用户名: 密码: 验证码:
液—液结构转变对熔体分形特征和凝固行为的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液体的多形性(Polymorphism)以及结构转变现象已成为人类共识,并在科学技术领域得到高度关注。其中,温度诱导液-液结构转变已为国内外研究者在多种合金体系中被发现及验证。多年来,人们探索一些熔体热处理工艺方法来改变材料的组织和性能,并往往被证明有显著效果,因此固体材料对于母相液体的热历史相关性也成为重要研究前沿之一。然而,到目前为止,人们对液态结构及其转变的认识深度和广度还远远不够,基于液-液结构转变改变凝固行为、微观组织等方面的研究则更少。这些不足是本文研究的切入点,也是主要内容。
     由于液态结构及其转变的复杂性,本文尝试运用分形理论和统计方法探索液态结构特征,从新的视角认识温度诱导液-液结构转变内在本质与机理。另一方面,运用自由凝固和定向凝固两种方式,选用纯金属和不同类型的二元合金,系统考察液-液结构转变对凝固过程中形核、生长机制、微观组织缺陷、溶质再分配系数、生长取向及固液界面形态等方面的影响。主要结论和创新点归纳如下:
     第一,运用分形方法分析In-80wt%Sn、In-49.1wt%Sn和In-20wt%Sn合金液态结构,结果显示,液态结构是多度域分形结构,是由低维分形结构、高维分形结构及其间的过渡区域组成。根据两分形结构组成特点,提出了液态结构多度域模型。表征分形特征的物理量——分形维数与电阻、内耗、粘度等参量一样也可以作为一个结构敏感参量。液态合金的过剩熵与其低维分形维数的线性关系说明了在一定程度上分形维数能够反映液体结构信息,也使分形维数与传统结构参数之间建立了联系。多度域分形结构中高维结构和低维结构随温度的不同变化特征说明了液-液结构变化的临界特性对空间维数的依赖关系,揭示了非整数维空间中液态合金结构变化的物理规律。基于硬球模型和超微粒线度效应,温度诱导In-Sn合金液-液结构变化的机制可能是团簇线度减小到能产生线度效应,类固型的团簇结构在此效应的作用下转变为原子结合更紧密、面对面结合的多四面体结构。
     第二,引入R/S分析(rescaled range analysis)液态In-20wt%Sn和In-80wt%Sn合金的偶分布函数,发现液态中距离参考原子r处发现一个原子的概率遵循Hurst幂律关系,这种概率出现的规律是高指数的分数布朗运动。与平均近邻原子间距一样,Hurst指数也随温度发生了变化。但不同于传统结构参数,Hurst指数具有其独特的物理意义,液-液结构转变时Hurst指数的变化表明发现原子的概率偏离分数布朗运动,倾向于布朗运动,Hurst指数的跳动是液相从一种结构转变为另一种结构的表现。
     第三,以液-液结构转变作为新的切入点,选用纯Bi、过共晶Pb-90wt%Sn合金、亚共晶Sn-40wt%Bi合金和匀晶Bi-10wt%Sb合金进行自由凝固实验,研究发现液-液结构转变大幅加强了凝固过程中的形核控制作用,提高了形核率,提高了形核过冷度、生长速度和加速度。液-液结构转变促进了纯Bi凝固组织中孪晶数量大幅增加,产生台阶聚并现象,晶界附近形成很多树枝晶。液-液结构转变使溶质分配系数较大的Sn-40wt%Bi合金枝晶容易产生熔断现象,由粗大树枝晶变为等轴晶,而溶质分配系数较小的Pb-90wt%Sn合金液-液结构转变后枝晶尺度虽然也减小,但其形貌仍为树枝晶。对于组织以等轴晶形式存在的Bi-10wt%Sb合金,液态结构转变使凝固组织形貌由不均匀不规则变为均匀三角星状,且使晶粒尺寸明显减小。
     第四,自制了定向凝固装置,成功实现了Pb-80wt%Sn、Pb-90wt%Sn和Pb-99wt%Sn的定向凝固实验。发现熔体结构转变减小了溶质非平衡分配系数,增加了固液界面前沿的溶质富集程度,减小了胞晶间距和二次枝晶间距。液-液结构转变对晶体生长取向的影响主要是随凝固长度增加,液-液结构转变使合金实现高指数晶面取向,加剧了低指数晶面分支现象。液-液结构转变增大了Pb-80wt%Sn、Pb-99wt%Sn合金的定向凝固固液界面不稳定性。在水淬冷速条件下时,熔体结构变化后的Pb-80wt%Sn合金枝晶尖端、Pb-99wt%Sn合金胞晶尖端能够进入其固液界面前沿的成分过冷区,继续向液相生长;而液-液结构转变前合金的枝晶和胞晶尖端被阻止伸入固液界面前沿的成分过冷区,从而能够保留较完好的固液界面。
Polymorphism and structural transition in liquid have become common recognition, and been paid much attention in scientific fields. Thereinto, the temperature-induced liquid-liquid structural transition has been observed and testified in different kinds of alloys by Chinese and foreign countries’s researchers. For many years, some melt heat treatment techniques have been explored to change materials’structures and properties, and it has been proved to be evidently validity. So the relativities between structures and properties of solid materials and thermal history of original liquids also have been one of important research frontiers. However, up to now, the depth and scope of knowledge on liquid structure and its transition is till not enough, and fewer studies are focused on the change of solidification behaviors and solidified microstructure from the viewpoint of liquid-liquid structural transition. These insufficiencies are the breakthrough and the main content of this thesis.
