, F. Wang, J.C. Liang, S.F. Jin, W.G Zhang, X.F. Bian, Electrical resistivity evolution in the annealed amorphous Fe78Si9B13 ribbons [J]. J. Non-Cryst. Soilds, 2008,354:3612-3616.
    [38]C.T. Liu, C.L. Fu, M.F. Chisholm, J.R. Thompson, M. Krcmar, X.L. Wang,. Magnetism and solid solution effects in NiAl (40% Al) alloys [J]. Prog. Mater. Sci.,2007,52:352-370.
    [39]Y.T. Wang, M.X. Pan, D.Q. Zhao, W.H. Wang, W.L. Wang, Unusual diamagnetic response in PrAlNiCuFe metallic glass [J]. Appl. Phys. Lett.,2004,85:2881-2884.
    [1]N.O. Gonchukova, A.N. Drugov, Thermal expansion of amorphous alloys [J]. Glass Phys. Chem., 2003,29:184-187.
    [2]D. Schermeyer, H. Neuhauser, Dilatometric measurements on metallic glass ribbons with a wide glass transition range [J]. Mater. Sci. Eng. A.,1997,226-228:846-850.
    [3]K. Ota, W.J. Botta, G. Vaughan, A.R. Yavari, Glass transition Tg, thermal expansion, and quenched-in free volume △Vf in pyrex glass measured by time-resolved X-ray diffraction [J]. J. Alloys Compd.,2005,388:L1-L3.
    [4]G. Wilde, S.G. Klose, W. Soellner, G.P. Gorler, K. Jeropoulos, R. Willnecker, H.J. Fecht, On the stability limits of the undercooled liquid state of Pd-Ni-P [J]. Mater. Sci. Eng. A.,1997,226-228: 434-438.
    [5]C. Nagel, K. Ratzke, E. Schmidtke, F. Faupel, Positron-annihilation studies of free-volume changes in the bulk metallic glass Zr65Al7.5Ni10Cu17.5 during structural relaxation and at the glass transition [J]. Phys. Rev. B.,1999,60:9212-9215.
    [6]X. Hu, S.C. Ng, Y.P. Feng, Y. Li, Cooling-rate dependence of the density of Pd4oNi10Cu30P20 bulk metallic glass [J]. Phys. Rev. B.,2001,64:172201-1-172201-4.
    [7]C.H. Shek, G.M. Lin, Dilatometric measurements and calculation of effective pair potentials for Zr41Ti14Cu12.5Ni10Be22.5 bulk metallic glass [J]. Mater. Lett.,200357:1229-1232.
    [8]L.F. Chua, C.W. Yuen, H.W. Kui, Correlations for the thermal expansion coefficients of molten glass forming systems [J]. Appl. Phys. Lett.,1995,67:615-617.
    [9]S. Gruner, W. Hoyer, The dynamic viscosity of liquid Cu-Si alloys [J]. J. Alloys Compd.,2008, 460:496-499.
    [10]C.A. Angell, Relaxation in liquids, polymers and plastic crystals-strong/fragile patterns and problems [J]. J. Non-Cryst Solids,1991,131-133:13-31.
    [11]C.A. Angell, Formation of glasses from liquids and biopolymers [J]. Science,1995,267: 1924-1935.
    [12]D. Turnbull, Under what conditions can a glass be formed [J]. Contemp. Phys.,1969,10: 473-488.
    [13]H.S. Chen, Glassy metals [J]. Rep. Prog. Phys.,1980,43:353-433.
    [14]M.H. Cohen, G.S. Grest, Liquid-glass transition:a free-volume approach [J]. Phys. Rev. B., 1979,20:1077-1080.
    [15]Q.G Meng, S.G. Zhang, J.G. Li, X.F. Bian. Strong liquid behavior of Pr55Ni25Al20 bulk metallic glass [J]. J. Alloys Compd.,2007,431:191-196.
    [16]Y.C. Guo, Z.X. Wang, Physics of amorphous materials [M]. Science Press, Beijing,1984, p.1409.
