用户名: 密码: 验证码:
基于复杂系统理论的电网故障时空分布特性及结构脆弱性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电网规模不断扩大和区域联网,电网发生连锁故障的风险不断增加。大量的故障统计数据表明,尽管电网发生连锁故障的概率较小,但其一旦发生,其后果是极其严重的。因此,认识电网连锁故障并揭示其形成机理具有重要的现实意义和理论价值。本文应用复杂系统理论分析电网故障的时空分布特性和电网结构的分形特性,试图从新的角度认识电网的自组织临界性,从而更细致地描述电网的脆弱性以及电网连锁故障的发生机理。本文重点在以下几个方面开展了较为深入的研究:
     第一,发现电网故障在时间上具有强长程相关性,空间上具有幂律分布特性。经统计分析某省级电网12年零8个月的实际故障数据,得出电网故障时间间隔序列具有无标度特性;采用R/S和SWV模型计算Hurst指数,得到的Hurst指数均为0.86以上,说明电网故障序列具有强长程相关性,存在异常扩散;将故障序列按故障发生位置所属的设备分为五个子序列,各子序列仍然具有无标度性和长程相关性。通过对该省级电网故障的发生地点进行统计,得到电网故障的地点与其出现的频次呈幂律分布。
     第二,发现电网拓扑结构具有相似性。通过对五个电网分别构建无权和加权网络模型,实证分析了电网的中心性和层次性,得到五个电网都具有小世界特性,并寻找到电网拓扑结构中的关键节点;发现无权电网具有异配性,度分布为指数分布,而加权电网具有同配性,点权分布有幂律尾现象。此外,详细讨论了在电网中起重要传输作用的三节点和四节点模体,得出由500kV和220kV线路构成的子图是电网模体的主要结构形式。这些结构子图也是电网的关键组元,并起着主要的传输作用。由于高电压等级的节点互连成为电网的模体,使得加权电网总体上表现为同配性质。
     第三,发现电网拓扑结构的特征值谱具有多重分形特征。基于IEEE118节点系统和某省级电网系统,构建了以导纳为边权的加权拓扑模型,得到相应拓扑结构的邻接矩阵和拉普拉斯矩阵。采用MF-DFA方法对电网两类矩阵的特征值谱进行分析,发现这两类矩阵的特征值谱都表现出典型的多重分形特征,说明了电网结构在生长和演化过程中具有某种程度上的统计相似性,而且是一种内在的固有特性。虽然不同电网系统特征值谱的多重分形特性之间有些差异,但基于拉普拉斯矩阵特征值谱的多重分形特性在不同电网系统间的差异明显减少,表明拉普拉斯矩阵特征值谱体现了更一般的网络结构特征。
     第四,提出分析电网线路故障传播的阈值模型。基于该阈值模型定量地分析了电网线路故障引起连锁故障的临界阈值,并发现线路的临界阈值越大,该线路对电网系统的脆弱性影响程度就越大。此阈值模型为电网寻找关键线路提供了新方法。通过两个不同规模的算例实证分析,证明了此方法的正确性和有效性。
The expansion and regional interconnection of power grid bring out an increasing risk ofgrid cascading failures. Large amount of statistical data of failures suggests that thoughcascading failures is less likely to occur, the consequence will be extremely severe once ithappens, since negligible common failures may lead to serious cascading failures. Therefore,understanding cascading failures of power grid and the mechanism of its formation holdsgreat practical significance and theoretical value. Numerous studies have proposed thatself-organized criticality can be used to describe the cascading failures of power grid.However, current confirmations of self-organized criticality exists in power grid are basedmostly on the power-law relationship between the scale of the grid failure and itscorresponding frequency. Few people have focused on studies of whether the grid system hasother feature of self-organized critical system. Thus in this paper, we apply complex systemtheory to the temporal and spatial correlation of grid faults’ behavior and the fractalcharacteristics of grid structure, which create a new interpretation of self-organized criticalityof power grid, bringing out a more detailed description of the vulnerability of power grid aswell as the mechanism of grid cascading failure.
     First of all, we studied the long-range correlation of power grid’s temporal and spatialpatterns. The results imply not only that power grid’s failures are intermittent and paroxysmal,but also that they hold long-range correlation in time domain as well as power-lawdistribution in spatial domain, and fractal characteristics. Based on real faults data of certainprovincial power grid, several time interval series of power grid failures have beenconstructed. After applying KS test, the series present leptokurtic distribution. Statisticalanalysis on these time series based on three different time scales (minute/hour/day) showstheir nonlinear characteristics and power-law distribution. Strong long-range correlation ofthese time series has been discovered by calculating Hurst index with both R/S (rescaledrange analysis) and SWV (scaled windows variance methods) models, implying anomalousdiffusion of power grid's fault. After sorting these time series according to different types ofequipments of faults (The types of equipments of faults are classified into AC line, thermalpower, bus station, hydropower, DC line), we studied their long-range correlation respectivelyand found that the results remained the same. Through studying the spatial distribution onpower grid’s faults, we discover that its probability distribution obeys the power-law. Thelong-range correlation of power grid’s temporal and spatial patterns is one crucialmathematical characterization of self-organized criticality of power grid.
