用户名: 密码: 验证码:
高压脉动水力压裂增透机理与技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在我国煤矿开采过程中,与瓦斯相关的危害越来越严重,严重影响煤矿安全生产。同时瓦斯作为一种非常规天然气能源,储量达36.8万亿m3。我国70%左右的煤层瓦斯赋存具有微孔隙、低渗透率、高吸附的特征。水力压裂是提高煤层瓦斯抽采效率的有效技术措施之一,但是现有水力压裂技术需设备大、压力大,不利于煤矿井下推广。本文采用理论分析、实验研究和现场试验相结合的方法,在常规水力压裂基础上提出了脉动水力压裂技术,取得如下主要研究成果:
     首先研究了地应力和脉动压力波两种载荷作用下煤岩体破裂损伤机理。分析了脉动压力波产生机理,确定流量脉动率。在分析煤岩体孔隙、裂隙的基础上,研究地应力对煤岩体力学性质及对水力压裂的影响规律。确定总应力强度因子为地应力与脉动压力波分别作用于煤岩体上位移和应力的分量之和,描绘出总应力强度因子曲线。研究水力压裂起裂及扩展机理,并利用数值模拟软件验证,得出水力压裂能使煤岩体应力带想压裂孔两侧煤层深处移动,并在大范围内形成了塑性变形,有效降低地应力的同时破坏煤岩体,有效降低煤层的瓦斯压力。
     第二、将脉动压力的传播看做应力波的传播,选取瞬变流模型为研究脉动压力波传播基本模型,利用脉动压力传播方程对脉动压力进行数值计算,分析裂隙贯通前后脉动压强变化规律,脉动反射波由于波速和流速的叠加,使其在裂隙尖端出现压力增大的现象。利用脉动水力压裂平台验证在管路闭合条件下,脉动频率为50Hz与40Hz时,脉动压力波波峰在裂隙尖端出现压力增大现象,最大增幅50%。在此基础上研究脉动压力波破煤岩机理,得出脉动水力压裂能以较小的脉动压力取得常规水力压裂的效果。
     第三、针对本煤层脉动水力压裂封孔困难的状况,分析高压封孔的基本原理,通过添加膨胀剂、减水剂等材料研制出水泥基抗高压封孔材料,通过实验分别得出膨胀剂与减水剂的添加配比,利用低场核磁共振设备研究添加膨胀剂与减水剂的水泥浆体的水化反应过程,将水化反应分为四个阶段,指出在反应期(1.5h之内)完成现场注浆工作,得出水化反应的起始时间,为现场施工提供理论指导。
     最后,为配合高压脉动水力压裂技术的应用,解决工程实践中遇到的问题,研制了高压脉动水力压裂一体化装备,提出治理高瓦斯低透气性煤层卸压增透的“钻”“压”“抽”三位一体技术,并在此基础上将该装备应用于晋煤集团成庄矿,共在三个不同区域进行试验,对相关参数进行了测定分析。
     研究成果在现场应用表明,实施脉动水力压裂后,瓦斯抽采效果明显。脉压裂孔平均纯流量为0.05m3/min,为普通抽采孔的2.5倍。压裂结束后压裂区域含水量提高2倍左右,煤层透气性系数增加了47.8倍,达到41m2/(MPa2d),压裂后压裂孔周围10m范围内脉冲及辐值明显降低,使支承压力峰值降低。
     研究结果对于单一低透煤层瓦斯防治提供理论与实践基础,课题研究期间作者发表学术论文7篇,其中EI检索两篇,EI录用两篇,获得各项科研奖励5项。
During the process of coal mining in China, the hazards related to gas is moreand more serious, which will not only affect the coal mine production safety, but gasemissions into the air will also cause atmospheric pollution, meanwhile gas as a kindof unconventional natural gas energy, reserves of36.8trillion m3. About70%ofChina Coalbed gas have the characteristics of micro-porosity, low permeability andhigh adsorption, resulting the gas disaster-prone. Hydraulic fracturing is an effectivetechnique to improve the efficiency of gas extraction from coal seam, but the existinghydraulic fracturing technology has big equipment and pressure, which is notconducive to the coal mine.We developed pulsating hydraulic fracturing technologybased on the conventional hydraulic fracturing, which can increase seam permeability,reduce stress and increase the amount of gas drainage.