    [17]C.T. Moynihan, Correlation between the width of the glass transition region and the temperature dependence of the viscosity of high-Tg glasses [J]. J. Am. Ceram. Soc.,1993,76:181-187
    [18]K. Lu, W.D. Gao, J.T. Wang, Grain growth kinetics and interfacial energies in nanocrystalline Ni-P alloys [J]. J. Appl. Phys.,1991,69:7345-7347.
    [19]L.C. Zhang, J. Xu, E. Ma, Consolidation and properties of Ti-based bulk amorphous alloy by equal channel angle extrusion [J]. Mater. Sci. Eng. A.,2006,434:280-288.
    [20]Q.G Meng, S.G. Zhang, J.G Li, X.F. Bian, Dilatometric measurements and glass-forming ability in Pr-based bulk metallic glasses [J]. Scripta Mater.,2006,55:517-520.
    [21]C.H. Shek, G.M. Lin. Dilatometric measurements and calculation of effective pair potentials for Zr41Ti14Cu12.5Ni10Be22.5 bulk metallic glass [J]. Mater. Lett.,2003,57:1229-1232.
    [22]J. Guo, X.F. Bian, T. Lin, Y. Zhao, T.B. Li, B. Zhang, B.A. Sun. Formation and interesting thermal expansion behavior of novel Sm-based bulk metallic glasses [J]. Intermetallics,2007, 15:929-933.
    [23]J. Guo, X.F. Bian, Y. Zhao, S.J. Zhang, T.B. Li, C.D. Wang, Correlation between the fragility of supercooled liquids and thermal expansion in the glassy state for Gd-based glass-forming alloys [J]. J. Phys.:Condens. Matter.,2007,19:116103-1-116103-6.
    [24]N. Mattern, U. Kiihn, H. Hermann, S. Roth, H. Vinzelberg, J. Eckert, Thermal behavior and glass transition of Zr-based bulk metallic glasses [J]. Mater. Sci. Eng. A.,2004,375-377: 351-354.
    [25]Y.C. Niu, X.F. Bian, W.M. Wang, S.F. Jin, X.J. Liu, J.Y. Zhang, G.L. Qin, The use of flow behavior and thermal expansion to monitor structural change of amorphous Fe78Si9B13 ribbon [J]. J. Non-Cryst. Solids,2005,351:3854-3860.
    [26]T. Lin, X.F. Bian, J. Jiang, Relation between calculated Lennard-Jones potential and thermal stability of Cu-based bulk metallic glasses [J]. Phys. Lett. A,2006,353:497-499.
    [27]http://www.webelements.com.
    [28]T. Scopigno, G. Ruocco, F. Sette, G. Monaco, Is the fragility of a liquid embedded in the properties of its glass [J]. Science,2003,302:849-852.
    [29]V.N. Novikov, A.P. Sokolov, Poisson's ratio and the fragility of glass-forming liquids [J]. Nature, 2004,431:961-963.
    [30]GJ. Fan, H. Choo, P.K. Liaw, A new criterion for the glass-forming ability of liquids [J]. J. Non-Cryst. Soilds,2007,353:102-107.
    [31]Z.P. Lu, C.T. Liu, A new glass-forming ability criterion for bulk metallic glasses [J]. Acta. Mater.,2002,50:3501-3512.
    [32]J Guo, Study on Glass-forming Ability and Liquid Fragility of Bulk Metallic Glasses [D]. Shandong University, China,2008, P.53.
    [33]H. Kato, H.-S. Chen, A. Inoue, Relationship between thermal expansion coefficient and glass transition temperature in metallic glasses [J]. Scripta Mater.,2008,58:1106-1109
    [34]A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys [J]. Acta Mater.,2002,48:279-306.
    [35]W.M. Wang, A. Gebert, S. Roth, U. Kuehn, L. Schultz, Glass formability and fragility of Fe61Co9-xZr8Mo5WxB17 (x= 0 and 2) bulk metallic glassy alloys [J]. Intermetallics,2008,16: 267-272.
    [1]M. Mehmood, B.-P. Zhang, E. Akiyama, H. Habazaki, A. Kawashima, K.Asami, K.Hashimoto, Experimental evidence for the critical size of heterogeneity areas for pitting corrosion of Cr-Zr alloys in 6 M HCl. Corros. Sci.,1998,40:1-17.