     Because of the liquid structure and its complexity, we tried to use fractal theory and statistic method to explore the characteristic of liquid structure and from a new viewpoint to know the mechanism of temperature-induced liquid-liquid structural transition. Furthermore, by means of the free solidification and the direction solidification, pure metal and different kinds of binary alloys were selected to investigate the effect of liquid-liquid transition on nucleation, growth mechanism, microstructure defects, coefficient of solution redistribution, preferred growth, morphology of solid/liquid interface during solidification. Main conclusions are summarized as follows:
     Firstly, the fractal theory was implemented to study the liquid structure of In-80wt%Sn, In-49.1wt%Sn and In-20wt%Sn, and the results revealed that the liquid structure was the multi-range fractal structure, which is composed of low-dimensional fractal, high-dimensional fractal and the transition zone between the two fractals. The model of multi-range fractals in liquid structure was proposed according to the composition characteristics of two fractal structure. The fractal dimension, which is the physical quantity characterizing fractals, could also be used as a parameter sensitive to liquid structure as electrical resistance, internal friction, and viscosity. The linearity between excess entropy and low fractal dimension suggested that the fractal dimension could reveal the liquid structure to a certain extent, and established the connection between fractal dimension and traditional structural parameters. The different variation characteristics of the high-dimensional structure and the low-dimensional structure with temperature in multi-range fractals indicated that the critical phenomenon of liquid structural change was depended on the space dimension, and revealed the physics law of liquid structural change in the non-integral dimensional space. Based on hard sphere model and the size effect of ultrafine particles, the mechanism of temperature-induced liquid-liquid structural change of In-Sn alloys may be solid like clusters changed to denser packing clusters of face-adjacent tetrahedra subjected to size effect which is caused by the decrease of the size of cluster.
     Secondly, the rescaled range analysis was used to examine the pair distribution function of liquid In-20wt%Sn and In-80wt%Sn, and the results revealed that the probability of finding a particle at a distance r from a reference particle in liquids obeyed the Hurst’s empirical law, and the probability was subject to high index fractional Brownian motion. Same to the change of mean nearest neighbor distance, the Hurst exponent also changed with temperature. However, different to traditional structural parameters, the Hurst exponent has its unique physical meanings. In the presence of temperature-induced liquid structural transition, the change of Hurst exponent suggested the probability of finding a particle departed from the fractional Brownian motion and tended to Brownian motion. The jump of the Hurst exponent was the indicator of the change from one phase to another in liquids.
     Thirdly, based on liquid-liquid structure transition, selecting pure Bi, hypereutectic Pb-90wt%Sn, hypoeutectic Sn-40wt%Bi and solid-solution Bi-10wt % Sb to carry out free solidification experiments, we discovered that after experienced liquid-liquid structure transition the nucleation-controlled effect on the solidification process was greatly improved, and nucleation undercooling, growth rate and acceleration were enhanced. Liquid-liquid structure transition increased the amount of twin in pure Bi, and induced the appearance of the step bunching phenomenon and the formation of dendrites near the grain boundaries. After liquid structural change dendrites were remelted for Sn-40wt%Bi,which the coefficient solute distribution is great, and coarse dendrites were changed to fine equiaxed grains, while for Pb-90wt%Sn, which the coefficient solute distribution is small, the grains were still dendrites although its size decreases. When liquid-liquid structure transition happened in Bi-10wt%Sb alloy, which solid microstructures were equiaxed grains, the morphology of grains changed from the nonhomogeneous and irregular morphology to the homogeneous and three-pointed-star morphology and the grains was refined.
     Fourthly, the experiments on Pb-80wt%Sn, Pb-90wt%Sn and Pb-99wt%Sn were successful with the self-designed directional solidification equipment. The results indicated that the solute non-equilibrium distribution coefficient was decreased due to the liquid structural change, and the solute on the frontier of solid/liquid interface was enriched. Moreover, cellular spacing and second-dendrite dendrite arm spacing was decreased. Effects of the liquid structural change on crystallization orientation were investigated. It is found that the melt after the liquid structural change preferably grew on the high index crystal plane with the solidification process, which was responsible for the branching of low index single crystal plane. The interface stability of Pb-80wt%Sn and Pb-99wt%Sn were decreased after liquid structural change. At the cooling rate of water quenching, the tips of Pb-80wt%Sn dendrites and Pb-99wt%Sn cellulars after liquid structural change could keep on growing into component undercooling zone, while the growth of the tips was prevented before liquid structural change and the solid/liquid interfaces in good condition were saved.
