用户名: 密码: 验证码:
公交客流加权复杂网络结构及动力学行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:城市公共交通系统是一个由静态拓扑网络子系统和动态流量子系统相互作用、相互影响而形成的复杂、动态巨系统,也是一个在长期的发展过程中,受城市社会经济活动、空间结构、地理特征甚至文化习俗等多重因素影响的演化产物。对于城市公交系统的复杂性,近年来兴起的复杂网络理论为研究公交系统内部和外部的耦合作用和组织机理提供了一个新视角、新方法。随着复杂网络理论在国内外学术界掀起的研究热潮不断高涨,人们对复杂网络的研究更多地关注在网络构成要素和信息的不断变化以及网络的演化过程和动力学行为上。城市公交网络是一个具有技术网络和社会网络特征混合而成的复合型复杂网络,具有时空动态复杂性,研究城市公交网络结构的复杂性,不仅要研究公交网络本身的静态拓扑特性,更重要的是要研究加载了动态客流量信息的加权网络所体现出来的特性。而目前,对基于客流动态行为的公交加权网络研究几乎没有,为更好地把握公交系统的组织结构和整体特性,需要用公交网络的影响要素动态变化的观点来重新认识网络,建立模型来模拟公交网络的演化过程以再现网络结构属性,并分析公交网络这一复杂系统的动力学行为。这些问题的研究对于从复杂网络理论角度优化和调整城市公交线网具有重要的理论及现实指导意义。
     本文以加载了客流动态行为的城市公共交通系统作为研究对象,基于复杂网络理论和公交系统规划理论,对城市公交加权复杂网络的结构特征及动力学行为进行了研究。首先提出了加权复杂网络特征度量指标和模型构建方法,利用统计分析与比较分析相结合的方法,对城市公交无权和有权复杂网络结构的统计特性进行了实证研究;其次在总结公交加权网络系统特性的基础上,探索形成这些网络结构的演化机理,针对不同的公交网络抽象形式构建了加权网络演化模型,研究了有、无承载力约束下的公交网络演化特性;最后提出公交网络稳定性概念和分析指标,考虑网络上的流量分布特性,研究了不同外部影响条件下公交加权网络的动力学行为,为提高公交网络稳定性提供理论依据。
     具体来讲,本文的研究工作主要有如下几个方面:
     1.提出了基于客流的城市公交加权复杂网络模型构造方法。考虑公交网络上的客流特征,将现实城市公交系统抽象构建为三类加权复杂网络模型,突破了传统公交复杂网络理论研究以静态物理统计特性为出发点的局限。系统梳理了复杂网络加权特征度量指标,并结合网络流量特征提出了一些加权度量指标,丰富了加权复杂网络的统计指标。
     2.对基于客流量的城市公交无权和加权复杂网络进行了统计分析实证研究。在对北京公交客流数据收集与处理的基础上,采用统计物理学、计算机模拟等方法分别针对北京地面公交系统、轨道交通系统以及融合地面公交和轨道交通的双方式公交系统进行了三类复杂加权网络、7个子系统维度的统计分析,通过无权静态拓扑结构与加权动态网络结构的复杂网络特征比对分析,多角度、多维度地挖掘了公交系统的结构组织特征和功能,探讨了公交系统演化的机理。
     3.研究了有、无承载力约束的城市公交加权复杂网络演化模型,以真实合理地再现公交网络的演化过程。在综合考虑公交系统演化过程中的乘客利益、公交公司利益、地理空间位置等影响因素基础上,通过理论解析与数值模拟的方法,分别研究构造了基于客流分布及扰动影响动态变化的公交线路、公交站点以及公交换乘加权网络演化模型,探讨了演化过程中的流量动态行为。通过解析公交网络存在客流承载能力限制的机理,本文进一步研究了在网络点强度、边权承载能力有限的条件下,公交加权网络演化模型的网络结构和流量分布特性,探讨了公交网络的承载力约束阈值,挖掘出了实际公交加权网络结构统计特性的产生机制。
     4.研究了城市公交加权复杂网络的动力学行为,对加载了流量信息的公交网络稳定性进行了分析。本文提出了公交加权网络的稳定性概念和分析指标,分别采用交通动力学和级联失效两种方法来研究公交加权网络的动态稳定性,即考虑网络上流量具有自主性和选择性行为,采用公交OD配流理论来研究公交换乘网络上的动力学行为;构建面向加权网络的耦合映像格子(CML)稳定性分析模型,通过考虑流量的局域再分配动态行为,研究具有混沌动力系统特征的网络无权和加权要素的相互耦合作用而导致的公交站点加权网络级联失效行为。
ABSTRACT:Urban public transit network (PTN) is a complex and dynamic system, which is the interaction result between topology and dynamic flow distribution. It is also the evolution result of many factors during the long-term development, such as socio-economic activities, spatial structure, geographical features, cultural customs, etc. As to the complexity of PTN, a new method is provided by the complex network (CN) theory for studying its mechanism and the coupling function in recent years. With more and more research on CN theory at home and abroad, the study on its evolution process and dynamic behavior is paid more close attention. PTN, as a mixture of technic and social network, is a compound complex network with spatiotemporally dynamic complexity.In the study on its complexity, not only the characteristics of topology but also the ones of weighted network loaded with dynamic passenger flow should be studied. However, there is little research on the weighted PTN based on passenger flow at present. In order to explore the PTN's organizational structure and characteristics, it should be rediscovered in the view of dynamic changes of its impact factors, and the evolutionary process should be simulated. It is significant to research these issues, which has important theoretical and practical value on the optimization PTN in the view of CN theory.
