用户名: 密码: 验证码:
水和乳化液对煤层产甲烷菌群活性影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在中国目前能源结构中,尽管煤炭在能源份额中有下降趋势,但是市场需求逐年增加。随着开采量的增加,煤矿瓦斯灾害事故虽呈下降趋势,但仍时有发生。煤层注水与水力作业在解决煤矿安全与生产难题的同时,也改变了煤层微生物生存环境。本文针对煤层产甲烷菌在新的环境条件下是否能够产生大量甲烷气体,增加煤层瓦斯含量,影响煤矿安全展开了深入的研究。
     本文利用同位素分析法,对煤样中的甲烷生成方式、甲烷菌的活动迹象以及类别进行了综合性分析。并通过地下水与煤层气的氢同位素分析证实生物气的来源。分析结果表明Springfield与Seelyville煤层中具有甲烷菌的活动迹象,并且甲烷菌隶属于二氧化碳转化甲烷菌种。
     通过以水为培养条件下的甲烷菌群的环境适应特征(温度,环境酸碱度,营养元素以及能量需求等)研究,对甲烷菌的环境适应性作出分析。对煤层环境能否满足产甲烷菌群的生存特征以及由于水力作业或注水过程中受水或乳化液影响,对煤层环境的变化能否激活菌群做出了判定。
     根据产甲烷菌群对煤中有机物的选择性代谢特征研究,证实了,伴随代谢过程对煤中有机成分的消耗,甲烷菌群的种群数量和产气速率将受到影响。通过以乳化液为培养条件下,对干燥煤层与湿润煤层中产甲烷菌的生存特征进行了细致分析。结果表明乳化油非但无法抑制产甲烷菌群的活性,反而会由于二氧化碳固定特性使其有利于微生物对碳元素的获取。乳化油作用下形成的煤表面的油膜,为绝对厌氧的产甲烷微生物提供了理想的生存环境。因此乳化液不具备对产甲烷菌的抑制作用,相反其能够有效促进产甲烷菌的代谢和繁殖。水力作业和注水过程中,由于水或乳化液对煤层微生物生存环境的改变,能够使休眠状态的产甲烷菌群被激活,利用煤中的部分有机、无机成分作为营养源完成代谢、生长,并产生甲烷气体,是煤层甲烷含量增加,从而增加了矿山瓦斯灾害发生的危险性。
     该论文有图85幅,表13个,参考文献105篇。
Coal is a kind of important fuel for energy resource structure of China. And the requirement of coal greatly increases with the development of China market. When water or emulsion used in mining or improve safety condition, it also changes the microbial living environment in coalbed. The doctoral dissertation is focus about the methogen consortia activity changes in the new coalbed environment and whether they can yield many methane out to influence the mining safety condition.
     This dissertation study about the methane yield method, methanogen active in history and methanogen type by synthesize using isotopes analysis method and compare coalbed gas with pyrolysis gas. Research identified that Springfield and Seelyville coabed have the activities sign of methanogen, and they belong to carbon dioxide metabolism methanogen.
     This dissertation has studied about the environment motility of methanogen with different conditions which include temperature, pH level, nutrition, energy requirement etc in water. And assess the methanogen active ability with coalbed condition and water influence when water injection or hydraulic work..
     Analysis the nutrition component in coal is in a certain condition. With metabolism process by bacterial, the nutrition with can be used by methogen consortia will reduce and can influence the consortia methane yield ability. The conclusion is based on the coordination characteristics of methanogen consortia.
     With study about methanogen consortia activity ability in emulsion with wet and dry coal sample, this thesis identified that emulsion not only can’t inhibit the bacterial consortia, but also improve them methane yield ability. Otherwise, emulsion can form a kind of oil film on suffice of coal. It can provide a nice anaerobic environment for methanogen consortia.
     The conclusion of this thesis is environment changes with water or emulsion in water injection process can provide enough methanogen consortia active conditions. The bacterial consortia can use some organic component of coal and groundwater as nutrition to yield methane and carbon dioxide with high speed. The new methane source will let the safe condition of coalbed more serious. This phenomenon should pay enough attention as a new gas disaster factor for mining. The thesis contains 85 figures, 13 tables and 92 references.