引文
[1] A. K. Doolittle, J. Appl. Phys. 22 (1951) 1031.
    [2] A. K. Doolittle, J. Appl. Phys. 22 (1951) 1471.
    [3] X. F. Bian, M. H. Sun, L. Wu, et al., Mater. Res. Bull. 37 (2002) 1451.
    [4] H. Sasaki, E. Tokizaki, X. M. Huang, et al., Jap. J. Appl. Phys. 34 (1995) 3432.
    [5]陆坤权,物理23 (1994) 257.
    [6] Y. Marcus, Introduction to Liquid State Chemistry, WILEY, London, 1977.
    [7]陆坤权,物理26 (1997) 23.
    [8]邹宪武,物理26 (1997) 25.
    [9] A. P. Sokolov, Science 273 (1996) 1675.
    [10] F. Sette, M. H. Krisch, C. Masciovecchio, et al., Science 280 (1998) 1550.
    [11] Y. Waseda, The Structure of Non-Crystalline Materials, McGRAW-HILL, New York, 1980.
    [12] P. H. Poole, T. Grande, C. A. Angell, et al., Science 275 (1997) 322.
    [13]胡汉起,金属凝固原理,机械工业出版社,北京, 2000.
    [14] J. D. Bernal, Nature 183 (1959) 141.
    [15] J. D. Bernal, Liquids: Structure, Properties, Solid Interactions, Elservier, Amsterdam, 1965.
    [16] W. E. Morrell, J. H. Hildebrand, J. Chem. Phys. 4 (1936) 224.
    [17]陈刚,内耗技术在液态金属及其液-固转变过程,中国科学院固体物理研究所,博士后研究工作报告:1999.
    [18]郭景杰,傅恒志,合金熔体及其处理,机械工业出版社,北京, 2005.
    [19]下地光雄,液态金属,科学出版社,北京, 1987.
    [20] W. H. Young, Rep. Prog. Phys. 55 (1992) 1769.
    [21] R. V. G. Rao, D. Debnath, Phys. Stat. Sol. B 175 (1993) 57.
    [22]陈志浩,二元合金熔体结构转变动力学探讨,合肥工业大学,博士学位论文:2008.
    [23] S.R.Elliott, Physics of Amorphous Material, Longman, London, 1983.
    [24] H. Richter, G. Breitling, Z. Metallk. 61 (1970) 628.
    [25] H. Richter, G. Breitling, Fortschritte Phys. 14 (1968) 71.
    [26] J. D. Colvin, B. W. Reed, A. F. Jankowski, et al., J. Appl. Phys. 101 (2007) 084906.
    [27] I. ?tich, R. Car, M. Parrinello, Phys. Rev. Lett. 63 (1989) 2240.
    [28] T. Itami, S. Munejiri, T. Masaki, et al., Phys. Rev. B 67 (2003) 064201.
    [29] A. Q. Wu, L. J. Guo, C. S. Liu, et al., Physica B 369 (2005) 51.
    [30] S. Steeb, H. Entress, Z. Metallkunde. 57 (1966) 803.
    [31]李先芬,共晶系和匀晶系二元合金熔体结构转变及其对凝固的影响,合肥工业大学,博士学位论文:2006.
    [32] D. Turnbull, Acta Metall. Mater. 38 (1990) 243.
    [33] S. R. Elliott, Nature 354 (1991) 445.
    [34]秦敬玉,液态Al-Fe合金的微观不均匀结构研究,山东工业大学,博士学位论文:1998.
    [35]边秀房,王伟民,李辉,金属熔体结构,上海交通大学出版社,上海, 2003.
    [36] W. Hoyer, R. Jodicke, J. Non-Cryst. Solids 192-193 (1995) 102.
    [37] J. Brillo, A. Bytchkov, I. Egry, et al., J. Non-Cryst. Solids 352 (2006) 4008.
    [38] P. F. McMillan, J. Mater. Chem. 14 (2004) 1506.
    [39] http://www.esrf.eu/UsersAndScience/Publications/Highlights/2007/XAMS/XAS3.
    [40] J. L. Yarger, G. H. Wolf, Science 306 (2004) 220.
    [41] K. R. Rao, Curr. Sci. 80 (2001) 1098.
    [42] Y. Katayama, T. Mizutani, W. Utsumi, et al., Nature 403 (2000) 170.
