用户名: 密码: 验证码:
空间网格结构几何形态研究与实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空间网格结构几何外形与网格划分模式日趋丰富多彩,给设计建模与修改调整工作带来难度。本文针对此问题提出了空间网格结构几何形态的概念,将创建与优化问题作为研究对象,着重探讨几何形态的实现过程。论文完善了空间网格结构几何形态的基础理论;提出了三类几何造型技术:生成设计、基于力学原理的造型方法以及逆向建模方法;研究了网格划分模式的扩展与网格体系的优化方法。
     本文首先分析了空间网格结构曲面形式和网格划分的多样性,归纳出几何形态研究的若干关键问题。介绍了曲面造型与网格划分技术的发展和现状,并阐述了空间网格结构领域围绕几何形态研究所遇到的一些问题。
     空间网格结构曲面形态一般可分为函数曲面与自由曲面。论文中,对于函数曲面采用解析方式进行描述。对于自由曲面表达则引入表现力较强的B样条曲面以及准均匀B样条曲面,并根据曲线曲面边界趋势,结合数值方法,形成边界预测切矢技术使曲面表达更为精确。提炼出几何基本参数及曲面曲率性质。提出基于二次插值的网格映射划分方法以解决曲面曲率不均造成的网格畸变问题。
     几何造型的生成设计实现了空间网格结构几何形态程序化操作。针对函数曲面与仿生类自由曲面形态特征,由参数设定构建呈矩形拓扑关系的型值点阵,通过B样条曲面插值算法分别进行曲面重构与曲面造型设计。特别地,在构建仿生类自由曲面时,分别讨论了仿梅花形体与仿花瓣形体两类自然形态的参数设置原理。通过数值模拟与对比分析验证了生成设计能够满足曲面重构精度要求并有效地提高了几何形态生成效率。
     基于力学原理的曲面造型方法将几何形态与力学原理相结合,简化了依靠几何参数调整的繁复操作。其一为能量法造型技术:由薄板弹性变形推导了变形曲面的完备能量模型,明确了各项设计参数的物理意义,统一了曲面构造设计与曲面修改调整的控制方程,并引入双三次准均匀B样条曲面单元,简化了曲面边界处简支及固支约束条件的处理。另一类是基于薄膜平衡的曲面造型技术:引入差分预测切矢技术及双三次准均匀B样条曲面描述初始曲面,根据曲率性质推导了结点虚拟刚度,将拉普拉斯方程与动力松弛法相结合,由薄膜平衡的自然性质构造与优化曲面形态。数值模拟表明此技术在寻找极小曲面,类比相似曲面形态以及获取加密网格方面有比较便利的应用。
     逆向建模方法借鉴逆向工程的操作原理。首先利用自组激光三维扫描系统进行实物样件的点云数据采集,然后将点云经逆向软件预处理,由改良后的蒙皮法进行曲面造型以及网格初步划分,得到网格结构数字模型,再经曲面条带化旋转展开,由纸板加工放样,实现实体模型的加工制作。上述工作表明了逆向建模方法的可行性与实用性。
     论文给出网格质量评价标准,扩展了网格划分模式。运用改进后的能量法进行网格体系光顺,并得到了光顺罚因子与各项网格质量评价指标的变化规律。提出考虑曲面特征、网格质量、杆件单元长度偏差等因素的网格体系优化目标函数,并考虑权重影响,统一目标函数,经一维搜索技术,得到最优网格体系。
     根据上述理论与方法编制了几何形态设计程序系统GCCAD。该程序系统具有图形化的用户界面、几何形态设计和结果处理功能。为实际工程应用提供了操作平台,提高了几何形态设计的工作效率。
     通过理论推导、数值模拟以及程序系统的编制表明,本文总结与提出的空间网格结构几何形态造型的实现方法是可行且有效的,解决了复杂几何形态空间网格结构建模的相关问题。同时论文还提出了今后有待解决的若干问题。
Various types of shapes and grid modes of space grid structures bring on lots of difficulties in structural modeling and design. Thus, based on the proposed concept of geometric configuration of space grid structures, this dissertation researches on the modeling and optimization technique, and focuses on the realization process of structures. In this work, three primary modeling techniques are investigated, i.e. generation design, mechanics-based modeling technique and reverse modeling method. Moreover, the extension of grid meshing modes and the optimization of grid system are also discussed.