     In this paper, we analysed the fracture damage mechanism of coal rock massunder the effect of two loads, crustal stress and pulsating stress wave firstly,confirmed that the total stress intensity should be the sum of displacement and stresscomponent of crustal stress and pulsating stress wave acting on the coal rock mass.Total stress intensity factor curve was traced out and pulsating hydraulic fracturingprocess can be divided into three stages. Under repetitive effect of pulsating stresswave, the energy of coal rock mass accumulates continuously which makes it fracturerandomly. The fracture of coal rock mass makes the static stress field changescontinuously, meanwhile, the follow-up dynamic stress field changes randomly.Comprehensive changes of the two stress fields increases the randomness of fatiguedamage of rock mass in turn and then lead to the damage accumulates continuously,mechanical property of rock mass degenerates ceaseless, at last, it makes thecondition of jointed rock changes from crack initiation, expansion to joint wellconnected. Analysis of numerical simulation showed that after hydraulic fracturing,crustal stress of elevated stress area on both sides of cracks reduced to a very lowlevel and plastic deformation was formed in a large area. This indicates that hydraulicfracturing technology can reduce the crustal stress effectively while damaging coalrock mass and reduce the gas pressure of coal seam. At the same time, direction ofcoal crack can be controlled by setting oriented control drill holes.
     secondly, regarding the spread of pulsating pressure as the propagation of stresswave, the transient flow model was selected for the study of pulse pressure wave propagation, fluctuating pressure propagation equation was used to calculate the valueof fluctuating pressure. The variation of fluctuating pressure before and after thecracks connect with each other was analysed. Due to the superposition of wavevelocity and flow velocity, pressure of pulsating reflected wave increases at the tip ofcrack. Using pulsating hydraulic fracturing experiment platform, different pulsefrequency was tested. At the condition of50Hz, pulsating stress wave increased by50%, reached to1.5MPa. However, at40Hz, pulsating stress wave increased by28.6%, reached to0.9MPa. It can be seen that the damage effect on coal-rock mass isbetter at the condition of50Hz.
     Thirdly, we analyzed the basic principle of the high pressure sealing in responseto the problems of drilling sealing in pulsating hydraulic fracturing. We determinedthe ratio of expansion agent and water reducing agent through experiments, anddeveloped the cement-based high-pressure sealing material by adding expansion agentand water reducing agent. What’s more, the hydration process of cement paste withexpansion agent and water reducing agent was divided into four stages, through theresearch by low-field NMR equipment in it. It was pointed out that the grouting workshould accomplished during the reaction period and the start time of hydration processwas33~35minutes, providing theoretical guidance for the site construction.
     Finally, to cope with the application of high pressure pulse hydraulic fracturingtechnology and problems occurred in engineering practice, we manufactured theintegration equipment of high pressure pulsating hydraulic fracturing, proposed drill-fracture-drainage trinity technology for pressure relief and permeability increase inhigh gas, low permeability coal seam. On that basis, the equipment was applied in theChengzhuang Mine of Jinmei Group. Field tests were conducted in three differentareas and relevant parameters were analysed.
     Field test results show that there is an obvious effect in gas extraction afterpulsating hydraulic fracturing. The average pure flow of pulsation fracturing hole is0.05m3/min,2.5times of normal drainage hole. After fracturing, water content infracturing area increased by2times and permeability coefficient of coal seamincreased by47.8times, reached to41m2/(MPa2d). Pulse and amplitude valuedecreased obviously within the10m range of fracturing hole which reduces the peakvalue of abutment pressure.
     In addition,7papers about research results were and will be published, in which2has been indexed by EI,2will be published in EI source journals.
引文
[1]林柏泉等.矿井瓦斯防治理论与技术[M].徐州市:中国矿业大学出版社,2010:402.
    [2]程建军,程绍仁,赵小兵.“以风定产”确保煤矿安全生产——对晋城地方煤矿防治瓦斯的剖析[J].煤炭工程.2004(1):49-52.