    [43] G. Franzese, G. Malescio, A. Skibinsky, et al., Nature 409 (2001) 692.
    [44] P. G. Debenedetti, Metastable Liquids Princeton University Press, Princeton, 1997.
    [45] R. Kurita, H. Tanaka, Science 306 (2004) 845.
    [46] J. A. White, Physica A 346 (2005) 347.
    [47] F. P. Bundy, J. Chem. Phys. 38 (1963) 618.
    [48] M. v. Thiel, F. H. Ree, Phys. Rev. B 48 (1993) 3591.
    [49] J. N. Glosli, F. H. Ree, Phys. Rev. Lett. 82 (1999) 4569.
    [50] M. Togaya, Phys. Rev. Lett. 79 (1997) 2474.
    [51] M. P. Grumbach, R. M. Martin, Phys. Rev. B 54 (1996) 15730.
    [52] M. Yao, H. Endo, J. Non-Cryst. Solids 205-207 (1996) 85.
    [53] T. Narushima, T. Hattori, T. Kinoshita, et al., Phys. Rev. B 76 (2007) 104204.
    [54] V. V. Brazhkin, Y. Katayama, M. V. Kondrin, et al., Phys. Rev. Lett. 100 (2008) 145701.
    [55] S. Sastry, C. A. Angell, Nat. Mater. 2 (2003) 739.
    [56] C. J. Roberts, A. Z. Panagiotopoulos, P. G. Debenedetti, Phys. Rev. Lett. 77 (1996) 4386.
    [57] P. H. Poole, M. Hemmati, C. A. Angell, Phys. Rev. Lett. 79 (1997) 2281.
    [58] S. Harrington, R. Zhang, P. H. Poole, et al., Phys. Rev. Lett. 78 (1997) 2409.
    [59] S. Aasland, P. F. McMillan, Nature 369 (1994) 633.
    [60] F. Q. Zu, Z. G. Zhu, L. J. Guo, et al., Phys. Rev. B 64 (2001) 180203.
    [61] F. Q. Zu, L. J. Guo, Z. G. Zhu, et al., Chin. Phys. Lett. 19 (2002) 94.
    [62] F. Q. Zu, Z. G. Zhu, L. J. Guo, et al., Phys. Rev. Lett. 89 (2002) 125505.
    [63] L. Wang, X. F. Bian, J. T. Liu, Phys. Lett. A 326 (2004) 429.
    [64] K. Q. Lu, Q. Wang, C. X. Li, et al., J. Non-Cryst. Solids 312-314 (2002) 34.
    [65] F. Q. Zu, Y. Xi, R. R. Shen, et al., Phys. Chem. Liq. 44 (2006) 543.
    [66] C. S. Liu, G. X. Li, Y. F. Liang, et al., Phys. Rev. B 71 (2005) 064204.
    [67] G. Zhao, C. S. Liu, Z. G. Zhu, Phys. Rev. B 73 (2006) 024201.
    [68] G. Zhao, C. S. Liu, Y. N. Wu, et al., Phys. Rev. B 74 (2006) 184202.
    [69] X. B. Wu, S. Y. Shang, Q. L. Xu, et al., J. Appl. Phys. 103 (2008) 073519.
    [70] Q. Wang, C. X. Li, Z. H. Wu, et al., J. Chem. Phys. 128 (2008) 224501.
    [71]秦敬玉,边秀房,王伟民, et al.,物理学报47 (1998) 438.
    [72] L. Wang, H. R. Cong, X. F. Bian, Mater. Sci. Eng. A 341 (2003) 197.
    [73] S. J. Cheng, X. F. Bian, J. X. Zhang, et al., Mater. Lett. 57 (2003) 4191.
    [74] J. X. Hou, H. X. Guo, J. J. Sun, et al., Phys. Lett. A 358 (2006) 171.
    [75] P. S. Popel, M. Calvo-Dahlborg, U. Dahlborg, J. Non-Crystal. Solids 353 (2007) 3243.
    [76] S. Mudry, T. Lutsyshyn, I. Shtablavyi, et al., Journal of Non-Crystalline Solids 353 (2007) 2982.
    [77] N. V. Surovtsev, V. K. Malinovsky, V. P. Solntsev, et al., J. Cryst. Growth 310 (2008) 3540.
    [78] J. S. Wang, Q. G. Xue, G. W. Chang, et al., J. Univ. Sci. Technol. B 11 (2004) 123.
    [79] G. Kresse, J. Hafner, Phys. Rev. B 49 (1994) 14251.
    [80] F. Kirchhoff, J. M. Holende, M. J. Gillan, Phys. Rev. B 54 (1996) 190.
    [81] F. Kirchhoff, G. Kresse, M. J. Gillan, Phys. Rev. B 57 (1998) 10482.
    [82] G. A. d. Wijs, G. Kresse, M. J. Gillan, Phys. Rev. B 57 (1998) 8223.