     Further, the topology structure characteristics of five power grids have been compared,which indicates that topology structures of power grids from different places, different sizes,and different time share great similarities--all hold small world property. The main structuralforms of motifs of power grids have also been discovered. Through respectively constructingmodels for unweighted and weighted(taking transmission lines impedance or admittance asedge weight) power grids, we analyze their degree, excess average degree, node strength,excess average node strength, characteristic path length, betweeness, closeness, clusteringcoefficient, assortativity coefficient, motifs etc. The results show that power grids have largeclustering coefficient and short characteristic path length. Such small world property couldaccelerate the spread of faults. Moreover, critical nodes of power grids' topology have beendetermined and that each unweighted network of power grids is disassortative, while thecorresponding weighted power grid is assortative. Besides, three-node and four-node motifs,playing significant role in transmission of power grids, have been discussed with details andthe main structures of transmission motifs have been discovered.
     Afterwards, multifractal characteristics of the topology have been discovered bystudying eigenvalue spectra of five power grids' topology. Through constructing adjacentmatrices of power grids as well as Laplace matrices, applying MF-DFA model to themultifractal analysis of eigenvalue spectra of both matrices, we found that both matricesshowed multifractality. In other words, spatial structures of power grid are multifractal. Later,it has been observed that the adjacent matrices show greater heterogeneity and strongermutifractal characteristics than those of the Laplace matrices. Fractal characteristic of powergrid topology is another crucial mathematical characterization of self-organized criticality ofpower grid.
     Finally, in light of self-organized criticality, DC power flow model as well as parametersof power grids’ topology, and the instantaneous impact of power redistribution led bytransmission line faults, the threshold model is proposed which analyze transmission linefaults spreading. The critical threshold of cascading failures caused by transmission line faultshas been analyzed quantitatively based on the threshold model. The results show that thelarger the line critical threshold is, the greater it impacts on power system’s vulnerability.Accordingly, the line critical threshold can be used to find the key lines of the power gridswhich are also the vulnerable points or sources.
引文
[1]印永华,郭剑波,赵建军,等.美加“8.14”大停电事故初步分析以及应吸取的教训[J].电网技术,2003,27(10):8-11+16.
    [2]唐葆生.伦敦南部地区大停电及其教训[J].电网技术,2003,27(11):1-5+12.
    [3]甘德强,胡江溢,韩祯祥.2003年国际若干停电事故思考[J].电力系统自动化,2004,28(3):1-4+9.
    [4]《供用电》编辑部.意大利2003年9月28日大停电简介[J].供用电,2003,20(6):3-5.
    [5]鲁宗相.莫斯科“5.25”大停电的事故调查及简析[J].电力设备,2005,6(8):14-17.
    [6]李清奇,许敏.确保上海电网安全运行的建议[J].上海电力,2008,(1):55-59.
    [7]李春艳,孙元章,陈向宜,等.西欧“11.4”大停电事故的初步分析及防止我国大面积停电事故的措施[J].电网技术,2006,30(24):16-21.
    [8]葛睿,董昱,吕跃春.欧洲“11.4”大停电事故分析及对我国电网运行工作的启示[J].电网技术,2007,31(3):1-6.
    [9]陈亦平,洪军.巴西“11.10”大停电原因分析及对我国南方电网的启示[J].电网技术,2010,34(5):77-82.
    [10]林伟芳,汤涌,孙华东,等.巴西“2·4”大停电事故及对电网安全稳定运行的启示[J].电力系统自动化,2011,35(9):1-5.
    [11]方勇杰.美国“9·8”大停电对连锁故障防控技术的启示[J].电力系统自动化,2012,36(15):1-7.
    [12]毛安家,张戈力,吕跃春,等.2011年9月8日美墨大停电事故的分析及其对我国电力调度运行管理的启示[J].电网技术,2012,36(4):74-78.
    [13]汤涌,卜广全,易俊.印度“7.30”、“7.31”大停电事故分析及启示[J].中国电机工程学报,2012,32(25):167-174+123.
    [14]梁志峰,葛睿,董昱,等.印度“7.30”、“7.31”大停电事故分析及对我国电网调度运行工作的启示[J].电网技术,2013,37(7):1841-1848.