    [3]李毅中:必须强力推进瓦斯治理“十二字”方针[J].煤矿安全.2006(8):78.
    [4]周杨洲.穿层水力冲孔技术的研究及应用[D].安徽理工大学,2011.
    [5]杜宇,冯雷.张德江在全国煤矿瓦斯治理现场会上强调——继续打好瓦斯治理攻坚战促进全国煤矿安全生产形势稳定好转[J].中国煤炭.2008,34(7):5.
    [6]程远平,付建华,俞启香.中国煤矿瓦斯抽采技术的发展[J].采矿与安全工程学报.2009,26(2):127-139.
    [7] Bitsch-Larsen A, Horn R, Schmidt L D. Catalytic partial oxidation of methane on rhodiumand platinum: Spatial profiles at elevated pressure[J]. Applied Catalysis A: General.2008,348(2):165-172.
    [8] Palchik V. In situ study of intensity of weathering-induced fractures and methane emissionto the atmosphere through these fractures[J]. Engineering Geology.2012,125(0):56-65.
    [9] Hourri A, Angers B, Bénard P, et al. Numerical investigation of the flammable extent ofsemi-confined hydrogen and methane jets[J]. International Journal of Hydrogen Energy.2011,36(3):2567-2572.
    [10] Karacan C, Ruiz F A, Cotè M, et al. Coal mine methane: A review of capture andutilization practices with benefits to mining safety and to greenhouse gas reduction[J].International Journal of Coal Geology.2011,86(2–3):121-156.
    [11] Hourri A, Angers B, Bénard P, et al. Numerical investigation of the flammable extent ofsemi-confined hydrogen and methane jets[J]. International Journal of Hydrogen Energy.2011,36(3):2567-2572.
    [12]李宗翔,孙广义,王继波.煤层长钻孔注水过程的数值模拟与参数的合理确定[J].煤炭学报.2001(4):389-393.
    [13]袁志刚,王宏图,胡国忠,等.煤层注水难易程度的Fisher判别分析模型及应用[J].煤炭学报.2011(4):638-642.
    [14]胡光伟,吴拥政.煤层注水在煤巷掘进防突中的应用[J].煤矿开采.2012(1):91-92.
    [15]李宗翔,潘一山,题正义,等.木城涧矿煤层高压注水的数值模拟分析[J].岩石力学与工程学报.2005(11):1895-1899.
    [16]杨宏伟.低透气性煤层井下分段点式水力压裂增透[J].北京科技大学学报.2012(11):1235-1239.
    [17]唐书恒,朱宝存,颜志丰.地应力对煤层气井水力压裂裂缝发育的影响[J].煤炭学报.2011(1):65-69.
    [18]倪冠华,林柏泉,翟成,等.脉动水力压裂钻孔密封参数的测定及分析[J].中国矿业大学学报.2013(2):177-182.
    [19]刘万伦.水力冲刷防突技术在突出煤层掘进工作面的应用[J].矿业安全与环保.2004(4):64-65.
    [20]瞿涛宝.水力冲刷技术处理煤层瓦斯初探[J].中州煤炭.1995(6):12-14.
    [21]段康廉,冯增朝,赵阳升,等.低渗透煤层钻孔与水力割缝瓦斯排放的实验研究[J].煤炭学报.2002(1):50-53.
    [22]叶青,李宝玉,林柏泉.高压磨料水力割缝防突技术[J].煤矿安全.2005(12):13-16.
    [23]李德玉,吴海进,王春利.煤层水力割缝喷嘴特性的数值研究[J].煤炭学报.2010(4):686-690.
    [24]唐巨鹏,李成全,潘一山.水力割缝开采低渗透煤层气应力场数值模拟[J].天然气工业.2004(10):93-95.
    [25]张子敏.瓦斯地质学[M].徐州市:中国矿业大学出版社,2009:412.
    [26]胡殿明,林柏泉.煤层瓦斯赋存规律及防治技术[M].徐州市:中国矿业大学出版社,2006:307.
    [27]林柏泉,周世宁.含瓦斯煤体变形规律的实验研究[J].中国矿业学院学报.1986(3):12-19.