    [83] T. Morishita, Phys. Rev. Lett. 87 (2001) 105701.
    [84] P. L. Silvestrelli, M. Parrinello, J. Chem. Phys. 111 (1999) 3572.
    [85] R. Stadler, M. J. Gillan, J. Phys. Condens. Matter 12 (2000) 6053.
    [86] S. V. Buldyrev, G. Franzese, N. Giovambattista, et al., Physica A 304 (2002) 23.
    [87] S. Str?ssler, C. Kittel, Phys. Rev. 139 (1965) A758.
    [88] E. Rapaport, J. Chem. Phys. 46 (1967) 2891.
    [89] A. C. Mitus, A. Z. Patashinskii, B. I. Shumilo, Phys. Lett. A 113 (1985) 41.
    [90] O. Mishima, H. E. Stanley, Nature 396 (1998) 329.
    [91] P. C. Hemmer, G. Stell, Phys. Rev. Lett. 24 (1970) 1284.
    [92] H. Tanaka, Phys. Rev. E 62 (2000) 6968.
    [93] L. Andre, The Iron Age 6 (1927) 960.
    [94] N. Palle, Metall. Mater. Trans. A 27 (1996) 707.
    [95] P. A. Currer, W. F. Kaukler, Metall. Mater. Trans. A 27 (1996) 801.
    [96] P. Rudolph, N. Schaefer, T. Fukuda, Mater. Sci. Eng. R 15 (1995) 85.
    [97] J. F. Wang, A. Omino, M. Isshiki, Mater. Sci. Eng. B 83 (2001) 185.
    [98] U. Dahlborg, M. Calvo-Dahlborg, Mater. Sci. Eng. A 283 (2000) 153.
    [99] M. Calvo-Dahlborg, J. M. Ruppert, E. D. Tabachnikova, et al., J. Phys. IV France 11 (2001) Pr4.
    [100] Y. L. Tang, M. J. Kramer, K. WDennis, et al., J. Magn. Magn. Mater. 267 (2003) 307.
    [101] M. Enisz, E. Kristof-Mako, D. Oravetz, J. Eur. Ceram. Soc 27 (2007) 1105.
    [102] V. Manov, P. Popel, E. Brook-Levinson, et al., Mater. Sci. Eng. A 304-306 (2001) 54.
    [103] H. J. Koh, P. Rudolph, N. Schaefer, et al., Mater. Sci. Eng. B 34 (1995) 199.
    [104] P. J. Li, V. I. Nikitin, E. G. Kandalova, et al., Mater. Sci. Eng. A 332 (2002) 371.
    [105] V. Sidorov, P. Popel, M. Calvo-Dahlborg, et al., Mater. Sci. Eng. A 304-306 (2001) 480.
    [106] J. Wang, S. X. He, B. D. Sun, J. Mater. Process. Tech. 141 (2003) 29.
    [107] J. Deng, Q. Y. Long, F. Ye, et al., J. Phys. D 29 (1996) 2672.
    [108] J. Wang, S. X. He, B. D. Sun, et al., Mater. Sci. Eng. A 38 (2002) 101.
    [109]刘勇,李金山,胡锐, et al.,特种铸造及有色合金1 (2004) 22.
    [110]何树先,孙宝德,王俊, et al.,中国有色金属学报11 (2001) 834.
    [111]边秀房,刘相法,马家骥,铸造金属遗传学,山东科学技术出版社,济南, 1999.
    [112]关绍康,沈宁福,胡汉起,铸造11 (1997) 20.
    [113]桂满昌,Al-Si合金液态若干物性及其与凝固组织的相关性,哈尔滨工业大学,博士学位论文:1994.
    [114] D. Qiu, M. X. Zhang, J. A. Taylor, et al., Acta Mater. 55 (2007) 1863.
    [115]魏朋义,合金凝固新技术及理论的研究——熔体处理组织改性及高梯度单晶制备,西北工业大学,博士后研究工作报告:1995.
    [116]陈光,熔体热历史对定向凝固界面稳定性的影响,西北工业大学,博士学位论文:1999.
    [117]陈光,材料科学与工艺9 (2001) 113.
    [118] H. S.Chen, F. Q. Zu, J. Chen, et al., Sci China Ser E 51 (2008) 1402.
    [119] G. Chen, J. W. Yu, H. Z. Fu, J. Mater. Sci. Lett. 18 (1999) 1571.
    [120]王静松,薛庆国,石向东, et al.,北京科技大学学报27 (2005) 193.
    [121] R. Kurita, K.-I. Murata, H. Tanaka, Nature Mater. 7 (2008) 647.
    [122]郭宁,云志,史美仁,化工学报57 (2006) 2214.
    [123] B. B. Mandelbrot, Fractal: Form, Chance and Dimension, Freeman, San Francisco, 1977.