    [15] Watts D J, Strogatz S H. Collective dynamics of 'small-world' networks [J]. Nature,1998,393(6684):440-442.
    [16] Crucitti P, Latora V, Marchiori M. A topological analysis of the Italian electric powergrid [J]. Physica a-Statistical Mechanics and Its Applications,2004,338(1-2):92-97.
    [17]孟仲伟,鲁宗相,宋靖雁.中美电网的小世界拓扑模型比较分析[J].电力系统自动化,2004,28(15):21-24+29.
    [18] Barabasi A L, Albert R. Emergence of scaling in random networks [J]. Science,1999,286(5439):509-512.
    [19] Chassin D P, Posse C. Evaluating North American electric grid reliability using theBarabasi-Albert network model [J]. Physica a-Statistical Mechanics and ItsApplications,2005,355(2-4):667-677.
    [20]陈洁,许田,何大韧.中国电力网的复杂网络共性[J].科技导报,2004,(4):11-14.
    [21] Albert R, Albert I, Nakarado G L. Structural vulnerability of the North American powergrid [J]. Physical Review E,2004,69(2):025103(1-4).
    [22] Rosas-Casals M, Valverde S, Sole R V. Topological vulnerability of the Europeanpower grid under errors and attacks [J]. International Journal of Bifurcation and Chaos,2007,17(7):2465-2475.
    [23]王光增,曹一家,包哲静,等.一种新型电力网络局域世界演化模型[J].物理学报,2009,58(6):3597-3602.
    [24]梅生伟,薛安成,张雪敏.电力系统自组织临界特性与大电网安全[M].北京:清华大学出版社,2009.
    [25]曹一家,郭剑波,梅生伟,等.大电网安全性评估的系统复杂性理论[M].北京:清华大学出版社,2010.
    [26]何大韧,刘宗华,汪秉宏.复杂系统与复杂网络[M].高等教育出版社,2009.
    [27] Dobson I, Carreras B A, Lynch V E, et al. An initial model for complex dynamics inelectric power system blackouts[C]. Proceedings of the34th Hawaii InternationalConference on System Sciences, Maui, Hawaii, IEEE,2001:710-718.
    [28] Carreras B A, Lynch V E, Dobson I, et al. Critical points and transitions in an electricpower transmission model for cascading failure blackouts [J]. Chaos,2002,12(4):985-994.
    [29] Carreras B A, Lynch V E, Dobson I, et al. Complex dynamics of blackouts in powertransmission systems [J]. Chaos,2004,14(3):643-652.
    [30] Carreras B A, Newman D E, Dobson I, et al. Evidence for self-organized criticality in atime series of electric power system blackouts [J]. Ieee Transactions on Circuits andSystems I-Regular Papers,2004,51(9):1733-1740.
    [31]曹一家,江全元,丁理杰.电力系统大停电的自组织临界现象[J].电网技术,2005,29(15):1-5.
    [32]于群,郭剑波.我国电力系统停电事故自组织临界性的研究[J].电网技术,2006,30(6):1-5.
    [33]于群,郭剑波.中国电网停电事故统计与自组织临界性特征[J].电力系统自动化,2006,30(2):16-21.
    [34]于群,郭剑波.电网停电事故的自组织临界性及其极值分析[J].电力系统自动化,2007,31(3):1-3+90.
    [35]易俊,周孝信,肖逾男.用连锁故障搜索算法判别系统的自组织临界状态[J].中国电机工程学报,2007,27(25):1-5.
    [36]曹一家,丁理杰,王光增,等.考虑网络演化的直流潮流停电模型与自组织临界性分析[J].电力系统自动化,2009,33(5):1-6.
    [37] Kanevce A, Mishkovski I, Kocarev L. Modeling long-term dynamical evolution ofSoutheast European power transmission system [J]. Energy,2013,57(2013):116-124.
    [38] Yan J, Zhu Y H, He H B, et al. Multi-Contingency Cascading Analysis of Smart GridBased on Self-Organizing Map [J]. Ieee Transactions on Information Forensics andSecurity,2013,8(4):646-656.
    [39]金鸿章,韦琦,郭健.复杂系统的脆性理论及应用[M].西安:西北工业大学出版社.2010:184-195.
    [40] Vespignani A. COMPLEX NETWORKS The fragility of interdependency [J]. Nature,2010,464(7291):984-985.
    [41] Johansson J, Hassel H. An approach for modelling interdependent infrastructures in thecontext of vulnerability analysis [J]. Reliability Engineering&System Safety,2010,95(12):1335-1344.
    [42] Carreras B A, Lynch V E, Dobson I, et al. Dynamics, criticality and self-organization ina model for blackouts in power transmission systems [C]. Proceedings of the35thAnnual Hawaii International Conference on System Sciences, IEEE,2002:1-9.