     In this paper, the PTN loaded with passenger flow is taken as the research object to study its dynamic behaviors and structure characteristics based on CN theory and PTN planning theories. Firstly, the modeling approaches of weighted complex PTN and measures of its structure characteristics are proposed; secondly, based on the systematic characteristics of weighted complex PTN, the evolution mechanisms of these networks are explored, and the evolution models are presented according to different abstract forms of weighted complex PTN. The evolution characteristics of these models are also analyzed with and without capacity constraints. Lastly, the concept of PTN's stability and related indicators are proposed, and the dynamic behaviors are studied under different faults or attacks with considering flow distribution, which provides theory bases for improving the PTN. Specifically, the main content of this dissertation and innovation are summarized as follows:
     1. Firstly, models for constructing the weighted complex PTN are proposed. The realistic urban public transit system is abstracted to three kinds of weighted complex network models, which integrates the dynamic flow information into the static topology. The measuring indexes for weighted complex network are introduced systematically and some new ones are proposed based on the characteristics of passenger flow in the network, which enriches the measuring indexes of weighted complex network.
     2. Secondly, weighted PTN based on passenger flow and topologic network are statistically analyzed and empirically studied. Based on the passenger flow data collected and disposed from Beijing PTN, related theories, such as statistical physics, computer simulation and so on, are used to analyze Beijing bus system, subway system, multimode public transit system and their seven subsystems. The characteristics and functions of PTN's structure are explored from multi-view and multi-dimension through comparative analysis of the topology and weighted dynamic network.
     3. Thirdly, the evolution models of weighted PTNs with and without capacity constraints are studied to reproduce the evolution process. Based on the overall consideration of benefits of passengers and transportation companies, and factors of geographical space and spatial position, etc., the evolution models of weighted PTNs for route, station and transfer are built and studied respectively through the methods of theoretical analysis and numerical simulation, and the dynamic behaviors of the flow in the evolution process are also discussed. In addition, through the analysis of flow constraint mechanism in PTN, the structure and characteristics of flow distribution in the evolution models are presented further under the limited capacity of node strength and edge weight, the capacity thresholds are investigated, and the production mechanism of statistical characteristics in realistic weighted PTN is explored.
     4. Finally, the stability of weighted PTN loaded with passenger flow is analyzed. In this section, the concept of weighted PTN's stability and its analysis indexes are presented, and the dynamic stability of Beijing PTN is studied by the methods of traffic dynamics and cascading failures respectively. Namely, considering the autonomous and selective behaviors of the flow distribution in the whole network, the dynamic behaviors of PTN are studied based on theory of OD flow distribution; a Coupled Map Lattices model for weighted network is proposed, through the local flow redistribution, the cascading failures caused by the coupling of weighted and topologic network factors, which are with the characteristics of chaos dynamic system, are analyzed.
引文
[1]Ceder A.关伟等译.公共交通规划与运营:理论、建模及应用[M].北京:清华大学出版社,2010.5.
    [2]Watts D J, Strogatz S H. Collective dynamics of 'small-world' networks[J]. nature,1998, 393(6684):440-442.
    [3]Barabasi A L, Albert R. Emergence of scaling in random networks[J]. science,1999,286(5439): 509-512.
    [4]Sen P, Dasgupta S, Chatterjee A, et al. Small-world properties of the Indian railway network[J]. Physical Review E,2003,67(3):036106.
    [5]Albert R, Albert I, Nakarado G L. Structural vulnerability of the North American power grid[J]. Physical Review E,2004,69(2):025103.
    [6]Newman M E J. The structure of scientific collaboration networks[J]. Proceedings of the National Academy of Sciences,2001,98(2):404-409.
    [7]张培培,何阅,周涛,等.一个描述合作网络顶点度分布的模型[J].物理学报,2006,55(1):60-67.
    [8]Jeong H, Tombor B, Albert R, et al. The large-scale organization of metabolic networks[J]. Nature,2000,407(6804):651-654.
    [9]Jeong H, Mason S P, Barabasi A L, et al. Lethality and centrality in protein networks[J]. Nature, 2001,411(6833):41-42.
    [10]Newman M E J. Scientific collaboration networks. Ⅰ. Network construction and fundamental results[J]. Physical review E,2001,64(1):016131.
    [II]Newman M E J. Scientific collaboration networks. Ⅱ. Shortest paths, weighted networks, and centrality[J]. Physical review E,2001,64(1):016132.
    [12]Newman M E J, Forrest S, Balthrop J. Email networks and the spread of computer viruses[J]. Physical Review E,2002,66(3):035101.
    [13]Adamic L A, Huberman B A. Power-law distribution of the world wide web[J]. Science,2000, 287(5461):2115-2115.
    [14]Albert R, Jeong H, Barabasi A L. Internet:Diameter of the world-wide web[J]. Nature,1999, 401(6749):130-131.
    [15]Faloutsos M, Faloutsos P, Faloutsos C. On power-law relationships of the internet topology[C]//ACM SIGCOMM Computer Communication Review. ACM,1999,29(4): 251-262.
    [16]Sun H, Wu J. Scale-free characteristics of supply chain distribution networks[J]. Modern physics letters B,2005,19(17):841-848.
    [17]Yang H, Hai-Jun H. Analysis of the time-varying pricing of a bottleneck with elastic demand using optimal control theory[J]. Transportation Research Part B:Methodological,1997,31(6): 425-440.
    [18]Wu J J, Gao Z Y, Sun H J, et al. Urban transit system as a scale-free network[J]. Modern Physics Letters B,2004,18(19-20):1043-1049.
    [19]胡海波,王林.幂律分布研究简史[J].物理,2005,34(12):889-896.
    [20]Barabasi A L, Frangos J. Linked:The New Science Of Networks [M]. Massachusetts:Persus Publishing,2002.