    [28]林柏泉,周世宁.煤样瓦斯渗透率的实验研究[J].中国矿业学院学报.1987(1):24-31.
    [29]贾军,唐培琴.三轴应力对煤层渗透性的影响[J].探矿工程(岩土钻掘工程).1994(1):43-47.
    [30]张广洋,胡耀华,姜德义.煤的瓦斯渗透性影响因素的探讨[J].重庆大学学报(自然科学版).1995(3):27-30.
    [31]胡耀青,赵阳升,魏锦平.三维应力作用下煤体瓦斯渗透规律实验研究[J].西安矿业学院学报.1996(4):20-23.
    [32]郑少河,段康廉,赵阳升.有效应力作用下单裂隙渗透规律的实验研究[J].山西矿业学院学报.:63-68.
    [33]何伟钢,唐书恒,谢晓东.地应力对煤层渗透性的影响[J].辽宁工程技术大学学报(自然科学版).2000(4):353-355.
    [34]赵阳升,杨栋,胡耀青,等.低渗透煤储层煤层气开采有效技术途径的研究[J].煤炭学报.2001,26(5):455-458.
    [35]靳钟铭,赵阳升,贺军,等.含瓦斯煤层力学特性的实验研究[J].岩石力学与工程学报.1991(3):271-280.
    [36]黄炳香.煤岩体水力致裂弱化的理论与应用研究[J].煤炭学报.2010(10):1765-1766.
    [37] Sheng M, Li G, Huang Z, et al. Experimental study on hydraulic isolation mechanismduring hydra-jet fracturing[J]. Experimental Thermal and Fluid Science.2013,44(0):722-726.
    [38] Reinicke A, Rybacki E, Stanchits S, et al. Hydraulic fracturing stimulation techniques andformation damage mechanisms—Implications from laboratory testing of tight sandstone–proppant systems[J]. Chemie der Erde-Geochemistry.2010,70, Supplement3(0):107-117.
    [39] Zimmermann G, Bl cher G, Reinicke A, et al. Rock specific hydraulic fracturing and matrixacidizing to enhance a geothermal system—Concepts and field results[J]. Tectonophysics.2011,503(1–2):146-154.
    [40] Shimizu H, Murata S, Ishida T. The distinct element analysis for hydraulic fracturing in hardrock considering fluid viscosity and particle size distribution[J]. International Journal of RockMechanics and Mining Sciences.2011,48(5):712-727.
    [41] Sasaki S. Characteristics of microseismic events induced during hydraulic fracturingexperiments at the Hijiori hot dry rock geothermal energy site, Yamagata, Japan[J].Tectonophysics.1998,289(1–3):171-188.
    [42] Ito T, Sato A, Hayashi K. Two methods for hydraulic fracturing stress measurementsneedless the ambiguous reopening pressure[J]. International Journal of Rock Mechanics andMining Sciences.1997,34(3–4):141-143.
    [43]李志.苏联水力压裂抽放瓦斯资料[J].煤矿安全.1981(1):33.
    [44] Hustoft S, Mienert J, Bünz S, et al. High-resolution3D-seismic data indicate focussed fluidmigration pathways above polygonal fault systems of the mid-Norwegian margin[J]. MarineGeology.2007,245(1–4):89-106.
    [45] Hustoft S, Mienert J, Bünz S, et al. High-resolution3D-seismic data indicate focussed fluidmigration pathways above polygonal fault systems of the mid-Norwegian margin[J]. MarineGeology.2007,245(1–4):89-106.
    [46] zgen Karacan C, Goodman G. Hydraulic conductivity changes and influencing factors inlongwall overburden determined by slug tests in gob gas ventholes[J]. International Journal ofRock Mechanics and Mining Sciences.2009,46(7):1162-1174.
    [47] Clarkson C R, Jordan C L, Ilk D, et al. Rate-transient analysis of2-phase (gas+water)CBM wells[J]. Journal of Natural Gas Science and Engineering.2012,8(0):106-120.
    [48]李黎,阮欣,滕国伟.水力压裂技术提高煤层透气性研究及应用[J].煤矿现代化.2011(5):28-29.