    [43] Dobson I, Carreras B A, Lynch V E, et al. Complex systems analysis of series ofblackouts: Cascading failure, critical points, and self-organization [J]. Chaos,2007,17(2):026103(1-13).
    [44]梅生伟,何飞,薛安成.基于直流模型的电力系统停电分布及自组织临界性分析[C].第二届全国复杂动态网络学术论坛,北京,2005:562-569
    [45]何飞,梅生伟,薛安成,等.基于直流潮流的电力系统停电分布及自组织临界性分析[J].电网技术,2006,30(14):7-12.
    [46]梅生伟,翁晓峰,薛安成,等.基于最优潮流的停电模型及自组织临界性分析[J].电力系统自动化,2006,30(13):1-5+32.
    [47]夏德明,梅生伟,侯云鹤.基于OTS的停电模型及其自组织临界性分析[J].电力系统自动化,2007,31(12):12-18+91.
    [48]贺庆,郭剑波.基于直流潮流模型的电力系统控制规则[J].电力系统自动化,2010,34(23):11-15.
    [49]于群,曹娜,郭剑波.负载率对电力系统自组织临界状态的影响分析[J].电力系统自动化,2012,36(1):24-27+37.
    [50] Phadke A G, Thorp J S. Expose hidden failures to prevent cascading outages in powersystems [J]. Ieee Computer Applications in Power,1996,9(3):20-23.
    [51] Chen J, Thorp J S, Dobson I. Cascading dynamics and mitigation assessment in powersystem disturbances via a hidden failure model [J]. International Journal of ElectricalPower&Energy Systems,2005,27(4):318-326.
    [52]易俊,周孝信.考虑系统频率特性以及保护隐藏故障的电网连锁故障模型[J].电力系统自动化,2006,30(14):1-5.
    [53]丁理杰,刘美君,曹一家,等.基于隐性故障模型和风险理论的关键线路辨识[J].电力系统自动化,2007,31(6):1-5+22.
    [54]杨明玉,田浩,姚万业.基于继电保护隐性故障的电力系统连锁故障分析[J].电力系统保护与控制,2010,38(9):1-5.
    [55]曹一家,王光增,曹丽华,等.基于潮流熵的复杂电网自组织临界态判断模型[J].电力系统自动化,2011,35(7):1-6.
    [56] Rios M A, Kirschen D S, Jayaweera D, et al. Value of security: Modelingtime-dependent phenomena and weather conditions [J]. Ieee Transactions on PowerSystems,2002,17(3):543-548.
    [57] Kirschen D S, Jayaweera D, Nedic D P, et al. A probabilistic indicator of system stress[J]. Ieee Transactions on Power Systems,2004,19(3):1650-1657.
    [58] Dobson I, Carreras B A, Newman D E. A loading-dependent model of probabilisticcascading failure [J]. Probability in the Engineering and Informational Sciences,2005,19(1):15-32.
    [59] Dobson I, Carreras B A, Lynch V E, et al. Estimating failure propagation in models ofcascading blackouts [J]. Probability in the Engineering and Informational Sciences,2005,19(4):475-488.
    [60] Dobson I, Carreras B A, Newman D E. A branching process approximation tocascading load-dependent system failure[C]. Proceedings of the37th HawaiiInternational Conference on System Sciences, Hawaii, IEEE,2004.
    [61] Dobson I, Carreras B A, Newman D E. Branching Process Models for theExponentially Increasing Portions of Cascading Failure Blackouts [C]. Proceedings ofthe38th Hawaii International Conference on System Sciences, Hawaii,2005.
    [62] Kim J, Dobson I. Approximating a Loading-Dependent Cascading Failure Model Witha Branching Process [J]. Ieee Transactions on Reliability,2010,59(4):691-699.
    [63] Dobson I, Kim J, Wierzbicki K R. Testing Branching Process Estimators of CascadingFailure with Data from a Simulation of Transmission Line Outages [J]. Risk Analysis,2010,30(4):650-662.
    [64] Dobson I. Estimating the Propagation and Extent of Cascading Line Outages FromUtility Data With a Branching Process [J]. Ieee Transactions on Power Systems,2012,27(4):2146-2155.
    [65]陈为化,江全元,曹一家.基于风险理论和模糊推理的电压脆弱性评估[J].中国电机工程学报,2005,25(24):20-25.
    [66]陈为化,江全元,曹一家,等.电力系统电压崩溃的风险评估[J].电网技术,2005,29(19):36-41.
    [67]陈为化,江全元,曹一家,等.基于风险理论的复杂电力系统脆弱性评估[J].电网技术,2005,29(4):12-17.