    [21]Watts D J. The 'new' science of networks[J]. Annual review of sociology,2004:243-270.
    [22]Nunes Amaral L A, Scala A, Barthelemy M, et al. Classes of behavior of small-world networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 1997(21):11149-11152.
    [23]Latora V, Marchiori M. Is the Boston subway a small-world network?[J]. Physica A:Statistical Mechanics and its Applications,2002,314(1):109-113.
    [24]Sienkiewicz J, Holyst J A. Public transport systems in Poland:From Bialystok to Zielona Gora by bus and tram using universal statistics of complex networks[J]. Physics,2005,99(3): 1771-1778.
    [25]Boccaletti S, Latora V, Moreno Y, et al. Complex networks:Structure and dynamics[J]. Physics reports,2006,424(4):175-308.
    [26]张嗣瀛.复杂性科学,整体规律与定性研究[J].复杂系统与复杂性科学,2005,2(1):71-83.
    [27]Albert R, Jeong H, Barabasi A L. Error and attack tolerance of complex networks[J]. Nature, 2000,406(6794):378-382.
    [28]Holme P, Kim B J, Yoon C N, et al. Attack vulnerability of complex networks[J]. Physical Review E,2002,65(5):056109.
    [29]Paul G, Tanizawa T, Havlin S, et al. Optimization of robustness of complex networks[J]. The European Physical Journal B-Condensed Matter and Complex Systems,2004,38(2):187-191.
    [30]Beygelzimer A, Grinstein G, Linsker R, et al. Improving network robustness by edge modification[J]. Physica A:Statistical Mechanics and its Applications,2005,357(3):593-612.
    [31]Rezaei B A, Sarshar N, Roychowdhury V P, et al. Disaster management in power-law networks: Recovery from and protection against intentional attacks[J]. Physica A:Statistical Mechanics and its Applications,2007,381:497-514.
    [32]Gallos L K, Cohen R, Argyrakis P, et al. Stability and topology of scale-free networks under attack and defense strategies[J]. Physical review letters,2005,94(18):188701.
    [33]Barrat A, Barthelemy M, Pastor-Satorras R, et al. The architecture of complex weighted networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004,101(11):3747-3752.
    [34]Onnela J P, Saramaki J, Kertesz J, et al. Intensity and coherence of motifs in weighted complex networks[J]. Physical Review E,2005,71(6):065103.
    [35]Onnela J P, Saramaki J, Hyvonen J, et al. Analysis of a large-scale weighted network of one-to-one human communication[J]. New Journal of Physics,2007,9(6):179.
    [36]Han D D, Qian J H, Liu J G. Network Topology of the Austrian Airline Flights[J]. arXiv preprint physics/0703193,2007.
    [37]Holme P, Min Park S, Kim B J, et al. Korean university life in a network perspective:Dynamics of a large affiliation network[J]. Physica A:Statistical Mechanics and its Applications,2007, 373:821-830.
    [38]Almaas E, Kovacs B, Vicsek T, et al. Global organization of metabolic fluxes in the bacterium Escherichia coli[J]. Nature,2004,427(6977):839-843.
    [39]Li C, Chen G. Network connection strengths:Another power-law?[J]. arXiv preprint cond-mat/0311333,2003.
    [40]Macdonald P J, Almaas E, Barabasi A L. Minimum spanning trees of weighted scale-free networks[J]. EPL (Europhysics Letters),2005,72(2):308.
    [41]Li W, Cai X. Statistical analysis of airport network of China[J]. Physical Review E,2004,69(4): 046106.
    [42]刘宏鲲,周涛.中国城市航空网络的实证研究与分析[J].物理学报,2007,56(1):106-112.
    [43]Yook S H, Jeong H, Barabasi A L, et al. Weighted evolving networks[J]. Physical Review Letters,2001,86(25):5835-5838.
    [44]Zheng D, Trimper S, Zheng B, et al. Weighted scale-free networks with stochastic weight assignments[J]. Physical Review E,2003,67(4):040102.
    [45]Antal T, Krapivsky P L. Weight-driven growing networks[J]. Physical Review E,2005,71(2): 026103.
    [46]Barrat A, Barthelemy M, Vespignani A. Modeling the evolution of weighted networks[J]. Physical Review E,2004,70(6):066149.
    [47]Barrat A, Barthelemy M, Vespignani A. Weighted evolving networks:coupling topology and weight dynamics[J]. Physical review letters,2004,92(22):228701.
    [48]王文旭.复杂网络的演化动力学及网络上的动力学过程研究[D].合肥:中国科学技术大学,2007.
    [49]Wang W X, Wang B H, Hu B, et al. General dynamics of topology and traffic on weighted technological networks[J]. Physical review letters,2005,94(18):188702.
    [50]Wang W X, Hu B, Zhou T, et al. Mutual selection model for weighted networks[J]. Physical Review E,2005,72(4):046140.
    [51]Wang W X, Hu B, Wang B H, et al. Mutual attraction model for both assortative and disassortative weighted networks[J]. Physical Review E,2006,73(1):016133.
    [52]吴金闪,狄增如.从统计物理学看复杂网络研究[J].物理学进展,2004,24(1):38-46.
    [53]Motter A E, Zhou C S, Kurths J. Enhancing complex-network synchronization[J]. Europhysics Letters,2005,69(3):334-340.
    [54]Motter A E, Zhou C, Kurths J. Network synchronization, diffusion, and the paradox of heterogeneity[J]. Physical Review E,2005,71(1):016116.
    [55]吴建军.城市交通网络拓扑结构复杂性研究[D].北京:北京交通大学,2008.
    [56]孙雪莲.加权网络演化机制及若干动力学行为研究[D].大连:大连理工大学,2007.