     The types of surface shapes and grid modes are firstly analyzed. A number of key technical issues on geometric configuration are then concluded. A state-of-the-art review on modeling and meshing techniques of space grid structures is given and some involved problems are also expounded.
     The surfaces of space grid structures generally include regular and free-form surfaces, which are respectively expressed by analytic function and B-splines as well as quasi-uniform B-splines. With the combination of numerical method, the prediction technology of clamping boundary is discussed according to the trend. Basic geometric parameters and surface curvature are described. The re-interpolation reflection meshing method is proposed to avoid the uneven grids caused by the distortion curvature.
     Generation design technique realizes the computer aided design of geometric configuration. Firstly, the characteristic parameters of surfaces used as data points which distribute in rectangular topological relationship can be generated. Then B-splines interpolation is implemented to reconstruct or reshape surface. Especially, how to generate parameters of clubs-shaped and petal-shaped pattern is discussed. Numerical examples prove that the generation design can satisfy the accuracy and improve the efficiency.
     Mechanics-based modeling techniques are comprised of the theory of geometric and mechanics. One modeling technique is energy modeling method. A complete energy model and physical meanings of parameters are presented. The uniform control equation is given, and with the introduction of quasi-uniform B-spline elements, the simply and clamped supported constraints problems are simplified. Another modeling technique is based on self-equilibrium membrane. The prediction technology of clamping boundary and quasi-uniform B-splines are introduced to express surface, and suppositional stiffness of point is deduced. With the combination of Laplace-Young's equation and dynamic relaxation method, the optimal surface inherited is shaped according to the change of average curvature. Numerical examples present that it is convenient to get minimal surface, seek for similar surfaces and mesh more grids by using above techniques.
     Reverse modeling method is derived from the principle of reverse engineering. Firstly, it scans the physical model to get cloud data by 3-dimensional laser scanning system. Secondly, the cloud data are handled by reverse software to get scan-lines data. Thirdly, the scan-lines data are shaped by improved skinning surface technique and meshed to CAD model. Finally, the CAD model can be fabricated by paper through the board-lofting technique. Several examples and experiments prove that the reverse modeling method is feasible.
     In dissertation, some grid quality criteria are given. Several practical grid modes are extended. The improved energy method is applied to smooth grid system, and disciplinarian with punished factor and grid quality criteria is concluded. One optimization algorithm of grid system is proposed, where the grid system characteristics, grid quality and tolerance of elements length, etc. are weighted to perform objective function.
     According to the theory and algorithm aforementioned, a computer aided design program named geometric configuration, GCCAD for short, is developed. GCCAD has friendly pre- and post- processing functions, and graphical interfaces. It provides operating platform and improve the efficiency and convenience of design work.
     The conclusions and problems that should be studied further are summarized at the end of dissertation.
引文
[1]董石麟,罗尧治,赵阳等.新型空间结构分析、设计与施工[M].北京:人民交通出版社,2006.
    [2]沈祖炎,陈扬骥.网架与网壳[M].上海:同济大学出版社,1997.
    [3]刘先觉.现代建筑理论[M].北京:中国建筑工业出版社,2008.
    [4]Pearce P J.Principle of morphology and the future of architecture[J].International Journal of Space Structures,1996,11(1/2):103-114.
    [5]武岳,李欣,王敬烨,沈世钊.自由曲面空间结构的形态学研究[C].第十二届空间结构学术会议论文集,北京,2008.
    [6]罗尧治.大跨度储煤结构——设计与施工[M].北京:中国电力出版社,2007.
    [7]龚景海,刘锡良.基于遗传算法的网格结构优化方法[J].天津大学学报,2000,33(1):93-96.
    [8]邓华.空间网格结构基于离散变量的优化设计[J].空间结构,2000,6(3):26-32.
    [9]沈世钊.大跨空间结构的发展[J].土木工程学报,1998,31(3):5-14.