    [68]陈为化,江全元,曹一家.基于模糊神经网络的电力系统连锁故障风险评估[J].浙江大学学报(工学版),2007,41(6):973-979.
    [69]宋毅,王成山.一种电力系统连锁故障的概率风险评估方法[J].中国电机工程学报,2009,29(4):27-33.
    [70]顾雪平,张硕,梁海平,等.考虑系统运行状况的电网连锁故障风险性评估[J].电力系统保护与控制,2010,38(24):124-130.
    [71]丁雪阳,刘新东.基于最优风险指标的连锁故障模型和薄弱线路辨识[J].电力系统自动化,2011,35(18):7-10+86.
    [72]李继红,戴彦,王超,等.大电网连锁故障的风险分析及对策[J].电网技术,2011,35(12):43-49.
    [73]刘文颖,王佳明,谢昶,等.基于脆性风险熵的复杂电网连锁故障脆性源辨识模型[J].中国电机工程学报,2012,32(31):142-149+230.
    [74]吴旭,张建华,吴林伟,等.输电系统连锁故障的运行风险评估算法[J].中国电机工程学报,2012,32(34):74-82+12.
    [75]丁明,过羿,张晶晶.基于效用风险熵的复杂电网连锁故障脆弱性辨识[J].电力系统自动化,2013,37(17):52-57.
    [76]刘宇彬,刘建华.基于层次分析法和熵权法的电网风险评估[J].电力科学与工程,2013,29(11):37-43.
    [77]周彦衡,吴俊勇,张广韬,等.考虑级联故障的电力系统脆弱性评估[J].电网技术,2013,37(2):444-449.
    [78]朱旭凯,刘文颖,杨以涵.基于协同学思想的电网连锁反应故障预防模型[J].电网技术,2007,31(23):62-67.
    [79]曹一家,丁理杰,江全元,等.基于协同学原理的电力系统大停电预测模型[J].中国电机工程学报,2005,25(18):13-19.
    [80]丁剑,白晓民,方竹,等.基于贝叶斯网络的扰动后预想事故分析方法[J].电力系统自动化,2007,31(20):1-5+11.
    [81]熊小伏,蔡伟贤,周家启,等.继电保护隐藏故障造成输电线路连锁跳闸的概率模型[J].电力系统自动化,2008,32(14):6-10.
    [82]于洋,黄民翔,辛焕海,等.基于动态仿真的连锁故障分析[J].电力系统自动化,2008,32(20):15-21.
    [83]赵兴勇,张秀彬,何斌.电网大停电自组织临界性的概率统计分析法[J].电网技术,2008,32(20):60-63.
    [84]于会泉,刘文颖,温志伟,等.基于线路集群的连锁故障概率分析模型[J].电力系统自动化,2010,34(10):29-33+61.
    [85]邹欣,程林,孙元章.基于线路运行可靠性模型的电力系统连锁故障概率评估[J].电力系统自动化,2011,35(13):7-11+71.
    [86]廖苑晰,李华强,韦平,等.应用贝叶斯网络的连锁故障模式识别[J].电力系统及其自动化学报,2013,25(1):102-106.
    [87]吴旭,张建华,赵天阳,等.基于模糊聚类和模糊推理的电网连锁故障预警方法[J].电网技术,2013,37(6):1659-1665.
    [88]罗毅,王英英,万卫,等.电网连锁故障的事故链模型[J].电力系统自动化,2009,33(24):1-5.
    [89]王安斯,罗毅,涂光瑜,等.用于预防控制的电力系统连锁故障事故链在线生成方法[J].高电压技术,2009,35(10):2446-2451.
    [90]张硕,顾雪平.电力系统大停电事故仿真的故障序列选择[J].电力系统自动化,2009,33(14):12-16.
    [91]王英英,罗毅,涂光瑜,等.基于事故链的电力系统连锁故障风险模糊综合评估方法[J].中国电机工程学报,2010,30(S1):25-30.
    [92] Wang A S, Luo Y, Tu G Y, et al. Vulnerability Assessment Scheme for Power SystemTransmission Networks Based on the Fault Chain Theory [J]. Ieee Transactions onPower Systems,2011,26(1):442-450.
    [93]朱旭凯,刘文颖,杨以涵,等.电网连锁故障演化机理与博弈预防[J].电力系统自动化,2008,32(5):29-33.
    [94]熊文海,高齐圣,张嗣瀛.复杂网络的邻接矩阵及其特征谱[J].武汉理工大学学报(交通科学与工程版),2009,33(1):83-86.
    [95] Dorogovtsev S N, Goltsev A V, Mendes J F F, et al. Spectra of complex networks [J].Physical Review E,2003,68(4):046109(1-10).