    [57]Newman M E J. Spread of epidemic disease on networks[J]. Physical review E,2002,66(1): 016128.
    [58]Yan G, Zhou T, Wang J, et al. Epidemic spread in weighted scale-free networks[J]. Chinese Physics Letters,2005,22(2):510-513.
    [59]Yan G, Zhou T, Hu B, et al. Efficient routing on complex networks[J]. Physical Review E,2006, 73(4):046108.
    [60]Wang W X, Wang B H, Yin C Y, et al. Traffic dynamics based on local routing protocol on a scale-free network[J]. Physical Review E,2006,73(2):026111.
    [61]Wang W X, Wang B H, Zhou T, Hu B, Yan G, Xie Y B. Traffic driven model for weighted networks[J]. Dynamics of Continuous, Discrete and Impulsive Systems-Series B,2006,13(3/4): 481-488.
    [62]Wang W X, Yin C Y, Yan G, et al. Integrating local static and dynamic information for routing traffic[J]. Physical Review E,2006,74(1):016101.
    [63]Yang H X, Wang W X, Wang B H. Asymmetric negotiation in structured language games[J]. Physical Review E,2008,77(2):027103.
    [64]Bonabeau E. Sandpile dynamics on random graphs[J]. Journal of the Physical Society of Japan, 1995,64:327-328.
    [65]Callaway D S, Newman M E J, Strogatz S H, et al. Network robustness and fragility: Percolation on random graphs[J]. Physical Review Letters,2000,85(25):5468-5471.
    [66]Cohen R, Erez K, Ben-Avraham D, et al. Resilience of the Internet to random breakdowns[J]. Physical review letters,2000,85(21):4626-4628.
    [67]Cohen R, Erez K, Ben-Avraham D, et al. Breakdown of the Internet under intentional attack[J]. Physical Review Letters,2001,86(16):3682-3685.
    [68]Albert R, Jeong H, Barabasi A L. Error and attack tolerance of complex networks[J]. Nature, 2000,406(6794):378-382.
    [69]Lu Z X, Meng Z W, Zhou S X. Cascading failure analysis of bulk power system using small-world network model. Proceedings of the 8th International Conference on Probabilistic Methods Applied to Power Systems, Iowa State University, Ames Iowa,2004:635-640.
    [70]Meng Z W, Lu Z X, Song J Y. Comparison analysis of the small-world topological model of Chinese and American power grids. Automation of Electric Power System,2004,28(15):21-24.
    [71]Zhao L, Park K, Lai Y C. Attack vulnerability of scale-free networks due to cascading breakdown[J]. Physical review E,2004,70(3):035101.
    [72]Zhao L, Park K, Lai Y C, et al. Tolerance of scale-free networks against attack-induced cascades[J]. Physical Review E,2005,72(2):025104.
    [73]Yin C Y, Wang W X, Chen G, et al. Decoupling process for better synchronizability on scale-free networks[J]. Physical Review E,2006,74(4):047102.
    [74]Zhao M, Zhou T, Wang B H, et al. Enhanced synchronizability by structural perturbations[J]. Physical Review E,2005,72(5):057102.
    [75]Hu G, Yang J, Liu W. Instability and controllability of linearly coupled oscillators:Eigenvalue analysis[J]. Physical Review E,1998,58(4):4440-4447.
    [76]Wang X F, Chen G. Pinning control of scale-free dynamical networks[J]. Physica A:Statistical Mechanics and its Applications,2002,310(3):521-531.
    [77]Li X. Wang X F. Pinning control of scale-free Chen's networks[C]//The Second Asia-Pacific Workshop on Chaos Control and Synchronization at Shanghai,2003.
    [78]Li X, Wang X. Feedback control of scale-free coupled Henon maps[C]//Control, Automation, Robotics and Vision Conference,2004. ICARCV 2004 8th. IEEE,2004,1:574-578.
    [79]Li X, Wang X, Chen G. Pinning a complex dynamical network to its equilibrium[J]. Circuits and Systems I:Regular Papers, IEEE Transactions on,2004,51(10):2074-2087.
    [80]忘小帆,李翔,陈关荣.复杂网络理论及其应用[M].北京:清华大学出版社,2006.
    [81]Motter A E, Lai Y C. Cascade-based attacks on complex networks[J]. Physical Review E,2002, 66(6):065102.
    [82]Watts D J. A simple model of global cascades on random networks[J]. Proceedings of the National Academy of Sciences,2002,99(9):5766-5771.
    [83]Moreno Y, Gomez J B, Pacheco A F. Instability of scale-free networks under node-breaking avalanches [J]. Europhysics Letters,2002,58(4):630-636.
    [84]Moreno Y, Pastor-Satorras R, Vazquez A, et al. Critical load and congestion instabilities in scale-free networks[J]. Europhysics Letters,2003,62(2):292-298.
    [85]Holme P, Kim B J, Yoon C N, et al. Attack vulnerability of complex networks[J]. Physical Review E,2002,65(5):056109.
    [86]Holme P, Kim B J. Vertex overload breakdown in evolving networks[J]. Physical Review E, 2002,65(6):066109.
    [87]Holme P. Edge overload breakdown in evolving networks[J]. Physical Review E,2002,66(3): 036119.
    [88]Dobson I, Chen J, Thorp J S, et al. Examining criticality of blackouts in power system models with cascading events[C]//System Sciences,2002. HICSS. Proceedings of the 35th Annual Hawaii International Conference on. IEEE,2002:63-72.
    [89]Dobson I, Carreras B A, Newman D E. A probabilistic loading-dependent model of cascading failure and possible implications for blackouts[C]//System Sciences,2003. Proceedings of the 36th Annual Hawaii International Conference on. IEEE,2003:1-8.