    [124]张济忠,分形,清华大学出版社,北京, 1995.
    [125]屈朝霞,张汉谦,宇航材料工艺(1999) 5.
    [126] B. B. Mandelbrot, D. E. Passoja, A. J. Paullay, Nature 308 (1984) 721.
    [127]龙期威,金属中的分形与复杂性,上海科技出版社,上海, 1999.
    [128] C. W. Lung, Mater. Sci. Eng. A 176 (1994) 299.
    [129]孙力玲,董连科,张静华, et al.,金属学报30 (1994) 200.
    [130]毛根法,氯化铵不规则结晶的形态与分形研究, in:辛厚文,分形理论及其应用,合肥:中国科学技术大学出版社, 1993, p. 231.
    [131]龙起易,朱祖铭,穆在勤, et al.,马氏体相变的分形描述, in:辛厚文,分形理论及其应用,合肥:中国科学技术大学出版社, 1993, p. 291.
    [132] A. A. Shibkov, Y. I. Golovin, M. A. Zheltov, et al., Physica A 319 (2003) 65.
    [133] R. Nagarajan, Physica A 363 (2006) 226.
    [134] D. R. Vollet, D. A. Donatti, R. A. Ibanez, et al., J. Non-Crystall. Solids 332 (2003) 73.
    [135]陆涛,曹伟,师汉民,华中理工大学学报23 (1995) 95.
    [136]沙维,材料研究学报8 (1994) 237.
    [137] L. He, J. Zhu, Wear 208 (1997) 17.
    [138] C. Marlière, T. Woignier, P. Dieudonné, et al., J. Non-Crystal. Solids 285 (2001) 175.
    [139] A. Sturm, A. Wiedenmann, H. Wollenberger, Mater. Sci. Eng. B 32 (1995) 295.
    [140] R. Jayaganthan, K. Mohankumar, V. N. Sekhar, et al., Mater. Lett. 60 (2006) 1089.
    [141] H. M. Saffarian, R. Srinivasan, D. Chu, et al., Electrochim Acta 44 (1998) 1447.
    [142]穆在勤,李淑清,龙期威,材料科学进展4 (1990) 247.
    [143]李学良,林建新,金属学报30 (1994) 380.
    [144]蒋兴钢,崔建忠,马龙翔,材料科学进展5 (1991) 315.
    [145]苏辉,陈冷,阎振綮,科学通报36 (1991) 1150.
    [146]江来珠,崔昆,金属学报28 (1992) 27.
    [147]类维生,苏燕,陈丙森,钢铁研究学报8 (1996) 67.
    [148]刘文予,朱耀庭,朱光喜,华中理工大学学报23 (1995) 107.
    [149]苏辉,张玉贵,阎振綮,金属学报25 (1989) 466.
    [150]魏成富,李静媛,田继丰,材料科学与工程13 (1995) 35.
    [151]穆在勤,龙期威,材料科学进展3 (1989) 110.
    [152]穆在勤,龙期威,金属学报24 (1988) 142.
    [153]苏辉,张玉贵,阎振綮,材料科学进展4 (1990) 339.
    [154]孟祥才,王轶农,吕龙奎,材料科学与工艺4 (1996) 115.
    [155] R. H. Dauskardt, F. Haubensak, O. Ritche, Acta Metall. 38 (1990) 143.
    [156]李建明,林汉同,朱光喜,华中理工大学学报23 (1995) 79.
    [157]周尧和,胡壮麒,介万奇,凝固技术,机械工业出版社,北京, 1998.
    [158]陈光,颜银标,崔鹏, et al.,非平衡凝固新型金属材料,科学出版社,北京, 2004.
    [159] O. L. Rocha, C. A. Siqueira, A. Garcia, Mater. Sci. Eng. A 361 (2003) 111.
    [160]李庆春,铸件形成理论基础,机械工业出版社,北京, 1983.
    [161]傅恒志,铸钢和铸造高温合金及其熔炼,西北工业大学出版社,西安, 1985.
    [162]刘志儒,金属感应热处理,机械工业出版社,北京, 1985.
    [163]罗瑞盈,杨彩丽,王献辉, et al.,航空工艺技术(1996) 26.
    [164] W.库兹, P.R.萨姆,定向凝固共晶材料,冶金工业出版社,北京, 1989.
    [165] T. Fu, W. R. Wilcox, J. Crystal. Growth 48 (1980) 476.
    [166]朱琦,高梯度定向凝固Cu-Cr自生复合材料的组织与性能,西北工业大学,硕士学位论文:2003.
    [167] D. R. Poirier, Metall. Trans. A 19 (1988) 2349.
    [168] D. Pavlov, e. al., J. Elctrochem. Society 142 (1995) 2919.
    [169] X. J. Wang, D. A. Riney, Wear 181/183 (1995) 290.