    [96]杨会杰,汪秉宏,赵芳翠.复杂网络谱的自相似结构[C].第二届全国复杂动态网络学术论坛,北京,2005:298-303
    [97]赵永毅,史定华.复杂网络的特征谱及其应用[J].复杂系统与复杂性科学,2006,3(1):1-12.
    [98] Yang H J, Yin C Y, Zhu G M, et al. Self-affine fractals embedded in spectra of complexnetworks [J]. Physical Review E,2008,77(4):045101(1-4).
    [99] Albert R, Barabasi A L. Statistical mechanics of complex networks [J]. Reviews ofModern Physics,2002,74(1):47-97.
    [100]丁明,韩平平.基于小世界拓扑模型的大型电网脆弱性评估算法[J].电力系统自动化,2006,30(8):7-10+40.
    [101]丁明,韩平平.小世界电网的连锁故障传播机理分析[J].电力系统自动化,2007,31(18):6-10.
    [102]丁明,韩平平.加权拓扑模型下的小世界电网脆弱性评估[J].中国电机工程学报,2008,28(10):20-25.
    [103] Bao Z J, Cao Y J, Ding L J, et al. Comparison of cascading failures in small-world andscale-free networks subject to vertex and edge attacks [J]. Physica A: StatisticalMechanics and its Applications,2009,388(20):4491-4498.
    [104]卢明富,梅生伟.小世界电网生长演化模型及其潮流特性分析[J].电工电能新技术,2010,29(1):25-29.
    [105]肖盛,张建华.基于小世界拓扑模型的电网脆弱性评估[J].电网技术,2010,34(8):64-68.
    [106]易俊,周孝信,肖逾男.具有不同拓扑特征的中国区域电网连锁故障分析[J].电力系统自动化,2007,31(10):7-10.
    [107]丁理杰,曹一家,刘美君.复杂电力网络的连锁故障动态模型与分析[J].浙江大学学报(工学版),2008,42(4):641-646.
    [108]胡娟,李智欢,段献忠.电力调度数据网结构特性分析[J].中国电机工程学报,2009,29(4):53-59.
    [109] Crucitti P, Latora V, Marchiori M, et al. Efficiency of scale-free networks: error andattack tolerance [J]. Physica a-Statistical Mechanics and Its Applications,2003,320:622-642.
    [110] Kinney R, Crucitti P, Albert R, et al. Modeling cascading failures in the NorthAmerican power grid [J]. European Physical Journal B,2005,46(1):101-107.
    [111] Tanaka T, Aoyagi T. Weighted scale-free networks with variable power-law exponents[J]. Physica D: Nonlinear Phenomena,2008,237(7):898-907.
    [112] Rago F, Franzese P. Scale-free networks of collaborative processes to design distributedcontrol systems [A]. Dagli C.H. Complex Adaptive Systems[C].Chicago:Elsevier Ltd,2011:402-407.
    [113] Holme P. Edge overload breakdown in evolving networks [J]. Physical Review E,2002,66(3):036119(1-7).
    [114] Holme P, Kim B J. Vertex overload breakdown in evolving networks [J]. PhysicalReview E,2002,65(6):066109(1-8).
    [115] Holme P, Kim B J, Yoon C N, et al. Attack vulnerability of complex networks [J].Physical Review E,2002,65(5):056109(1-14).
    [116] Motter A E, Lai Y C. Cascade-based attacks on complex networks [J]. Physical ReviewE,2002,66(6):065102(1-4).
    [117] Latora V, Marchiori M. Efficient behavior of small-world networks [J]. PhysicalReview Letters,2001,87(19):198701(1-4)
    [118] Crucitti P, Latora V, Marchiori M. Model for cascading failures in complex networks [J].Physical Review E,2004,69(4):045104(1-4).
    [119]陈晓刚,孙可,曹一家.基于复杂网络理论的大电网结构脆弱性分析[J].电工技术学报,2007,22(10):138-144.
    [120]谢琼瑶,邓长虹,赵红生,等.基于有权网络模型的电力网节点重要度评估[J].电力系统自动化,2009,33(4):21-24.
    [121]蔡晔,陈彦如,曹一家,等.基于加权网络结构熵的电网连锁故障研究[J].复杂系统与复杂性科学,2013,10(1):53-59.
    [122] Boccaletti S, Latora V, Moreno Y, et al. Complex networks: Structure and dynamics [J].Physics Reports,2006,424(4-5):175-308.
    [123] Holmgren A J. Using graph models to analyze the vulnerability of electric powernetworks [J]. Risk Analysis,2006,26(4):955-969.