    [49] Meng Z, Zhang J, Wang R. In-situ stress, pore pressure and stress-dependent permeability inthe Southern Qinshui Basin[J]. International Journal of Rock Mechanics and Mining Sciences.2011,48(1):122-131.
    [50] Lv Y, Tang D, Xu H, et al. Production characteristics and the key factors in high-rankcoalbed methane fields: A case study on the Fanzhuang Block, Southern Qinshui Basin, China[J].International Journal of Coal Geology.2012,96–97(0):93-108.
    [51] Lv Y, Tang D, Xu H, et al. Production characteristics and the key factors in high-rankcoalbed methane fields: A case study on the Fanzhuang Block, Southern Qinshui Basin, China[J].International Journal of Coal Geology.2012,96–97(0):93-108.
    [52]王国鸿,徐赞.水力压裂技术提高低透气性煤层瓦斯抽放量浅析[J].煤矿安全.2010(8):120-121.
    [53]张国华.本煤层水力压裂致裂机理及裂隙发展过程研究[D].辽宁工程技术大学,2003.
    [54]翟成,李贤忠,李全贵.煤层脉动水力压裂卸压增透技术研究与应用[J].煤炭学报.2011(12):1996-2001.
    [55]赵振保.变频脉冲式煤层注水技术研究[J].采矿与安全工程学报.2008(4):486-489.
    [56]章毅,杨胜强.脉动水力压裂技术应用于煤层注水综述[J].中国科技论文在线.2010(11):902-906.
    [57]白占芳.应用中高压注水综合防突技术实现煤巷快速掘进[J].煤矿安全.2006(6):20-22.
    [58]代志旭.高压水力压裂技术在瓦斯综合治理中的研究与应用[J].煤炭工程.2010(12):82-84.
    [59]陈杰,金龙哲.关于聚氨酯封孔可提高瓦斯抽放效果的研究[J].煤炭工程.2003(8):47-49.
    [60]成艳英,林柏泉,郝志勇,等.聚氨酯封孔材料双液混合均匀度CFD模拟[J].煤矿安全.2012(8):53-56.
    [61]高振勇,张志刚,尹斌.提高聚氨酯封孔质量的研究[J].矿业安全与环保.2009:37-38.
    [62]姚建伟.马丽散加固破碎顶板在煤矿中的应用[J].科技风.2012(14):91.
    [63]张洪石.浅析马丽散注浆技术在巷道维修施工中的应用[J].科学咨询(科技·管理).2012(11):61-63.
    [64]王亮,杨奇,何苗,等.低水胶比下掺入粉煤灰的水泥砂浆性能的试验[J].混凝土.2012(11):71-72.
    [65]黄忠邦.水泥砂浆及钢筋网水泥砂浆面层加固砖砌体试验[J].天津大学学报.1994(6):764-770.
    [66]刘松.水泥砂浆封孔工艺改进[J].中小企业管理与科技(上旬刊).:301.
    [67]周福宝,夏同强,刘应科,等.二次封孔粉料颗粒输运特性的气固耦合模型研究[J].煤炭学报.2011(6):953-958.
    [68]周福宝,李金海,昃玺,等.煤层瓦斯抽放钻孔的二次封孔方法研究[J].中国矿业大学学报.2009(6):764-768.
    [69]徐绳武.柱塞式液压泵[M].北京市:机械工业出版社,1985:312.
    [70]孟昭君,颜世华,赵正均.2BZ-40/12型脉冲式煤层注水泵的应用[J].煤矿安全.2006(9):37-39.
    [71]许江,陆漆,吴鑫,等.不同颗粒粒径下型煤孔隙及发育程度分形特征[J].重庆大学学报.2011(9):81-89.
    [72]张慧.煤孔隙的成因类型及其研究[J].煤炭学报.2001(1):40-44.
    [73]康天合,赵阳升,靳钟铭.煤体裂隙尺度分布的分形研究[J].煤炭学报.1995(4):393-395.
    [74]张春雷,李太任,熊琦华.煤岩结构与煤体裂隙分布特征的研究[J].煤田地质与勘探.2000(5):26-30.