    [170] A. G. Rabin, E. Y. Tonkov, JETP Lett. 10 (1969) 183.
    [171] M. C. Lee, J. H. Han, D. H. Lee, J. Korean Inst. Metals 22 (1985) 253.
    [172]卢百平,铸造55 (2006) 767.
    [173] B. B. Mandelbrot, The Fractal Geometry of Nature, Freeman, San Francisco, 1982.
    [174] B. B. Mandelbrot, Gaussian Self-Affinity and Fractals, Springer, New York, 2002.
    [175]褚武扬,宿彦京,高克玮, et al.,材料科学中的分形,化学工业出版社,北京, 2004.
    [176] J. M. Cowley, J. Appl. Phys. 21 (1950) 24.
    [177]杨展如,分形物理学,上海科技教育出版社,上海, 1996.
    [178]王建军,徐西鹏,金刚石与磨料磨具工程155 (2006) 32.
    [179]徐耀,李志宏,范文浩, et al.,物理学报52 (2003) 442.
    [180]陈群元,喻定权,国土与自然资源研究1 (2007) 1.
    [181]谢焱石,谭凯旋,陈广浩,地学前缘11 (2004) 105.
    [182] F. Q. Zu, X. F. Li, L. J. Guo, et al., Phys. Lett. A 324 (2004) 472.
    [183]董连科,分形理论及其应用,辽宁科学技术出版社,沈阳, 1991.
    [184]孙力玲,董连科,张静华, et al.,金属学报29 (1993) 388.
    [185] A. Baranyai, D. J. Evans, Phys. Rev. A 42 (1990) 849.
    [186] A. Baranyai, D. J. Evans, Phys. Rev. A 40 (1989) 3817.
    [187] Y. Rosenfeld, Phys. Rev. E 62 (2000) 7524.
    [188] Y. Rosenfeld, Mol. Phys. 32 (1976) 963.
    [189] W. Y. Shih, I. A. Aksay, R. Kikuchi, Phys. Rev. A 36 (1987) 5015.
    [190] J. L. W. Y. Shih, M. Sarikaya, I. A. Aksay, Phys. Rev. A 41 (1990) 3206.
    [191] J. D. Bernal, Proc. R. Soc. A 280 (1964) 299.
    [192] W. G. Hoover, F. H. Ree, J. Chem. Phys. 49 (1968) 3609.
    [193] B. O'Malley, I. Snook, Phys. Rev. Lett. 90 (2003) 085702.
    [194] A. S. Clarkev, H. Jonsson, Phys. Rev. E 47 (1993) 3975.
    [195] M. D. Rintoul, S. Torquato, Phys. Rev. E 58 (1998) 532.
    [196] G. D. Scott, D. M. Kilgour, J. Phys. D 2 (1969) 863.
    [197] T. Aste, J. Phys. Condens. Matter 17 (2005) S2361.
    [198] A. V. Anikeenko, N. N. Medvedev, Phys. Rev. Lett. 98 (2007) 235504.
    [199]邓昭镜,超微粒与分形,西南师范大学出版社,重庆, 1993.
    [200] T. Iida, R. I. L. Guthrie, The Physical Properties of Liquid Metals, Clarendon Press, Oxford, 1993.
    [201] H. E. Hurst, Trans. Am. Sot. Civ. Engng 116 (1951) 770.
    [202] B. B. Mandelbrot, J. R. Wallis, Water Resour. Res. 5 (1969) 967.
    [203] C. Ellis, Physica A 375 (2007) 159.
    [204] Z. M. Zhou, Physica A 376 (2007) 133.
    [205] C. G. Turvey, Physica A 377 (2007) 155.
    [206]罗世华,刘祥官,物理学报55 (2006) 3343.
    [207] L. Qin, M. Ta-chung, Phys. Rev. D 72 (2005) 014011.
    [208] A. W. Lo, Econometrica 59 (1991) 1279.
    [209] J. Yu, Y. Zhang, F. Q. Zu, et al., Phys. Chem. Liq 44 (2006) 401.
    [210] H. E. Hurst, P. I. Civil Eng. 1 (1956) 519.
    [211] E. Peters, Fractal Market Analysis: Applying Chaos Theory to Investment and Economics, John Wiley &Sons, New York, 1994.
    [212] D. M. Herlach, Mater. Sci. Eng. R 12 (1994) 177.
    [213] X. F. Bian, W.M.Wang, Mater. Lett. 44 (2000) 54.
    [214] X. F. Bian, Y. Q. Wu, Q. G. Meng, et al., Materials Letters 61 (2007) 2434.
    [215] S. Chunjing, G. Haoran, J. Leilei, et al., Journal of Applied Physics (2007) 034901.
    [216] Y. Xi, F. Q. Zu, X. F. Li, et al., Phys. Lett. A 329 (2004) 221.