引文
[1]俞启香.矿井瓦斯防治[M].徐州:中国矿业大学出版社, 1992,
    [2] WANG E.Y., HE X.Q., LIU ZH.T. Electromagnetic radiation detector of coal or rock dynamic disasters and its application [J]. Journal of China Coal Society. 2003,28(4):366~369
    [3] HE X.Q., WANG E.Y., LIU ZH.T. Experimental study on the electromagnetic radiation (EMR) during the fracture of coal or rock[C]. In: Proceedings of the `99 International Symposium on Mining Science and Technology, Beijing, China, August, 29~31, 1999, 133~136
    [4]王兆丰,李志强.水力挤出措施消突机理研究[ J ].煤矿安全,2004,35 (12) : 1 - 4
    [5]李平,王佰顺,李守勤.张集矿17228综采面中深孔煤层高压注水降尘技术[J].煤矿安全,2007,38 (9) : 7 - 8
    [6]段康廉,冯增朝,赵阳升等.低渗透煤层钻孔与水力割缝瓦斯排放的实验研究[J].煤炭学报,2002,27 (1) : 50 - 53
    [7]刘明举,孔留安,郝富昌等.水力冲孔技术在严重突出煤层中的应用[J].煤炭学报,2005,30 (4) : 451 - 454
    [8]魏国营,郭中海,谢伦荣等.煤巷掘进水力掏槽防治煤与瓦斯突出技术[J].煤炭学报,2007,32 (2) : 172 - 176
    [9]刘明举,潘辉,李拥军等.煤巷水力挤出防突措施的研究与应用[J].煤炭学报,2007,32 (2) : 168-171
    [10]瞿涛宝.论煤层注水处理瓦斯的效果[J].煤矿安全,1994 (5) : 39 - 42, 28.
    [11]魏国营,张书军,辛新平.突出煤层掘进防突技术研究[J].中国安全科学学报,2005,15 (6) : 100 - 104
    [12]刘建新,李志强,李三好.煤巷掘进工作面水力挤出措施防突机理[J].煤炭学报,2006,31 (2) : 183 -186
    [13]李平.水力挤出技术在突出煤层中的应用[J].煤炭科学技术, 2007, 30 (8) : 45 - 47, 52
    [14]宋军,刘军,单文娟.水力挤出技术在中厚低透气性突出煤层中的应用[J].煤炭科学技术, 2009, 37 (8) :72 - 73, 91
    [15]王国鸿,徐赞.水力压裂技术提高低透气性煤层瓦斯抽放量浅析[J].煤矿安全, 2010, 8 :120 - 121,124
    [16]方前程,王兆丰,杨利平.利用水力割缝提高低透气性煤层瓦斯抽放的试验研究[J].煤, 2007, 16(5):1 -2, 38
    [17] Whiticar, M.J., Faber, E., Schoell, M. Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation-isotope evidence [J], Geochimica et Cosmochimica Acta, 1986, 50: 693–709
    [18] Smith, J.W., Pallasser, R.J. Microbial origin of Australian coalbed methane [J], American Association of Petroleum Geologists Bulletin, 1996, 80:891–897
    [19] Johnson R.C., Flores R M. Developmental geology of coalbed methane from shallow to deep in Rochy Mountain basins and in Cook Intel-Matanuska basin, Alaska, USA and Canada [J], Int J Coal Geol, 1998, 35: 241-282
    [20] Eurogif R. Europe’s greenhouse gas emissions through CO_2 capture and reservoir storage [J], Offshore. 2002. 62(10): 150-178
    [21] Beecy D J. et al. The potential role of geologic storage and carbon Jioxide in a sustainable fossil fuels future [C], ACS National Meeting Washington DC, 2000, 45(4): 777-781
    [22] Kiode H. Prospect of geological sequestration of CO_2 for green house gas mutigation and natural recovery [J], Int. J. of The Soc. of Mat. Eng. For Resources, 1999, 7: 4-10
    [23] Gunter W D, et al. Deep coalbed methane in Alberta, Canada: a fuel resource with the potential new use for old gas emissions [J], Energy Convers,1997, 38: 217-222
    [24] Knox P R. et al. Potential new use for old gas fields: sequestration of carbon dioxide [C], Gulf Coast Association of Geological Societies Transactions, 2002, 52: 563-571
    [25] Oldenburg C. M., Sally M. B. CO_2 injection for enhanced gas production and carbon sequestration [C], Society of Petroleum Engineers Inc, 2001: 1-10
    [26] Harpalani s., Richard A. S. Shrinkage of coal matrix with release of gas and its impact on permeability of coal [C]. ScienceDirect, 1990, 69 (5): 551-556
    [27]邓鸣放,陈伟煌.生物成因气——莺—琼盆地天然气勘探的一个重要领域[J],石油勘探与开发,1993,20(2):11-17
    [28]李赞豪.具有广阔勘探前景的一种新型浅层天然气——油层、煤层厌氧菌解再生生物气[J],石油实验地质,1994,16(3):220-229
    [29]张私,崔永君,陶明信等.淮南煤田次生生物成因与热成因混合型煤层气成藏动力学系统演化[J],科学通报,2005,50: 19-26
    [30]虞继舜.煤化学[M].北京:冶金工业出版社,2003,32~36
    [31] Whiticar, M.J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane [J], Chemical Geology, 1999, 161, 291–314
    [32] Schoell, M. The hydrogen and carbon isotopic composition of methane from natural gases of various origins [J], Geochimica et Cosmochimica Acta, 1994, 44:649–661
    [33] Schoell, M. Genetic characterization of natural gases[J], American Association of Petroleum Geologists Bulletin, 1983, 67:2225–2238
    [34] Alain A. Prinzhofer and Alain Y. Huc. Genetic and post-genetic molecular and isotopic fractionations in natural gases [J], Chemical Geology, 1995, 126:281-290