    [75]孙鑫,林柏泉,董涛,等.穿层深孔水压控制爆破及其在防突工程中的应用[J].采矿与安全工程学报.2010(1):82-86.
    [76]翟成,李全贵,孙臣,等.松软煤层水力压裂钻孔失稳分析及固化成孔方法[J].煤炭学报.2012(9):1431-1436.
    [77]梁运培.煤层钻孔喷孔的发生机理探讨[J].煤矿安全.2007(10):61-65.
    [78]王永龙,翟新献,孙玉宁.松软突出煤层钻孔护壁力学作用机理分析[J].安徽理工大学学报(自然科学版).2012(4):50-55.
    [79]张延新,宋常胜,蔡美峰,等.深孔水压致裂地应力测量及应力场反演分析[J].岩石力学与工程学报.2010(4):778-786.
    [80]唐书恒,朱宝存,颜志丰.地应力对煤层气井水力压裂裂缝发育的影响[J].煤炭学报.2011(1):65-69.
    [81]阳友奎,肖长富,吴刚,等.不同地应力状态下水力压裂的破裂模式[J].重庆大学学报(自然科学版).1993(3):30-35.
    [82]邓林,邓荣贵,程强. Geostress Measurement for Deep-Buried Long Tunnel through NibaMountain[J]. Journal of Southwest Jiaotong University(English Edition).2010(1):27-31.
    [83]倪小明,王延斌,接铭训,等.不同构造部位地应力对压裂裂缝形态的控制[J].煤炭学报.2008(5):505-508.
    [84]朱宝存,唐书恒,颜志丰,等.地应力与天然裂缝对煤储层破裂压力的影响[J].煤炭学报.2009(9):1199-1202.
    [85]邓广哲.封闭型煤层裂隙地应力场控制水压致裂特性[J].煤炭学报.2001(5):478-482.
    [86]徐涛,唐春安,杨天鸿.含瓦斯煤岩破裂过程与突出机理理论、模型与数值试验[M].北京市:煤炭工业出版社,2009:191.
    [87]唐春安等.采动岩体破裂与岩层移动数值试验[M].长春市:吉林大学出版社,2003:108.
    [88]王宇,李建林,邓华锋,等.软岩三轴卸荷流变力学特性及本构模型研究[J].岩土力学.2012(11):3338-3344.
    [89]陈忠辉,林忠明,谢和平,等.三维应力状态下岩石损伤破坏的卸荷效应[J].煤炭学报.2004(1):31-35.
    [90]李世愚和泰名尹祥础.岩石断裂力学导论[M].合肥市:中国科学技术大学出版社,2010.
    [91]赵伏军.动静载荷耦合作用下岩石破碎理论及试验研究[D].中南大学,2004.
    [92]李世愚.岩石断裂力学导论[M].中国科技大学出版社,2009:468.
    [93]苏国韶,张小飞,符兴义,等.爆炸荷载作用下岩体振动特性的DE-FLAC3D数值模拟方法[J].北京理工大学学报.2009(6):471-474.
    [94]刘沛清.挑射水流对岩石河床的冲刷机理研究[D].清华大学,1994.
    [95]李爱华,刘沛清.脉动压力在板块缝隙中传播衰变机理研究[J].水利水电技术.2006(9):33-37.
    [96]李爱华,刘沛清.脉动压力在消力池底板缝隙传播的瞬变流模型和渗流模型统一性探讨[J].水利学报.2005(10):1236-1240.
    [97]李爱华,刘沛清.岩石河床在冲击水流脉动压力作用下的解体破坏机理[J].水利学报.2007(11):1324-1328.
    [98]杨永全,戴光清,张建民.高拱坝泄洪水垫塘衬砌稳定性研究[J].云南水力发电.2000(2):22-25.
    [99]张建民,杨永全,戴光清,等.水垫塘底板缝隙中脉动压力传播特性[J].四川大学学报(工程科学版).2000,32(3):5-8.
    [100]李爱华,刘沛清.脉动压力在板块缝隙中传播衰变机理研究[J].水利水电技术.2006,37(9):33-37.