    [90]Dobson I, Carreras B A, Newman D E. A loading-dependent model of probabilistic cascading failure[J]. Probability in the Engineering and Informational Sciences,2005,19(01):15-32.
    [91]Crucitti P, Latora V, Marchiori M. Model for cascading failures in complex networks[J]. Physical Review E,2004,69(4):045104.
    [92]Kaneko K. Coupled map lattices[M]. Singapore:World Scientific,1992.
    [93]Gade P M, Hu C K. Synchronous chaos in coupled map lattices with small-world interactions[J]. Physical Review E,2000,62(5):6409-6413.
    [94]陈关荣.复杂网络(第四章)[M].上海:上海科技教育山版社,2006.
    [95]Wang X F, Xu J. Cascading failures in coupled map lattices[J]. Physical review. E, Statistical, nonlinear, and soft matter physics,2004,70(5):056113.
    [96]Xu J, Wang X F. Cascading failures in scale-free coupled map lattices[J]. Physica A:Statistical Mechanics and its Applications,2005,349(3-4):685-692.
    [97]W J J, Gao Z Y, Sun H J. Cascade and breakdown in scale-free networks with community structure[J]. Physical Review E,2006,74(6):066111.
    [98]Wu J J, Gao Z Y, Sun H J. Model for dynamic traffic congestion in scale-free networks[J]. EPL (Europhysics Letters),2006,76(5):787-793.
    [99]Wu J J, Gao Z Y, Sun H J. Effects of the cascading failures on scale-free traffic networks[J]. Physica A:Statistical Mechanics and its Applications,2007,378(2):505-511.
    [100]Wu J J, Sun H J, Gao Z Y. Cascading failures on weighted urban traffic equilibrium networks[J]. Physica A:Statistical Mechanics and its Applications,2007,386(1):407-413.
    [101]Zheng J F, Gao Z Y, Zhao X M. Clustering and congestion effects on cascading failures of scale-free networks[J]. Europhysics Letters,2007,79(5):58002.
    [102]Zheng J F, Gao Z Y, Zhao X M. Modeling cascading failures in congested complex networks[J]. Physica A:Statistical Mechanics and its Applications,2007,385(2):700-706.
    [103]Cui D, Gao Z, Zhao X M. Cascades in small-world modular networks with CML'S method[J]. Modern Physics Letters B,2007,21(30):2055-2062.
    [104]Cui D, Gao Z, Zhao X M. Cascades with coupled map lattices in preferential attachment community networks[J]. Chinese Physics B,2008,17(5):1703-1708.
    [105]Bao Z J, Cao Y J, Ding L J, et al. Synergetic behavior in the cascading failure propagation of scale-free coupled map lattices[J]. Physica A:Statistical Mechanics and its Applications,2008, 387(23):5922-5929.
    [106]Bao Z, Cao Y J. Cascading failures in local-world evolving networks[J]. Journal of Zhejiang University Science A,2008,9(10):1336-1340.
    [107]Wang W X, Chen G. Universal robustness characteristic of weighted networks against cascading failure[J]. Physical Review E,2008,77(2):026101-206105.
    [108]Cui D, Gao ZY, Zheng J F. Tolerance of edge cascades with coupled map lattices methods[J]. Chinese Physics B,2009,18(3):992-996.
    [109]陈星光,周晶,朱振涛.基于耦合映像格子的城市交通系统相继故障研究[J].数学的实践与认识,2009,39(7):79-84.
    [110]Guimera R, Amaral L A N. Modeling the world-wide airport network[J]. The European Physical Journal B-Condensed Matter and Complex Systems,2004,38(2):381-385.
    [111]Guimera R, Mossa S, Turtschi A, et al. The worldwide air transportation network:Anomalous centrality, community structure, and cities' global roles[J]. Proceedings of the National Academy of Sciences,2005,102(22):7794-7799.
    [112]Lin J Y. Network analysis of China's aviation system, statistical and spatial structure[J]. Transport Geography 22 (2012):109-117.
    [113]Zhang J, Cao X B, Du W B, et al. Evolution of Chinese airport network[J]. Physica A: Statistical Mechanics and its Applications,2010,389(18):3922-3931.
    [114]Bagler G. Analysis of the airport network of India as a complex weighted network[J]. Physica A:Statistical Mechanics and its Applications,2008,387(12):2972-2980.
    [115]Hu Y H, Zhu D L. Empirical analysis of the worldwide maritime transportation network[J]. Physica A:Statistical Mechanics and its Applications,2009,388(10):2061-2071.
    [116]熊文海.世界航运网络的结构特性及其动力学行为研究[D].青岛:青岛大学,2009.
    [117]Seaton K A, Hackett L M. Stations, trains and small-world networks[J]. Physica A:Statistical Mechanics and its Applications,2004,339(3):635-644.
    [118]Kurant M, Thiran P. Extraction and analysis of traffic and topologies of transportation networks[J]. Physical Review E,2006,74(3):036114.
    [119]Kurant M, Thiran P. Layered complex networks[J]. Physical review letters,2006,96(13): 138701.
    [120]Wang Y L, Zhou T, Shi J J, et al. Empirical analysis of dependence between stations in Chinese railway network[J]. Physica A:Statistical Mechanics and its Applications,2009, 388(14):2949-2955.
    [121]Von Ferber C, Holovatch T, Holovatch Y, et al. Public transport networks:empirical analysis and modeling[J]. The European Physical Journal B,2009,68(2):261-275.
    [122]高白友,吴建军,毛保华,等.交通运输网络复杂性及其相关问题的研究[J].交通运输系统工程与信息,2005,5(2):79-84.
    [123]高自友,赵小梅,黄海军,等.复杂网络理论与城市交通系统复杂性问题的相关研究[J].交通运输系统工程与信息,2006,6(3):41-47.