    [10]Bradshaw R,Campbell D,Gargari M,Mirmiran A,Tripeny P.Special structures:past,present,and future[J].Journal of Structural Engineering,2002,128(6):691-709.
    [11]尹德钰,赵红华.现代空间结构的基本特征[J].山西建筑,2002,28(2):1-6.
    [12]刘锡良,董石麟.20年来中国空间结构形式创新[C].第十届空间结构学术会议论文集,北京:中国建材工业出版社,2002.
    [13]马克俭,张华刚,郑涛.新型建筑空间网格结构理论与实践[M].北京:人民交通出版社,2006.
    [14]郑馨,李巍.数字化时代建筑空间形态——信息时代建筑设计认知与表现方式[J].长春工业大学学报(自然科学版),2007,128(4):486-490.
    [15]施法中.计算机辅助几何设计与非均匀有理B样条(CAGD&NURBS)[M].北京:北京航空航天大学出版社,1994.
    [16]吴晓,虞刚(译).当代建筑与数字化设计[M].北京:中国建筑工业出版社,2007.(Peter Szalapaj.2005).
    [17]刘育东.数码建筑[M].大连:大连理工大学出版社,2002.
    [18]李建成,卫兆骥,王诂.数字化建筑设计概论[M].北京:中国建筑工业出版社,2007
    [19]Nooshin H,Disney P.Formex configuration processing[J].International Journal of Space Structures,2000,15(1),2001,16(1),2002,17(1).
    [20]何艳丽,徐国彬.空间网格结构的自动成形[J].北方交通大学学报,1996,20(5):606-609.
    [21]赵红华.可视形式代数法——一种实用的空间结构建模方法[J].太原工业大学学报,1997,28(4):79-83.
    [22]何艳丽,吴其永,杨宏林.形式代数在空间网格结构中的应用[J].计算机工程与应用,1999,(3):39-41.
    [23]Anderson D J,Wendel W R,Hok V G.TekCAD-A new system for creating space structures[J].Space Structures,2002,1(5):775-784.
    [24]罗尧治,董石麟.空间网格结构微机设计软件MSTCAD的开发[J].空间结构,1995,1(3):53-59.
    [25]王国瑾,汪国昭,郑建民.计算机辅助几何设计[M].北京:高等教育出版社,海德堡:施普林格出版社,2001.
    [26]Bezier P E.Numerical control—mathematics and applications(Translated by Forrest A R)[M].London:John Wiley and Sons,1972.
    [27]Bezier P E.The mathematical basis of the UNISURF CAD system[M].London:Butterworth,1986.
    [28]Coons S A.Surfaces for computer aided design of space forms[R].MIT,Project MACTR41,1967.
    [29]Schoenberg I J.On spline function[M].In Shisha O.ed.New York:Inequalities Academic Press,1967.
    [30]Gordon W J,Riesenfeld R F.B-spline curves and surfaces[M].Computer Aided Grometric Design,Academic Press,1974.
    [31]Harald K.Structural design of contemporary free-form-architecture[C].New Olympics New Shell and Spatial Structures,IASS-APCS 2006 Symposium,Beijing,China,2006.
    [32]张东声.自由曲面薄壳屋面造型研究[D].西安:西北工业大学,2004.
    [33]公晓莺.空间结构曲面生成与网格划分技术研究[D].杭州:浙江大学,2004.
    [34]公晓莺,罗尧治.面向空间结构自由曲面重建技术[C].第五届全国现代结构工程学术研讨会论文集,北京:工业建筑杂志社,2005.
    [35]罗尧治,公晓莺.基于双三次B样条插值的空间结构自由曲面[J].空间结构,2004,10(2):30-34.
    [36]张浩.空间结构曲面造型算法及程序实现[D].杭州:浙江大学,2005.
    [37]岑培超.空间结构参数曲面描述及网格划分算法[D].杭州:浙江大学,2006.
    [38]李娜,岑培超,罗尧治.仿扇贝形体的网壳结构建模及造型优化方法[J].科技通报,2008,24(2):224-230.
    [39]Hodmann I S.The concept of pellevation for shaping of structural forms[J].Space Structures,2002,1(5):433-442.