    [101]卢爱红.应力波诱发冲击矿压的动力学机理研究[M].中国矿业大学,2005.
    [102]黄耀英,沈振中,吴中如.不同应力分量下广义开尔文模型粘性系数探讨[J].应用力学学报.2007(4):588-591.
    [103]胡翔.流变模型在隧道监控数据处理中的应用[J].山西建筑.2012(21):189-190.
    [104]王辉.爆炸荷载下岩石爆破损伤断裂机理研究[D].西安科技大学,2003.
    [105]颜峰,姜福兴.爆炸冲击载荷作用下岩石的损伤实验[J].爆炸与冲击.2009(3):275-280.
    [106] Wang J A, Park H D. Coal mining above a confined aquifer[J]. International Journal ofRock Mechanics and Mining Sciences.2003,40(4):537-551.
    [107]李宁,叶燕华,杜艳静,等.膨胀剂掺量对自密实混凝土收缩性能的影响[J].建筑技术.2011(12):1114-1117.
    [108]梁海滨.膨胀剂在混凝土施工中的应用[J].价值工程.2010(21):147.
    [109]陈建兵,石立民,康惠荣,等.复合膨胀剂限制膨胀率检测方法[J].商品混凝土.2011(8):41-51.
    [110]曾明,周紫晨.一种用于水泥基灌浆料的复合膨胀剂研究[J].混凝土与水泥制品.2011(2):6-9.
    [111]杭美艳,徐广飞,索勇.混凝土减水剂与胶凝材料适应性的研究[J].商品混凝土.2009(2):39-43.
    [112]蔡丽朋.减水剂对水泥的适应性及混杂使用减水效果研究[J].建筑技术.2010(1):47-49.
    [113]张波,张方.聚羧酸盐高效减水剂大掺量复合掺合料及机制砂在大体积混凝土中的应用[J].粉煤灰.2009(4):22-24.
    [114]佘安明,姚武. In-situ Monitoring of Hydration Kinetics of Cement Pastes by Low-fieldNMR[J]. Journal of Wuhan University of Technology(Materials Science Edition).2010(4):692-695.
    [115]孙振平,俞洋,庞敏,等.低场核磁共振技术在水泥基材料研究中的应用及展望[J].材料导报.2011(7):110-113.
    [116]肖立志,石红兵.低场核磁共振岩心分析及其在测井解释中的应用[J].测井技术.1998(1):44-51.
    [117]田慧会,魏厚振,颜荣涛,等.低场核磁共振在研究四氢呋喃水合物形成过程中的应用[J].天然气工业.2011(7):97-100.
    [118]宁年英,林向阳,林婉瑜,等.利用低场核磁共振研究擂溃过程对鲜猪肉糜持水性的影响[J].中国食品学报.2013(2):50-59.
    [119]孙振平,庞敏,俞洋,等.减水剂对水泥浆体横向弛豫时间曲线的影响[J].硅酸盐学报.2011(3):537-543.
    [120]姚武,佘安明,杨培强.水泥浆体中可蒸发水的~1H核磁共振弛豫特征及状态演变[J].硅酸盐学报.2009(10):1602-1606.
    [121] Jehng J Y, Sprague D T, Halperin W P. Pore structure of hydrating cement paste bymagnetic resonance relaxation analysis and freezing[J]. Magnetic Resonance Imaging.1996,14(7-8):785-791.
    [122] Pipilikaki P, Katsioti M. Study of the hydration process of quaternary blended cements anddurability of the produced mortars and concretes[J]. Construction and Building Materials.2009,23(6):2246-2250.
    [123]佘安明,姚武.质子核磁共振技术研究水泥早期水化过程[J].建筑材料学报.2010,13(3):376-379.
    [124]李连崇,杨天鸿,唐春安等岩石水压致裂过程的耦合分析[J].岩石力学与工程学报,2003,22(7):1060~1066.
    [125]冷雪峰,杨天鸿,国怀专,李连崇.单孔岩石水压致裂过程的数值模拟分析[J].世界有色金属,2002,10.
    [126]王艳芬等编著.数字信号处理原理及实现[M].北京:清华大学出版社.2008.03.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700