    [124]赵金山,狄增如,王大辉.北京市公共汽车交通网络儿何性质的实证研究[J].复杂系统与复杂性科学,2005,2(2):45-48..
    [125]张晨,张宁.上海市公交网络拓扑性质研究[J].上海理工大学学报,2006,28(5):489-494.
    [126]胡君辉,徐新平,杨永栩.三组城市公共汽车运输网的小世界性质[J].广西师范大学学报:自然科学版,2006,24(2):10-14.
    [127]Xu X, Hu J, Liu F, et al. Scaling and correlations in three bus-transport networks of China[J]. Physica A:Statistical Mechanics and its Applications,2007,374(1):441-448.
    [128]李英,周伟,郭世进.上海公共交通网络复杂性分析[J].系统工程,2007,25(1):38-41.
    [129]王喆,彭其渊.成都市公交复杂网络拓扑特性研究[J].交通与计算机,2007,25(2):39-42.
    [130]李岸巍.太原市公交网络的复杂网络特性分析[J].中北大学学报(自然科学版),2007,28(4):314-318.
    [131]Chen Y Z, Li N, He D R. A study on some urban bus transport networks[J]. Physica A: Statistical Mechanics and its Applications,2007,376:747-754.
    [132]陈永洲,李南,李璐.城市公交巴士网络的随机组织演化机制研究[J].预测,2008,27(2):68-72.
    [133]张玮,朱金福.城市公交网络复杂性实证研究[J].商业时代,2008,7:59-61.
    [134]惠伟,王红.复杂网络在城市公交网络中的实证分析[J].计算机技术与发展,2008,18(11):217-219.
    [135]周明,王化雨.济南市公共交通网络的拓扑特性研究[J].计算机与现代化,2009,1(161):139-142.
    [136]沈波,刘云.城轨网络对北京公共交通的影响研究[J].都市快轨交通,2008,21(1):34-36.
    [137]王燚,杨超.上海市轨道交通网络的复杂网络特性研究[J].城市轨道交通研究,2009(2):33-36.
    [138]陈永洲.城市公交巴士复杂网络的实证与模拟研究[D].南京:南京航空航天大学,2007.
    [139]秦艳,张宁,李季明.上海市加权公交站点网络拓扑结构分析[J].广西师范大学学报:自然科学版,2008,26(2):14-17.
    [140]Lee K, Jung W S, Park J S, Choi M.Y. Statistical analysis of the Metropolitan Seoul Subway System Network structure and passenger flows. Physica A:Statistical Mechanics and its Applications,387 (2008) 6231-6234
    [141]Soh H, Lim S, Zhang T, et al. Weighted complex network analysis of travel routes on the Singapore public transportation system[J]. Physica A:Statistical Mechanics and its Applications,2010,389(24):5852-5863.
    [142]Huang H J, Yang H. Optimal utilization of a transportation system with auto/transit parallel modes[J]. Optimal Control Applications and Methods,1999,20:297-313.
    [143]Huang H J, Lam W H K.A multi-class dynamic user equilibrium model for queuing networks with advanced traveler information systems[J]. Journal of Mathematical Modelling and Algorithms,2003,2(4):349-377.
    [144]田琼,黄海军,杨海.瓶颈处停车换乘logit随机均衡选择模型[J].管理科学学报,2005,8(1):1-6.
    [145]Brockfeld E, Barlovic R, Schadschneider A, et al. Optimizing traffic lights in a cellular automaton model for city traffic[J]. Physical Review E,2001,64(5):056132.
    [146]Gao Z Y, Li K P. Evolution of traffic flow with scale-free topology[J]. Chinese Physics Letters, 2005,22(10):2711-2714.
    [147]Gao Z Y, Li K P, Li X G, et al. Scaling laws of the network traffic flow[J]. Physica A: Statistical Mechanics and its Applications,2007,380:577-584.
    [148]Krapivsky P L, Redner S, Leyvraz F. Connectivity of growing random networks[J]. Physical review letters,2000,85(21):4629-4632.
    [149]Febbraro A D, Sacco N. On modelling urban transportation networks via hybrid Petri nets[J]. Control engineering practice,2004,12(10):1225-1239.
    [150]Wu J J, Gao Z Y, Sun H J. Simulation of traffic congestion with SIR model[J]. Modern Physics Letters B,2004,18(30):1537-1542.
    [151]Dorogovtsev S N, Mendes J F F, Samukhin A N. Structure of growing networks with preferential linking[J]. Physical Review Letters,2000,85(21):4633-4636.
    [152]Caldarelli G, Capocci A, De Los Rios P, et al. Scale-free networks from varying vertex intrinsic fitness[J]. Physical review letters,2002,89(25):258702.
    [153]Ergiin G, Rodgers G J. Growing random networks with fitness[J]. Physica A:Statistical Mechanics and its Applications,2002,303(1):261-272.
    [154]Bianconi G, Barabasi A L. Competition and multiscaling in evolving networks[J]. Europhysics Letters,2001,54(4):436-442.
    [155]Lambiotte R, Ausloos M. Growing network with j-redirection[J]. Europhysics Letters,2007, 77(5):58002.
    [156]Flake G W, Pennock D M. Self-organization, self-regulation, and self-similarity on the fractal web[M]//The Colours of Infinity. Springer London,2004,97-127.
    [157]Albert R, Barabasi A L. Topology of evolving networks:local events and universality[J]. Physical review letters,2000,85(24):5234-5237.
    [158]Liu Z, Lai Y C, Ye N, et al. Connectivity distribution and attack tolerance of general networks with both preferential and random attachments[J]. Physics Letters A,2002,303(5):337-344.