    [40]Barr A H,Global and local deformation of solid primitives[J].Graph,1984,18(3):21-30.
    [41]Sederberg T W,Parry S R.Free-form deformation of solid geometric models[J].Graph,1986,20(4):151-160.
    [42]Coquillart S.Extended free-form deformation:a sculpturing tool for 3D geometric modeling[J].Graph,1990,24(4):187-196.
    [43]Hsu W M,Hughes J F,Kaufman H.Direct manipulation of free-form deformation[J].Graph,1992,26(2):177-184.
    [44]朱心雄等.自由曲线曲面造型技术[M].北京:科学出版社,2000.
    [45]Terzopoulos D,Platt J,Barr A.Elastically deformable models[J].Computer Graphics,1987,21(4):205-214.
    [46]Terzopoulos D,Qin H.Dynamics NURBS with geometric constrains for interactive sculpting[J].Transactions on Graphics,1994,13(2):103-136.
    [47]Celniker G,Gossard D.Continuous deformable curves and their application to fairing 3D geometry[C].Geometric Modelling,Rensselaeville,NY,USA,1991.
    [48]Celniker G,Gossard D.Deformable curve and surface finite-elements for free-form sharp design[J].Computer Graphics,1991,25(4):257-266.
    [49]Celniker G,Welch W.Linear constrains for deformable B-spline surface[C].Proceedings of the Symposium on Interactive 3D graphics,New York,1992.
    [50]关志东.基于物理模型的变形曲线曲面造型方法应用研究[D].北京:北京航空航天大学,1996.
    [51]经玲,席平,唐荣锡.有限元方法在变形曲线曲面造型中的应用[J].计算机学报,1998,21(3):245-251.
    [52]宋德军,朱心雄.用能量优化方法构造N边域曲面[J].工程图学学报,1998(1):41-47.
    [53]戴春来.样条曲线的参数化变形方法[J].计算机辅助设计与图形学学报,2005,17(6):1207-1212.
    [54]Wesselink W,Veltkamp R C.Interactive design of constrained variational curves[J].Computer Aided Geometric Design,1995,12(5):533-546.
    [55]朱翔,胡事民,孙家广.基于外部能量约束的曲面形状修改[J].计算机辅助设计与图形学学报,2000,12(9):651-655.
    [56]季洁,满家巨.任意边界下的极小曲面造型问题[J].计算机与现代化,2007,(4):4-6.
    [57]易发安,胡加珠,岳艳芳.索网和膜结构的最小曲面分析[J].工程力学,2004,21(4):167-171.
    [58]纵智育,辛克贵,王珊.张力膜结构初始形态分析的曲面四边形单元[J].工程力学,2006,23(3):32-36.
    [59]满家巨,汪国昭.等温参数多项式极小曲面[J].计算机学报,2002,25(2):197-201.
    [60]满家巨,汪国昭.B-样条函数极小曲面造型[J].软件学报,2003,14(4):824-829.
    [61]覃廉,关履泰.基于NURBS的极小曲面造型[J].高等学校计算数学学报,2005,(27):175-181.
    [62]刘计善.一类极小曲面造型设计的新方法[J].复旦学报,自然科学版,2007,46(2):192-197.
    [63]Schek H K.The force densities method for form-finding and computation of general nets[J].Computer Methods in Applied Mechanics Engineering,1974,3(3):115-134.
    [64]Barnes M R.Form finding and analysis of tension structures by dynamic relaxation [J].International Journal of Space Structures,1999,14(2):89-104.
    [65]Haug E,Powell G H.Finite element analysis of nonlinear membrane structures[C].IASS Pacific Symposium on Tension Structures and Space Frames,Tokyo and Kyoto,Japan,1971.
    [66]Brew J S,Lewis W J.Computational form-finding of tension membrane structures—non-finite element approaches:part 1.use of cubic splines in finding minimal surface membranes[J].International Journal for Numerical Methods in Engineering,2003,(56):651-668.
    [67]Brew J S,Lewis W J.Tension membrane modelled by curvi-linear bicubic splines[J].International Journal for Numerical Methods in Engineering,2007,(72):1-21.