    [2]H. Yoshioka, S. Yoshida, A. Kawashima, K. Asami, K. Hashimoto, The pitting corrosion behavior of rapidly solidified aluminum alloys. Corros. Sci.,1986,26:795-801.
    [3]Y. He, S.J. Poon, G.J. ShiXet, Synthesis and Properties of Metallic Glasses That Contain Aluminum. Science,1988,241:1640-1642.
    [4]A. Inoue, Amorphous, nanoquasicrystalline and nanocrystalline alloys in Al-based systems. Prog. Mater Sci.,1998,43:365-520.
    [5]I.L. Muller, J.R. Galvele, Pitting potential of high purity binary aluminium alloys [J]. Corros. Sci., 1977,17:179-184.
    [6]D.A. Little, B.J. Connolly, J.R. Scully, An electrochemical framework to explain the intergranular stress corrosion behavior in two Al-Cu-Mg-Ag alloys as a function of aging. Corros. Sci.,2007,49:347-372.
    [7]X.Q. Wu, M. Ma, C. Tan, X. Wang, J. Lin, Comparative Study on Thermodynamical and Electrochemical Behavior of Al88N6La6 and Al86N6La6Cu2 Amorphous Alloys [J]. J. Rare Earths, 2007,25:381.
    [8]T. Aburada, N. Unlu, J.M. Fitz-Gerald, GJ. Shiflet, J.R. Scully, Effect of Ni as a minority alloying element on the corrosion behavior in Al-Gu-Mg-(Ni) metallic glasses [J]. Scripta Mater.,2008,58:623-626.
    [9]Q.G. Meng, S.G. Zhang, J.G. Li, Corrosion and oxidation behavior of Pr-based bulk metallic glasses [J]. J. Alloys Compd.,452 (2008) 273-278.
    [10]A. Inoue, T. Zhang, Thermal stability and glass-forming ability of amorphous Nd-Al-TM (TM= Fe, Co, Ni or Cu) alloys [J]. Mater. Sci. Eng. A,1997,226-228:393-396.
    [11]Z.P. Lu, C.T. Liu, A new glass-forming ability criterion for bulk metallic glasses [J]. Acta. Mater.,2002,50:3501-3512.
    [12]H. A. Davies, in:F. E. Luborsky (Ed.), Amorphous Metallic Alloys [M], Butterworths, London, 1993, p.8.
    [13]H. Alves, M. G. S. Ferreira, U. Koester, Corrosion behavior of nanocrystalline (Ni70Mo30)90B10 alloys in 0.8 M KOH solution [J]. Corros. Sci.,2003,45:1833-1845.
    [14]H.B. Lu, L.C. Zhang, A. Gebert, L. Schultz, Pitting corrosion of Cu-Zr metallic glasses in hydrochloric acid solutions [J]. J. Alloys Compd.,2008,462:60-67.
    [15]王成,张庆声,江峰,张海峰,胡壮麒,Mg65Y10Cu25非晶合金在3.5%NaCl溶液中的腐蚀行为[J].中国有色金属学报,2002,12:1016-1020.
    [16]R. Li, S.J. Pang, C.L. Ma and T. Zhang, Influence of similar atom substitution on glass formation in (La-Ce)-Al-Co bulk metallic glasses [J]. Acta. Mater.,2007,55:3719-3726.
    [17]S. Hiromoto, A.-P. Tsai, M. Sumita, T. Hanawa. Effect of chloride ion on the anodic polarization behavior of the Zr65Al7.5Ni10Cu17.5 amorphous alloy in phosphate buffered solution. Corros. Sci.,2000,42:1651-1660.
    [18]王成,张庆声,江峰,张海峰,胡壮麒,Zr55Al10Cu30Ni5非晶合金NaOH溶液中的腐蚀行为[J].稀有金属材料与工程,2003,32:814-817.