    [35] Rice D. D. Composition and origin of coalbed gas [J], Hydrocarbons From Coal, 1993, 38: 195-184
    [36] Ayers, W.B., Kaiser, W.R., Laubach, S.A., Ambrose, W.A., Baumgardner Jr., R.W., Scott, A.R., Tyler, R., Yeh, J., Hawkins, G.J., Swartz, T.E., Schultz-Ela, D.D., Zellers, S.D. Geologic and hydrologic controls on the occurrence and producibility of coalbed methane [R], Gas Research Institute Topical Rept, 1991, GRI-91/0072: 296-314
    [37] Schoell, M. The hydrogen and carbon isotopic composition of gases [J], Geochimica et Cosmochimica Acta, 1982, 72:324–339
    [38] Clayton J. L. Geochemistry of coalbed gas a review [J], Int J Coal Geol, 1998, 35:159-173
    [39] Zinder, S. H. Physiological ecology of methanogens [m], Ecology, Physiology, Biochemistry and Genetics, 1993: 128-206.
    [40] Ahmed, M., Smith, J.W. Biogenic methane generation in the degradation of eastern Australian Permian coals [J], Organic Geochem, 2001, 32: 809-816
    [41] Bonin, A.S., Boone, D.R. The order Methanobacteriales, In: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H. (Eds.) [S], A Handbook on the Biology of Bacteria, 2006: 231-243
    [42]郭红玉、苏现波、陈润等,煤层气的微生物分馏效应[J],中国煤层气化,2007, 4(2): 20-22
    [43]夏遵义,白志强等,利用产甲烷菌进行CO_2地址固定在中国生物气田的应用初探[J],石油勘探与开发,2004, 31(6): 72-74
    [44] Zinder S. Il. Physiological ecology of methanogens [M], Methanogenesis: Ecology, Physioloy, Biochemistry and Genentics, 1993, 128-206
    [45] Winfery, M. R. Microbial production of methane [M], Petroleum Microbilolgy: New York, 1984, 153-220
    [46] Deobald L. A., Crawford D. L. Activities of cellulase and other extracellular enzymes during lignin solubilization by Streptomyces viridosporus [J], Environ. Microbiol., 1987, 26: 158-163
    [47] Chang W., Hoffman, B., Pulliam Holoman, T.R. Molecular characterization of polycyclic aromatic hydrocarbon (PAH)-degrading methanogenic communities [J], Biotechnol. Prog., 2005, 21: 682-688
    [48] Chang, W., Pulliam Holoman, T.R. Molecular characterization of anaerobic microbial communities from benzene-degrading sediments under methanogenic conditions [J], Biotechnol. Prog., 2005, 21: 1789-1794
    [49] Fakoussa, R.M., Hofrichter, M. Biotechnology and microbiology of coal degradation [J], Microbiol and Biotechnol, 1999, 52: 25-40
    [50] Shimizu S., Akiyama M., Naganuma T., Fujioka M., Nako M., Ishijima . Molecular characterization of microbial communities in deep coal seam groundwater of northern Japan [J], Geobiology, 2007, 5: 423–433
    [51] Archer, P.L. Pennsylvanian Geology and Coal and Coalbed Methane Resources of the Illinois Basin, Illinois, Indiana and Kentucky [R],Illinois Basin Report-TRW Energy Systems Group, 1979, DE-AC21-78MC08089: 87-146
    [52] McIntosh, J.C., Walter, L.M., Martini, A.M. Pleistocene recharge to midcontinent basins effects on salinity structure and microbial gas generation [J], Geochimica et Cosmochimica Acta, 2002, 66: 1681–1700
    [53] Lalucat J., Bennasar A., Bosch R., García-Valdés E., Palleroni N.J. Biology of Pseudomonas stutzeri [J], Microbiol, 2006, 70(2): 510-547
    [54] Huang L.N., Zhou H., Chen Y. Q., Luo S., Lan C.Y., Qu L.H.. Diversity and structure of the archaeal community in the leachate of a full-scale recirculating landfill as examined by direct 16S rRNA gene sequence retrieval [J], FEMS Microbiol. Lett., 2002, 214: 235-240
    [55] Mikesell M.D., Kukor J.J., Olsen R.H. Metabolic diversity of aromatic hydrocarbon-degrading bacteria from a petroleum-contaminated aquifer [J], Biodegradable, 1993, 4: 249-259
    [56] Flores R.M., Rice C.A., Stricker G.D., Warden A., Ellis M.S. Methanogenic pathways of coal-bed gas in the Powder River Basin, United States: the geologic factor [J]. Coal Geol, 2008, 76: 52-75
    [57] Beaton A., Langenberg, W., Pan?, C. Coalbed methane resources and reservoir characteristics from the Alberta Plains, Canada [J], Coal Geol, 2006, 65: 93-113.