    [68]Balz M,Isler H.Live under shells[C].LASS 1984 Symposium,Dortmund R(a|¨)umliche Tragwerke,1984.
    [69]Chilton J,Isler H.The engineer's contribution to temporary architecture[M].London:Thomas Telford Publishing,2000.
    [70]Balz M,B(o|¨)hm J.Generating shell models and their realization by photogrammetric measurement[C].Shell and Spatial Structures from Models to Realization,LASS 2004 Symposium,Montpellier,France,2004.
    [71]Varady T.Reverse engineering of geometric models:an introduction[J].Computer Aided Design,1997,29(4):255-268.
    [72]柯映林,肖尧先,李江雄.反求工程CAD建模技术研究[J].计算机辅助设计与图形学学报,2001,13(6):570-575.
    [73]Massimo M.Architecture & structures:ethics in free-form-design[C].New Olympics New Shell and Spatial Structures,IASS-APCS 2006 Symposium,Beijing,China,2006.
    [74]Raup D M.Computer as aid in describing form in gastropod shells[J].Science,1962,(138):150-152.
    [75]Stach E.Form-optimizing in biological structures:the morphology of seashells[C].Shell and Spatial Structures from Models to Realization,LASS 2004 Symposium,Montpellier,France,2004.
    [76]卓新,董石麟.基于仿生学的空间结构形体设计[J].空间结构,2003,9(3):3-5.
    [77]卓新,董石麟.海洋贝类仿生建筑的结构形体研究[J].空间结构,2004,10(4):19-22.
    [78]Pavlov G N,Novgorod N.Methods of virtual architecture used for the design of geodesic domes and multi-petal shells[J].Space Structures,2002,1(5):673-681.
    [79]Joe B.Three-dimensional triangulations from local transformations[J].SIAMJ.Sci.Star.Comput.,1989,(10):718-741.
    [80]Barry J.Construction of three-dimensional delaunay triangulations using local transformations[J].Computer Aided Geometric Design,1991,(8):123-142.
    [81]杨钦,徐永安,陈其明,谭建荣.三维约束Delaunay三角化的研究[J].计算机辅助设计与图形学学报,2000,12(8):590-594.
    [82]徐永安,杨钦,吴壮志,陈其明,谭建荣.三维约束Delaunay三角化的实现[J].软件学报,2001,12(1):103-110.
    [83]Lo S H.A new mesh generation scheme for arbitrary planar domains[J].International Journal of Numerical Methods in Engineering,1985,(21):1403-1426.
    [84]Boner J,Peraire J.An alternating digital tree algorithm for 3D geometric searching and intersection problems[J].International Journal of Numerical Methods in Engineering,1991,(31):1-17.
    [85]Gorden W J,Hall M S.Construction of curcilinear coordinate systems and applications to mesh generation[J].International Journal of Numerical Methods in Engineering,1973,(5):461-477.
    [86]郑志镇,李尚健,李志刚.曲面网格划分算法的分类与比较[J].计算机辅助工程,1998,(1):53-58.
    [87]Scheneiders R.A rid based algorithm for the generation of hexahedral element meshes[J].Engineering with Computers,1996,12(3/4):168-177.
    [88]Scheneiders R,Schindler R,Weiler F.Octree-based generation of hexahedral element meshes[C].Proceedings of the 5~(th) International Meshing Roundtable,Sandia National Laboratories,Pittsburgh,1996.
    [89]潘子杰,杨文通.有限元四边形网格划分的两种算法[J].机械设计与制造,2002,(4):50-51.
    [90]窦一康.用逐点插入法自动生成全四边形的自适应有限元网格[J].计算力学学报,1997,14(3):317-323.
    [91]孙立波,陈文亮,张胜,翟建军.复杂曲面的四边形网格生成算法[J].机械制造与研究,2003,(1):23-25.
    [92]De Boor C.On Calculating with B-Spline[J].Journal of Approximation Theory,1972,(6):50-62.
    [93]Cox M G.The numerical evaluation of B-splines[R].Report No.NPL-DNACS-4,National Physical Laboratory,1971.
    [94]Farin G.Curvature continuity and offsets for piecewise conics[J].ACM Transactions On Graphics,1989,8(2).