    [124] Wang Z F, Scaglione A, Thomas R J, et al. Electrical Centrality Measures for ElectricPower Grid Vulnerability Analysis [C].49th Ieee Conference on Decision and Control(CDC),2010:5792-5797.
    [125] Wang K, Zhang B-H, Zhang Z, et al. An electrical betweenness approach forvulnerability assessment of power grids considering the capacity of generators and load[J]. Physica a-Statistical Mechanics and Its Applications,2011,390(23-24):4692-4701.
    [126] Rocco S C M, Ramirez-Marquez J E. Vulnerability metrics and analysis forcommunities in complex networks [J]. Reliability Engineering&System Safety,2011,96(10):1360-1366.
    [127] Rocco C M, Ramirez-Marquez J E. Identification of top contributors to systemvulnerability via an ordinal optimization based method [J]. Reliability Engineering&System Safety,2013,114:92-98.
    [128] Ouyang M. Comparisons of purely topological model, betweenness based model anddirect current power flow model to analyze power grid vulnerability [J]. Chaos,2013,23(2):023114(1-9).
    [129] Cupac V, Lizier J T, Prokopenko M. Comparing dynamics of cascading failuresbetween network-centric and power flow models [J]. International Journal of ElectricalPower&Energy Systems,2013,49:369-379.
    [130]林涛,范杏元,徐遐龄.电力系统脆弱性评估方法研究综述[J].电力科学与技术学报,2010,25(4):20-24.
    [131]丁剑,白晓民,赵伟,等.基于二维平面拟合的电网脆弱性分析[J].电力系统自动化,2008,32(8):1-4.
    [132]魏震波,刘俊勇,朱国俊,等.基于电网状态与结构的综合脆弱评估模型[J].电力系统自动化,2009,33(8):11-14+55.
    [133]曹一家,王光增,韩祯祥,等.考虑电网拓扑演化的连锁故障模型[J].电力系统自动化,2009,33(9):5-10.
    [134]徐林,王秀丽,王锡凡.电气介数及其在电力系统关键线路识别中的应用[J].中国电机工程学报,2010,30(1):33-39.
    [135]徐林,王秀丽,王锡凡.基于电气介数的电网连锁故障传播机制与积极防御[J].中国电机工程学报,2010,30(13):61-68.
    [136]黄映,李扬,翁蓓蓓,等.考虑电网脆弱性的多目标电网规划[J].电力系统自动化,2010,34(23):36-41.
    [137]薛飞,雷宪章, Bompard E.电网的结构性安全分析[J].电力系统自动化,2011,35(19):1-5.
    [138] Fang X L, Yang Q, Yan W J. Topological characterization and modeling of dynamicevolving power distribution networks [J]. Simulation Modelling Practice and Theory,2013,31:186-196.
    [139] Correa G J, Yusta J M. Grid vulnerability analysis based on scale-free graphs versuspower flow models [J]. Electric Power Systems Research,2013,101:71-79.
    [140] Xia Y, Fan J, Hill D. Cascading failure in Watts–Strogatz small-world networks [J].Physica A: Statistical Mechanics and its Applications,2010,389(6):1281-1285.
    [141] Wang J, Rong L, Zhang L, et al. Attack vulnerability of scale-free networks due tocascading failures [J]. Physica A: Statistical Mechanics and its Applications,2008,387(26):6671-6678.
    [142] Wang J-W, Rong L-L. Cascade-based attack vulnerability on the US power grid [J].Safety Science,2009,47(10):1332-1336.
    [143] Wang J-W, Rong L-L. Edge-based-attack induced cascading failures on scale-freenetworks [J]. Physica A: Statistical Mechanics and its Applications,2009,388(8):1731-1737.
    [144] Wang J-W, Rong L-L. Robustness of the western United States power grid under edgeattack strategies due to cascading failures [J]. Safety Science,2011,49(6):807-812.
    [145]Wang W-X, Lai Y-C. Abnormal cascading on complex networks [J]. Physical Review E,2009,80(3):036109(1-6)
    [146]郭剑波,于群,贺庆.电力系统复杂性理论初探[M].北京:科学出版社,2012.
    [147] Bak P, Tang C, Wiesenfeld K. Self-organized criticality: an explanation of1/f noise [J].Physical Review Letters,1987,59(4):381-384.
    [148] Bak P. Self-organized criticality [J]. Physica A: Statistical Mechanics and itsApplications,1990,163(1):403-409.
    [149] Bak P,李炜,蔡勖译.大自然如何工作:有关自组织临界性的科学[M].武汉:华中师范大学出版社,2001.
    [150] Bak P, Tang C, Wiesenfeld K. Self-organized criticality [J]. Physical review A,1988,38(1):364-374.