    [19]W.H. Peter, R.A. Buchanan, C.T. Liu, P.K. Liaw, M.L. Morrison, J.A. Horton, C.A. Carmichael, J.L. Wright. Localized corrosion behavior of a zirconium-based bulk metallic glass relative to its crystalline state [J]. Intermetallics,2002,10:1157-1159.
    [20]S. Pang, T. Zhang, K. Asami, A. Inoue, Formation, corrosion behavior, and mechanical properties of bulk glassy Zr-Al-Co-Nb alloys [J]. J. Mater. Res.,2003,18:1652-1658.
    [21]U. Kamachi Mudali, S. Baunack, J. Eckert, L. Schultz, A. Gebert, Pitting corrosion of bulk glass-forming zirconium-based alloys [J]. J. Alloys Compd.,2004,377:290-297.
    [22]C. Hinnen, D. Imbert, J.M. Siffre, P. Marcus, An in situ XPS study of sputter-deposited aluminium thin films on graphite [J]. Appl. Surf. Sci.,1994,78:219-231.
    [23]K.-H. Ernst, J. Patscheider, M. Tobler, XPS study of the a-C:H/A12O3 interface [J]. Surf. Interface Anal.,1994,21:32-37.
    [24]C.D. Wagner, J.F. Moulder, L.E. Davis, W.M. Riggs, Perking-Elmer Corporation, physical electronics division [M] (end of book).
    [25]Z. Song, X. Bao, U. Wild, M. Muhler, G. Ertl, Oxidation of amorphous Ni-Zr alloys studied by XPS, UPS, ISS and XRD [J]. Appl. Surf. Sci.,1998,134:31-38.
    [26]Pedro A.P. Nascentre, Materials characterization by X-ray photoelectron spectroscopy [J]. Journal. Mol. Catal. A:Chem.,2005,228:145-150.
    [27]K.S. Kim, R.E. Davis, J. Electron Spectrosc. Relat. Phenom.,1973,1:251-257.
    [28]A. Nyland, I. Olefiord, Surface analysis of oxidized aluminium.1. Hydration of Al2O3 and decomposition of Al(OH)3 in a vacuum as studied by ESCA [J]. Surf. Interface Anal.,1994,21: 283-289.
    [1]B.J.Yang, J.H. Yao, J. Zhang, H.W. Yang, J.Q. Wang, E. Ma, Al-rich bulk metallic glasses with plasticity and ultrahigh specific strength [J]. Scripta Mater.,2009,61:423-426.
    [2]Z.C. Zhong, X.Y. Jiang, A.L. Greer, Nanocrystallization in Al-based amorphous alloys [J]. Philos. Mag. B.,1997,76:505-510.
    [3]Z.C. Zhong, X.Y. Jiang, A.L. Greer, Microstructure and hardening of Al-based nanophase composites [J]. Mater. Sci. Eng. A.,1997,226-228:531-535.
    [4]B.C. Ko, P. Wesseling, O.L. Vatamanu, G.J. Shiflet, J J. Lewandowski, Effects of annealing at high pressure on structure and mechanical properties of Al87Ni7Gd6 metallic glass. Intermetallics, 2002,10:1099-1103.
    [5]K.L. Sahoo, R. Sahu, M. Ghosh, S. Chatterjee, Studies on crystallization behaviour and mechanical properties of Al-Ni-La metallic glasses [J]. Bull. Mater. Sci.,2008,31:433-439.
    [6]V. Ronto, L. Battezzati, A.R. Yavari, M. Tonegaru, N. Lupu, G. Heunen, Crystallization behaviour of Al87Ni7La6 and Al87Ni7Sm6 amorphous alloys [J]. Scripta Mater.,2004,50: 839-843.
    [7]L. Battezzati, P. Rizzi, V. Ronto, The difference in devitrification paths in Al87Ni7Sm6 and Al87Ni7La6 amorphous alloys [J]. Mater. Sci. Eng. A.,2004,375-377:927-931.
    [8]K.L. Sahoo, M. Wollgarten, K.B. Kim, J. Banhart, Crystallization behavior and microhardness evolution in Al92-xNi8Lax amorphous alloys [J]. J. Mater. Res.,2005,20:2927-2933.