    [95]李有法.数值计算方法[M].北京:高等教育出版社,1996.
    [96]胡海昌.弹性力学的变分原理及其应用[M].北京:科学出版社,1981.
    [97]李洪芳.热学[M].北京:高等教育出版社,2001.
    [98]陈务军.膜结构工程设计[M].北京:中国建筑工业出版社,2000.
    [99]Brew J S,Brotton D M.Non-linear structural analysis by dynamic relaxation[J].International Journal for Numerinal Methods in Engineering,1971,3(4):463-483.
    [100]宋雄彬,韩大建.动力松弛法在膜结构找形分析中的应用[J].广州建筑,2006,(4):4-8.
    [101]张华,单建.预应力索膜结构的DR法找形分析[J].工程力学,2002,19(2):41-44.
    [102]周克勤,许志刚,宇文仲.三维激光影像扫描技术在古鉴测绘与保护中的应用[J].工程勘察,2004,(5):43-46.
    [103]Shih N J,Wang H J,Lin C Y,Lian C Y.3D Scan for The digital preservation of a historical temple in Taiwan[J].Advances in Engineering Software,2007,38(7):501-512.
    [104]王霄.逆向工程技术及其应用[M].北京:化学工业出版社,2004.
    [105]陈顶君,程俊廷.反求工程测量方法综述[J].机械,2004,31(4):19-20.
    [106]Winkelbach S,Molkenstruck S,Wahl F M.Low-cost laser range scanner and fast surface registration approach[C].Springer Berlin Heidelberg,DACM,2006,LNCS 4174:718-728.
    [107]赵小松,张宏伟,张国雄,李真.摄像机标定技术的研究[J].机械工程学报,2002,38(3):149-151.
    [108]Tsai R Y.An efficient and accurate camera calibration technique for 3d machine vision[C].IEEE Conference on Computer Vision and Pattern Recognition,Miami Beach,F1,1986:364-374.
    [109]Fischler M A,Bolles R C.Random sample consensus:a paradigm for model fitting with applications to image analysis and automated cartography.Communications of the ACM,1981,24(6):381-395.
    [110]金涛,童水光等.逆向工程技术[M].北京:机械工业出版社,2003.
    [111]Woodward C D.Cross sectional design of B-spline Surface[J].Computer and Graphics,11(2),1987.
    [112]王秀丽,苏成江,郑川,莫庸,金建民,杨金香.嘉峪关气象塔“海豚”网壳结构分析[C].第四届海峡两岸结构与岩土工程学术研讨会,杭州,2007.
    [113]Parida L,Mudur S P.Constraint-satisfying planar development of complex surfaces [J].Computer Aided Design,1993,25(4):225-232.
    [114]Hinds B K,Mccartney J,Woons G.Pattern development for 3D surfaces[J].Computer Aided Design,1991,23(8):583-592.
    [115]席平.三维曲面的几何展开[J].计算机学报,1997,(4):315-322.
    [116]席平,张珩,熊歆斌,魏广宽.不规则压延件展开毛料的几何计算法[J].工程图学学报,1998,(3):94-100.
    [117]Shimada T,Tada Y.Approximate transformation of an arbitrary curved surfaces into a planar using dynamic programming[J].Computer Aided Design,1991,23(2):153-159.
    [118]Shimada T,Tada Y.Development of curved surfaces using finite element method[J].Computer-Aided Optimum Design of Structures,1989,Spring Verlag:23-30.
    [119]杨晖柱,张其林,常治国,陈国栋.空间弯扭箱型截面构件的数字化三维建模与放样技术[J].钢结构,2007,22(6):65-69.
    [120]张洪武,关振群,李云鹏,顾元宪.有限元分析与CAE技术基础[M].北京:清华大学出版社,2004.
    [121]刘晓,骆少明,吕惠卿.超限映射法的四边形网格划分技术研究[J].广东工业大学学报,2006,23(1):81-84.
    [122]经玲,席平,唐荣锡.应用可变形模型进行曲线曲面光顺[J].软件学报,1998,9(6):464-468.
    [123]白新理等.结构优化设计[M].郑州:黄河水利出版社,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700