    [159]Su B B, Chang H, Chen Y Z, et al. A game theory model of urban public traffic networks[J]. Physica A:Statistical Mechanics and its Applications,2007,379(1):291-297.
    [160]何胜学,范炳全.从公交线网的生成机理看复杂网络的多样性[J].系统工程学报,2007,22(6):599-606.
    [161]王波,王万良,杨旭华.一种基于加权复杂网络的最优公交换乘算法[J].武汉理工大学学报(交通科学与工程版),2008,32(6):1113-1116.
    [162]Chen Y Z, Li N. Statistical Properties of Urban Ground Bus-Transport Networks from Self-Avoiding Random Walks[J]. Modern Physics Letters B,2007,21(16):1027-1040.
    [163]Chen Y Z, Li N. The randomly organized structure of urban ground bus-transport networks in China[J]. Physica A:Statistical Mechanics and its Applications,2007,386(1):388-396.
    [164]Yang X H, Wang B, Wang W L, et al. Research on some bus transport networks with random overlapping clique structure[J]. Communications in Theoretical Physics,2008,50(5): 1249-1254.
    [165]Yang X H, Chen G, Sun B, et al. Bus transport network model with ideal n-depth clique network topology[J]. Physica A:Statistical Mechanics and its Applications,2011,390(23): 4660-4672.
    [166]Sui Y, Shao F J, Sun R C, et al. Space evolution model and empirical analysis of an urban public transport network[J]. Physica A:Statistical Mechanics and its Applications,2012, 391(14):3708-3717.
    [167]Dunne J A, Williams R J, Martinez N D. Network structure and biodiversity loss in food webs: robustness increases with connectance[J]. Ecology Letters,2002,5(4):558-567.
    [168]Magoni D. Tearing down the Internet[J]. Selected Areas in Communications, IEEE Journal on, 2003,21(6):949-960.
    [169]Samant K, Bhattaeharyya S. Topology, search, and fault tolerance in unstructured P2P networks[C]. Proceedings of the 37th Annual Hawaii International Conference on System Sciences.2004, v37:4607-4612.
    [170]Dezso Z, Barabasi A L. Halting viruses in scale-free networks[J]. Physical Review E,2002, 65(5):055103.
    [171]刘啸林.网络抗毁性研究及其在证券交易网络中的应用[D].上海:华东师范大学,2007.
    [172]张勇,杨晓光.城市路网的复杂网络特性及可靠性仿真分析[J].系统仿真学报,2008,20(2):464467.
    [173]吴俊,谭跃进.复杂网络抗毁性测度研究[J].系统工程学报,2005,20(2):128-131.
    [174]Von Ferber C, Holovatch T, Holovatch Y. Attack vulnerability of public transport networks[M]//Traffic and Granular Flow'07. Springer Berlin Heidelberg,2007:721-731.
    [175]Berche B, Von Ferber C, Holovatch T, et al. Resilience of public transport networks against attacks[J]. The European Physical Journal B,2009,71(1):125-137.
    [176]Dorbritz R, Weidmann U. Stability of public transportation systems in case of random failures and intended attacks-a case study from Switzerland[C]//Systems Safety 2009. Incorporating the SaRS Annual Conference,4th IET International Conference on. IET,2009:1-6.
    [177]戴帅,陈艳艳,魏中华.复杂公交网络的系统可靠性分析[J].武汉理工大学学报(交通科学与工程版),2007.31(3):412414.
    [178]Li Y. Static and Dynamic Complexity Analysis of Urban Public Transportation Network:A Case in Shanghai[C]//Wireless Communications, Networking and Mobile Computing,2007. WiCom 2007. International Conference on. IEEE,2007:6382-6385.
    [179]汪涛,吴琳丽.基于复杂网络的城市公交网络抗毁性分析倡[J].计算机应用研究,2010,27(11):40844086.
    [180]段后利,李志恒,张毅.城市公交网络的鲁棒性分析模型[J].华南理工大学学报.2010,38(3):70-74.
    [181]王云琴.基于复杂网络理论的城市轨道交通网络连通可靠性研究[D].北京:北京交通大学,2008.
    [182]刘志谦,宋瑞.基于复杂网络理论的广州轨道交通网络可靠性研究[J].交通运输系统工程与信息,2010,10(5):194-200.
    [183]Zhang J, Xu X, Hong L, et al. Networked analysis of the Shanghai subway network, in China[J]. Physica A:Statistical Mechanics and its Applications,2011,390(23):4562-4570.
    [184]Dang Y R, Ding F Y, Gao F. Empirical Analysis on Flight Flow Network Survivability of China[J]. Journal of Transportation Systems Engineering and Information Technology,2012, 12(6):177-185.
    [185]王波.基于派系的复杂网络及其在公交网络上的应用研究[D].浙江:浙江工业大学,2009.
    [186]Yang X H, Wang B, Chen S Y, et al. Epidemic dynamics behavior in some bus transport networks[J]. Physica A:Statistical Mechanics and its Applications,2012,391(3):917-924.
    [187]方锦清,汪小帆,刘曾荣.略论复杂性问题和非线性复杂网络系统的研究[J].科技导报,2004,2:9-12.
    [188]吴建军,高自友等.城市交通系统复杂性:复杂网络方法及其应用[M].北京:科学出版社,2010.
    [189]Bollobas B, Riordan O. Mathematical results on scale-free random graphs[J]. Handbook of graphs and networks:from the genome to the internet,2003:1-34.
    [190]蔡嫒嫒,王红,范彦静.复杂网络理论及其在城市公交网络中的应用[J].信息技术与信息化,2008(2):19-23.
    [191]干林,戴冠中.复杂网络的Scale-free性、Scale-free现象及其控制[M].北京:科学出版社,2009.