    [9]Z.H. Huang, J.F. Li, Q.L. Rao, Y.H. Zhou, Effects of La content on the glass transition and crystallization process of Al-Ni-La amorphous alloys [J]. Intermetallics,2007,15:1139-1146.
    [10]F Ye, K Lu, Pressure effect on crystallization kinetics of an Al-La-Ni amorphous alloy [J]. Acta. Mater.,1999,47:2449-2454.
    [11]Y. X. Zhuang, J.Z. Jiang, T.J. Zhou, H. Rasmussen, L. Gerward, M. Mezouar, W. Crichton, A. Inoue, Pressure effects on Al89La6Ni5 amorphous alloy crystallization [J]. Appl. Phys. Lett., 2000,77:4133-4135.
    [12]J. H. Yang, X. Y. Liu, L.L. Yang, Y.X. Wang, Y.J. Zhuang, J.J. Lang, M. Gao, M.B. Wei, Effect of different annealing atmospheres on the structure and optical properties of ZnO nanoparticles [J]. J. Alloys Compd.,2009,485:743-746.
    [13]J.K. Zhou, X.F. Bian, W.M. Wang, X.Y. Xue, S.H. Wang, Y. Zhao, K.B. Yin, Medium-range order and crystallization in amorphous Al-Ni-Pr alloys [J]. Mater. Lett.,2004,58:2559-2563.
    [14]K.K. Song, X.F. Bian, J. Guo, X.L. L, M.T. Xie, C.J. Dong, Study of non-isothermal primary crystallization kinetics of Al84Ni12Zr1Pr3 amorphous alloy [J]. J. Alloys Compd.2008,465:
    L7-L13.
    [15]A.S. Aronin, G.E. Abrosimova, A.F. Gurov, Y.V. Kiryanov, V.V. Molokanov, Nanocrystallization of bulk Zr-Cu-Ti metallic glass [J]. Mater. Sci. Eng. A.,2001,304-306:375-379.
    [16]W.M. Wang, P. Jia. S.H. Wang, Y.C. Niu, X.F. Bian, Structure Characterization of Amorphous Al83Ni10Ce5Si2 under the Relaxed Annealing [J]. Glass Phys. Chem.,2006,32:511-515.
    [17]W. Kurz, D.J. Fisher, Fundamentals of solidification [M]. Trans. Tech. Publications Ltd, Switzerland,1992, p.94.
    [18]A. Inoue, Amorphous, nanoquasicrystalline and nanocrystalline alloys in Al-based systems [J]. Prog. Mater. Sci.,1998,43:365-520.
    [19]D.R. Sahu, Jow-Lay Huang, The properties of ZnO/Cu/ZnO multilayer films before and after annealing in the different atmosphere [J]. Thin Soild Films,2007,516:208-211.
    [20]N. Ismail, M. Uhlemann, A. Gebert, J. Eckert, Hydrogenation and its effect on the crystallisation behaviour of Zr55Cu30Al10Ni5 metallic glass [J]. J. Alloys Compd.,2000,298: 146-150.
    [21]N. Ismail, A. Gebert, M. Uhlemann, J. Eckert, L. Schultz, Effect of hydrogen on Zr65Cu,7.5Al7.5Ni10 metallic glass [J]. J. Alloys Compd.,2001,314:170-175.
    [22]S. Yamanaka, T. Iguchi, Y. Fujita, M. Uno, M. Katsura, Y. Hoshino, W. Saiki, Study on the hydrogen solubility in UNiAI [J]. J. Alloys Compd.,1999,293-295:52-56.
    [23]A. Gebert, J. Eckert, L. Schultz, Effect of oxygen on phase formation and thermal stability of slowly cooled Zr65Al7.5Cu17.5Ni10 metallic glass [J]. Acta Mater.,1998,46 (15):5475-5482.
    [24]C.T. Liu, M.F. Chisholm, M.K. Miller, Oxygen impurity and microalloying effect in a Zr-based bulk metallic glass alloy [J]. Intermetallics,2002,10:1105-1112.
    [25]H. Alves, M. G. S. Ferreira, U. Koester, Corrosion behavior of nanocrystalline (Ni70Mo30)90B10 alloys in 0.8 M KOH solution [J]. Corros. Sci.,2003,45:1833-1845.