    [151] Newman D E, Carreras B A, Lynch V E, et al. Exploring Complex Systems Aspects ofBlackout Risk and Mitigation [J]. Ieee Transactions on Reliability,2011,60(1):134-143.
    [152]钱学森,于景元.一个科学新领域-开放复杂系统及其方法论[J].自然杂志,1990,13(1):3-10.
    [153]汪小帆,李翔,陈关荣.网络科学导论[M].高等教育出版社,2012.
    [154]孙霞,吴自勤,黄畇.分形原理及应用[M].合肥:中国科学技术大学出版社,2003.
    [155]李会方.多重分形理论及其在图象处理中应用的研究[D].西安:西北工业大学,2004.
    [156] Falconer K.分形几何—数学基础及其应用(第二版)[M].曾文曲.北京:人民邮电出版社,2007.
    [157]朱华,姬翠翠.分形理论及其应用[M].北京:科学出版社,2011.
    [158] Hurst H E. Long-term storage capacity of reservoirs [J]. Transactions of the AmericanSociety of Civil Engineer,1951,116:770-808.
    [159] Mandelbrot B B, Van Ness J W. Fractional Brownian motions, fractional noises andapplications [J]. Siam Review,1968,10(4):422-437.
    [160]小山顺二,臧绍先.地震活动的随机标度和非线性标度律[J].地球物理学报,1997,40(1):56-65.
    [161]李远耀,殷坤龙,程温鸣中,等. R/S分析在滑坡变形趋势预测中的应用[J].岩土工程学报,2010,32(8):1291-1296.
    [162]任飞,顾高峰,蒋志强,等.复杂金融系统的重现时间间隔分析[J].上海理工大学学报,2011,33(5):433-443+456.
    [163]朱军芳,汪秉宏.现代恐怖主义事件统计规律的研究[J].上海理工大学学报,2012,34(3):240-251.
    [164] Barunik J, Kristoufek L. On Hurst exponent estimation under heavy-tailed distributions[J]. Physica a-Statistical Mechanics and Its Applications,2012,389(18):3844-3855.
    [165] Cannon M J, Percival D B, Caccia D C, et al. Evaluating scaled windowed variancemethods for estimating the Hurst coefficient of time series [J]. Physica A,1997,241(3-4):606-626.
    [166]宣蕾,卢锡城,于瑞厚,等.网络威胁时序的自相似性分析[J].通信学报,2008,29(4):45-50.
    [167] Barrat A, Barthelemy M, Vespignani A. Weighted evolving networks: Couplingtopology and weight dynamics [J]. Physical Review Letters,2004,92(22):228701(1-4).
    [168] Milo R, Shen-Orr S, Itzkovitz S, et al. Network motifs:Simple building blocks ofcomplex networks [J]. Science,2002,298(5594):824-827
    [169] Milo R, Itzkovitz S, Kashtan N, et al. Superfamilies of evolved and designed networks[J]. Science,2004,303(5663):1538-1542.
    [170]刘明波,谢敏,赵维兴.大电网最优潮流计算[M].科学出版社,2010.
    [171]汪小帆,李翔,陈关荣.复杂网络理论及其应用[M].清华大学出版社有限公司,2006.
    [172]王林.复杂网络的ScaleFree性, ScaleFree现象及其控制[D].西安:西北工业大学,2006.
    [173] Song C M, Havlin S, Makse H A. Origins of fractality in the growth of complexnetworks [J]. Nature Physics,2006,2(4):275-281.
    [174]张嗣瀛.复杂系统、复杂网络自相似结构的涌现规律[J].复杂系统与复杂性科学,2006,3(4):41-51.
    [175] Mandelbrot B B. The fractal Geometry of Naure [M]. New York: W. H. Freeman andCompany,1983.
    [176]陈彦光.自组织与自组织城市[J].城市规划,2003,27(10):17-22.
    [177] Kantelhardt J W, Koscielny-Bunde E, Rego H H A, et al. Detecting long-rangecorrelations with detrended fluctuation analysis [J]. Physica A,2001,295(3-4):441-454.
    [178] Kantelhardt J W, Zschiegner S A, Koscielny-Bunde E, et al. Multifractal detrendedfluctuation analysis of nonstationary time series [J]. Physica a-Statistical Mechanicsand Its Applications,2002,316(1-4):87-114.
    [179] Feder J. Fractals [M]. New York: Plenum Press,1988.
    [180]张伯明,陈寿孙,严正.高等电力网络分析(第2版)[M].北京:清华大学出版社,2007.
    [181] Wang W X, Chen G R. Universal robustness characteristic of weighted networksagainst cascading failure [J]. Physical Review E (Statistical, Nonlinear, and Soft MatterPhysics),2008,77(2):026101-026105.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700