    [217] F. Q. Zu, R. R. Shen, Y. Xi, et al., J. Phys.: Condens. Matter 18 (2006) 2817.
    [218] H. Cruz, C. Gonzalez, A. Juarez, et al., J. Mater. Process. Tech. 178 (2006) 128.
    [219] K. G. Upadhya, D. M. Stefanescu, K. Lieu, et al., AFS Trans. 97 (1989) 61.
    [220] V. O. Barlow, D. M. Stefanescu, AFS Trans. 105 (1997) 349.
    [221] D. Emadi, L. V. Withing, AFS Trans. 110 (2002) 285.
    [222] D.M.Stefanescu, C. R. L. Jr, R. C. Voigt, et al., AFS Trans. 90 (1982) 333.
    [223]张圣弼,冶金物理化学实验,冶金工业出版社,北京, 1994.
    [224] http://www.webelements.com/bismuth/uses.html.
    [225]耿红霞,Sb-Bi合金熔体粘滞行为及特性,山东大学,硕士学位论文:2004.
    [226]陈红圣,Sn-Bi系合金熔体结构转变及其对凝固和润湿性的影响,合肥工业大学,硕士学位论文:2008.
    [227]闵乃本,晶体生长的物理基础,上海科学技术出版社,上海, 1982.
    [228]朱世富,赵北君,材料制备科学与技术,高等教育出版社,北京, 2006.
    [229]崔忠圻,刘北兴,金属学与热处理原理,哈尔滨工业大学出版社,哈尔滨, 1998.
    [230] R. P. LIU, T. VOLKMANN, D. M. HERLACH, Acta Mater. 49 (2001) 439.
    [231] W. Kurz, D. J. Fisher, Fundamentals of solidification, Trans Tech Publications, Netherlands, 1998.
    [232]郝启堂,铝硅合金液态质量计算机辅助热分析,哈尔滨工业大学,博士学位论文:1996.
    [233] A. F. d. Silveira, W. B. d. Castro, B. A. Luciano, et al., Mater. Sci. Eng. A 375-377 (2004) 473.
    [234] X. F. Li, F. Q. Zu, H. F. Ding, et al., Phys. Lett. A 354 (2006) 325.
    [235]熊玉华,李培杰,杨爱民, et al.,金属学报38 (2002) 534.
    [236] G. E. Smith, R. Wolfe, J. Appl. Phys. 33 (1962) 841.
    [237] W. M. Yim, A. Amith, Solid-State Elect. 15 (1972) 1141.
    [238] R. C. Mallik, D. V. Damodara, Solid State Commun. 134 (2005) 211.
    [239] F. Q. Zu, X. F. Li, H. F. Ding, et al., Phase Transit. 79 (2006) 277.
    [240] R. Venkaltaramani, R. Simpson, C. Ravindran, Mater. Charact. 35 (1995) 81.
    [241] D. Turnbull, J. C. Fisher, J. Chem. Phys. 17 (1949) 71.
    [242] D. Turnbull, J. Chem. Phys. 18 (1950) 198.
    [243] D. Turnbull, J. Appl. Phys. 21 (1950) 1022.
    [244] D. Turnbull, J. Chem. Phys. 20 (1952) 411.
    [245]祖方遒,液态合金结构变化的研究,博士学位论文:2002.
    [246]傅恒志,西北工业大学论文选(上) (1979) 107.
    [247] D. M. Rosa, J. E. Spinelli, I. L. Ferreira, et al., Metall. Mater. Trans. A 39 (2008) 2161.
    [248] H. Yoshioka, Y. Tada, K. Kunimine, et al., Acta Mater. 54 (2006) 757.
    [249]陈襄武,钢铁冶金物理化学,冶金工业出版社,北京, 1992.
    [250] V. I. Danilov, I. V. Radchenko, Zh. Exp. Teor. Fiz. 7 (1937) 1158.
    [251] P. S. Popel, E. L. Presnyakova, V. A. Pavlov, et al., Nauk SSSR. Metally. 2 (1985) 53.
    [252]张鉴,特殊钢15 (1993) 43.
    [253]肖纪美,合金能量学,上海科技出版社,上海, 1985.
    [254] G. Nicollis, I. Prigogine, Self-organization in Nonequilibrium Systems, John Wiley & Sons, New York, 1977.
    [255]冯端,金属物理学.第一卷:结构与缺陷,科学出版社,北京, 1987.
    [256] H. Jaccobi, K. Schwerdtfeger, Metall. Trans. A 7 (1976) 811.
    [257]翟慎秋,魏亚杰,吴德海,山东工业大学学报27 (1997) 181.
    [258] M. C. Flemings, Y. Schiohara, mater. Sci. Eng. 65 (1984) 157.
    [259] K. N. Prabhu, T. Chellaih, G. Kumar, Materials & Design 28 (2007) 1006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700