    [26]M.K. Tam, C.H. Shek, Crystallization and corrosion resistance of Cn50Zr45Al5 bulk amorphous alloy [J]. Mater. Chem. Phys.,2006,100:34-38.
    [27]C.G. Tan, W.J. Jiang, Z.C. Zhang, X.Q. Wu, J.G. Jin,The effect of Ti-addition on the corrosion behavior of the partially crystallized Ni-based bulk metallic glasses [J]. Mater. Chem. Phys.,
    2008,108:29-34.
    [28]C. A. C. Souza, F. S. Politi, C. S. Kiminami, Influence of structural relaxation and partial devitrification on the corrosion resistance of Fe78B13Si9 amorphous alloy [J]. Scripta Mater., 1998,39:329-334.
    [29]D. Szewieczek, J. Tyrlik-Held, Z. Paszenda, Corrosion investigations of nanocrystalline iron based alloy [J]. J. Mater. Process. Technol.,1998,78:171-178.
    [30]C.A.C. Souza, S.E. Kuri, F.S. Politti, J.E. May, C.S. Kiminami, Corrosion resistance of amorphous and polycrystalline FeCuNbSiB alloys in sulphuric acid solution [J]. J. Non-Cryst. Solids,1999,247:69-73.
    [31]Z. H. Huang, J.F. Li, Q.L. Rao, Y.H. Zhou, Effects of La content on the glass transition and crystallization process of Al-Ni-La amorphous alloys [J]. Intermetallics,2007,15:1139-1146.
    [32]K. Hono, Y. Zhang, A. Inoue, T. Sakurai, Atom Probe Studies of Nanocrystalline Microstructural Evolution in Some Amorphous Alloys [J]. Mater. Trans. JIM.,1995,36: 909-917.
    [33]K.L. Sahoo, M. Wollgarten, J. Huag, J. Banhart, Effect of La on the crystallization behavior of amorphous Al94-xNi6Lax (x= 4-7) alloys [J]. Acta. Mater.,2005,53:3861-3870.
    [34]P. Rizzi, L. Battezzati, Microhardness and devitrification studies of AI-TM-RE alloys [J]. J. Alloys Compd.,2007,434-435:36-39.
    [1]N.O Gonchukova, A.N. Drugov. Thermal expansion of amorphous alloys [J]. Glass Phys. Chem., 2003,29:184-187.
    [2]D. Schermeyer, H. Neuhauser. Dilatometric measurements on metallic glass ribbons with a wide glass transition range [J]. Mater. Sci. Eng. A.,1997,226-228:846-850.
    [3]K. Ota, W.J. Botta, G. Vaughan, A.R. Yavari. Glass transition Tg, thermal expansion, and quenched-in free volume △Vf in pyrex glass measured by time-resolved X-ray diffraction [J]. J. Alloys Compd.,2005,388:L1-L3.
    [4]C.H. Shek, G.M. Lin. Dilatometric measurements and calculation of effective pair potentials for Zr41Ti14Cu12.5Ni10Be22.5 bulk metallic glass [J]. Mater. Lett.,200357:1229-1232.
    [5]L.F. Chua, C.W. Yuen, H.W. Kui. Correlations for the thermal expansion coefficients of molten glass forming systems [J]. Appl. Phys. Lett.,1995,67:615-617.
    [6]D. Turnbull. Under what conditions can a glass be formed [J]. Contemp. Phys.,1969,10:473-88.
    [7]Z.P. Lu, C.T. Liu. A new glass-forming ability criterion for bulk metallic glasses [J]. Acta. Mater., 2002,50:3501-3512.
    [8]Guihua Li, Xiufang Bian, Kaikai Song, Jing Guo, Xuelian Li, Caidong Wang. Effect of Si addition on glass forming ability and thermal stability of Al-Fe-La alloys [J]. J. Alloys Compd., 2009,471:47-50.