    [192]Friedkin N E. Theoretical foundations for centrality measures[J]. American Journal of Sociology,1991,96(6):1478-1504.
    [193]E. Ravasz, Evolution, Evolution, hierarchy and modular organization in complex networks: [D]. Indiana:Graduate School of the University of Notre Dame,2004.
    [194]杨进.北京市公交网络的复杂网络特性分析[D].北京:北京交通大学.2010.
    [195]Sienkiewicz J, Holyst J A. Statistical analysis of 22 public transport networks in Poland[J]. Physical Review E,2005,72(4):046127.
    [196]Jiang B, Claramunt C. Topological analysis of urban street networks[J]. Environment and Planning B,2004,31(1):151-162.
    [197]Adamic L A. Zipf, power-laws, and pareto-a ranking tutorial[J]. Xerox Palo Alto Research Center, Palo Alto, CA, http://ginger.hpl.hp.com/shl/papers/ranking/ranking.html,2000.
    [198]Newman M E J. Assortative mixing in networks[J]. Physical review letters,2002,89(20): 208701.
    [199]王新声.城市公共交通运营调度管理[M].北京:中国铁道出版社,2001.
    [200]郭学琴.城市轨道交通客流特征分析[J].现代城市轨道交通,2008,4:49.
    [201]杨扬.北京市公共交通网络复杂性分析[D].北京:北京交通大学,2011.
    [202]Chowell G, Hyman J M, Eubank S, et al. Scaling laws for the movement of people between locations in a large city[J]. Physical Review E,2003,68(6):066102.
    [203]Hendrikson C, Sue M. Matrix entropy estimation errors[C]. In:Proceedings of Ninth International Symposia on Transportation and Traffic Theory. VNC Science Press,1984: 413-430.
    [204]Cascetta E. Estimation of trip matrices from traffic counts and survey data:A generalized least squares estimator[J]. Transportation Research Part B:Methodological,1984,18(4):289-299.
    [205]Brenniger M. Estimation of O-D matrices from traffic counts using multiobjective programming formulations[J]. Transportaion Research Part B,1989,23 (4):250-257.
    [206]Spiess H. A maximum likelihood model for estimating origin-destination matrices[J]. Transportation Research Part B:Methodological,1987,21(5):395-412.
    [207]尹娟,郭国会.人工神经网络在交通网络OD矩阵推算中的应用[J].浙江大学学报:自然科学版,2000,34(4):423-427.
    [208]胡腾波,叶建栲.马尔科夫链模型在GIS数据预测中的应用[J].计算机系统应用,2008,8:90-93.
    [209]李琼星,汤照照.据公交站点客流量推算公交OD量的方法[J].湖南农业大学学报(自然科学版),2006,32(5):563-566.
    [210]Li W, Cai X. Empirical analysis of a scale-free railway network in China[J]. Physica A: Statistical Mechanics and its Applications,2007,382(2):693-703.
    [211]Barabasi A L, Albert R, Jeong H. Mean-field theory for scale-free random networks[J]. Physica A:Statistical Mechanics and its Applications,1999,272(1):173-187.
    [212]Dorogovtsev S N, Mendes J F F, Samukhin A N. Structure of growing networks with preferential linking[J]. Physical Review Letters,2000,85(21):4633-4636.
    [213]Krapivsky P L, Redner S, Leyvraz F. Connectivity of growing random networks[J]. Physical review letters,2000,85(21):4629-4632.
    [214]陈鹏辉,张凌,陈庆华.权重演化的加权网络[J].龙岩学院学报,2009,27(5):13-15.
    [215]Gastner M T, Newman M E J. The spatial structure of networks[J]. The European Physical Journal B-Condensed Matter and Complex Systems,2006,49(2):247-252.
    [216]Jost J, Joy M P. Evolving networks with distance preferences[J]. Physical Review E,2002, 66(3):036126.
    [217]Watts D J, Strogatz S H. Collective dynamics of 'small-world' networks[J]. nature,1998, 393(6684):440-442.
    [218]Radicchi F, Castellano C, Cecconi F, et al. Defining and identifying communities in networks[J]. Proceedings of the National Academy of Sciences of the United States of America,2004,101(9):2658-2663.
    [219]Homer M W, O'Kelly M E. Embedding economies of scale concepts for hub network design[J]. Journal of Transport Geography,2001,9(4):255-265.
    [220]刘狄,吴海燕.城市轨道交通换乘站内部换乘客流量算法研究[J].北京建筑工程学院学报,2010,26(2):44-48,56
    [221]Eubank S, Guclu H, Kumar V S A, et al. Modeling disease outbreaks in realistic urban social networks[J]. Nature,2004,429(6988):180-184.
    [222]陈菁菁.基于复杂网络的城市轨道交通网络可靠性研究[J].都市快轨交通,2010,23(2):18-21,30.
    [223]陈建国,张永静.通信网络拓扑抗毁性评估算法研究[J].无线电通信技术,2006(1):6-7.
    [224]Sole R V, Valverde S. Information theory of complex networks:On evolution and architectural constraints[M]//Complex networks. Springer Berlin Heidelberg,2004:189-207
    [225]Dover Y. A short account of a connection of power laws to the information entropy[J]. Physica A:Statistical Mechanics and its Applications,2004,334(3):591-599.
    [226]谭跃进,吴俊.网络结构熵及其在非标度网络中的应用[J].系统工程理论与实践,2004,24(6):1-3.
    [227]刘宝全,段文奇,季建华.基于熵的国际贸易网络异质性测度与演化.佳木斯大学学报(自然科学版),2007,25(4):575-578
    [228]Latora V, Marchiori M. Efficient behavior of small-world networks[J]. Physical review letters, 2001,87(19):198701.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700