    [9]Y.C. Niu, X.F. Bian, W.M. Wang, S.F. Jin, G.H. Li, F.M. Chu, W.G. Zhang, The peculiarity of contraction in the primary crystallization of amorphous Fe73.5Nb3Cu1Si13.5B9 alloy [J]. J. Alloys Compd.,2007,433:296-301.
    [10]W.M. Wang, Y.C. Niu, F. Wang, J.C. Liang, S.F. Jin, W.G. Zhang, X.F. Bian, Electrical resistivity evolution in the annealed amorphous Fe78Si9B13 ribbons [J]. J. Non-Cryst. Solids, 2008,354:3612-3616.
    [11]G.H. Li, W.M. Wang, X.F. Bian, J.T. Zhang, R. Li, L. Wang, Comparing the dynamic and thermodynamic behaviors of Al86Ni9-La5/La0.5Ce0.5)5 amorphous alloys [J]. J. Alloys Compd.,2009,478:745-749.
    [12]J. Guo, X.F. Bian, T. Lin, Y. Zhao, T.B. Li, B. Zhang, B.A. Sun, Formation and interesting thermal expansion behavior of novel Sm-based bulk metallic glasses [J]. Intermetallics,2007, 15:929-933.
    [13]J. Guo, X.F. Bian, Y. Zhao, S.J. Zhang, T.B. Li, C.D. Wang, Correlation between the fragility of supercooled liquids and thermal expansion in the glassy state for Gd-based glass-forming alloys [J]. J. Phys.:Condens. Matter.,2007,19:116103-1-116103-6.
    [14]Q.G Meng, S.G. Zhang, J.G. Li, X.F. Bian, Dilatometric measurements and glass-forming ability in Pr-based bulk metallic glasses [J]. Scripta Mater.,2006,55:517-520.
    [15]http://www.webelements.com.
    [16]G Wilde, S.G. Klose, W. Soellner, GP. Gorler, K. Jeropoulos, R. Willnecker, H.J. Fecht, On the stability limits of the undercooled liquid state of Pd-Ni-P [J]. Mater. Sci. Eng. A.,1997, 226-228:434-438.
    [17]C. Nagel, K. Ratzke, E. Schmidtke, F. Faupel, Positron-annihilation studies of free-volume changes in the bulk metallic glass Zr65Al7.5Ni10Cu17.5 during structural relaxation and at the glass transition [J]. Phys. Rev. B.,1999,60:9212-9215.
    [18]Q.P. Cao, J.F. Li, Y.H. Zho, Free volume evolution and its temperature dependence during rolling of Cu6oZr2oTi2o bulk metallic glass,Appl. Phys. Lett.,2005,87:101901-1-101901-3.
    [19]X. Hu, S.C. Ng, Y.P. Feng, Y. Li, Cooling-rate dependence of the density of Pd40Ni10Cu30P20 bulk metallic glass [J]. Phys. Rev. B.,2001,64:172201-1-172201-4.
    [20]J Guo, Study on Glass-forming Ability and Liquid Fragility of Bulk Metallic Glasses [D]. Shandong University, China,2008, P.53.
    [21]T. Lin, X.F. Bian, J. Jiang, Relation between calculated Lennard-Jones potential and thermal stability of Cu-based bulk metallic glasses [J]. Phys. Lett. A,2006,353:497-499.
    [22]T. Scopigno, G. Ruocco, F. Sette, G Monaco, Is the fragility of a liquid embedded in the properties of its glass [J]. Science,2003,302:849-852.
    [23]V.N. Novikov, A.P. Sokolov, Poisson's ratio and the fragility of glass-forming liquids [J]. Nature, 2004,431:961-963.
    [24]H. Kato, H.-S. Chen, A. Inoue, Relationship between thermal expansion coefficient and glass transition temperature in metallic glasses [J]. Scripta Mater.,2008,58:1106-1109.
    [25]A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys [J]. Acta Mater.,2002,48:279-306.
    [26]W.M. Wang, A. Gebert, S. Roth, U. Kuehn, L. Schultz, Glass formability and fragility of Fe61Co9-xZr8Mo5WxB17 (x= 0 and 2) bulk metallic glassy alloys [J]. Intermetallics,2008,16: 267-272.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700