    [58] EBI MEHR Workshop. Research priortites in microbially enhanced hydrocarbon recovery [R], Energy Bioscien. Institute, 2007
    [59] Patrick C.G., George W.S. Making microbial methane work: The potential for new biogenic gas [J], WorldOil, 2008, 228(11): 34-41
    [60] Li D. Hendry P. Faiz M. A survey of the microbial populations in some Australian coalbed methane reservoirs [J], International Journal of Coal Geology, 2008, 27: 14-24
    [61] Berner, U., Faber, E. Maturity related mixing model for methane, ethane and propane, based on carbon isotopes [J]. Organic Geochemistry, 1988, 13: 67–72
    [62] Foght J., Aislabie J., Turner S., Brown C.E., Ryburn J., Saul D.J., Lawson W., Culturable bacteria in subglacial sediments and ice from two Southern Hemisphere glaciers [J]. Microbiol. Econ., 2004, 47(4): 329-340
    [63] Anderson R. T. Anaerobic bioremediation of benzene under sulfate-reducing conditions in a petroleum-contaminated aquifer [J], Environ. Sci. Technol., 2000, 34:2261-2266
    [64] Crozier T. E., Yamamoto S. Solubility of hydrogen in water, seawater, and NaCl solutions [J], Chem. Eng. , 1974, 19: 242-244
    [65] Koga Y., Morii M., Akagawa M., Ohga M. Correlation of polar lipid composition with 16S rRNA phylogeny in methanogens Further analysis of lipid component parts [J], Biosci. Biotechnol. Biochem., 1998, 62: 230-236
    [66] Coates, J. D., Woodward J., Allen J., Philp P., Lovley D. R. Anaerobic degradation of polycyclic aromatic hydrocarbons and alkanes in petroleum-contaminated marine harbor sediments [J], Environ. Microbiol., 1997, 63: 3589–3593
    [67] Jain M.K., Zeikus J.G. Bioconversion of gelatin to methane by a coculture of Clostridium collagenovorans and Methanosarcina barkeri [J], Environ. Microbiol, 1989, 55(2):366-371
    [68] Barker, C.E., Dallegge, T. Secondary gas emissions during coal desorption, Marathon Grassim Oskolkoff-1 Well, Cook Inlet Basin, Alaska: implications for resource assessment [J], Bull Canadian Petrol. Geol, 2006, 54 (3):273-291
    [69] Mclnerney, M. J., Veaty, P. S. Anaerboic community structure form a nonequilibrium thermodynamic perspective [J], Canadian Journal of Microbiology, 1988, 34: 487-493
    [70] Haack S. K., Breznak J. A. Cytophaga xylanolytica sp. nov., a xylan-degrading, anaerobic gliding bacterium [J], Microbiol., 1993, 159: 6-15
    [71] Thiele J. H., Chartain M., and Zeikus J. G. Contron flow during anerobic digestion [J], Applied and Environmental Microbiology, 1988, 54: 10-19
    [72] Hall T. A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT [J], Nucleic Acids Symp, 1999, 41: 95-98
    [73] Hinrichs K.U., Hayes J. M., Bach W., Spivack A. J., Hmelo L. R., Holm N. G., Johnson C. G., Sylva S. P. Biological formation of ethane and propane in the deep marine subsurface [C], Proc. Natl. Acad. Sci. USA, 2006, 103: 14684-14689.
    [74] Li D., Hendry P., Faiz M. A survey of the microbial populations in some Australian coalbed methane reservoirs [J], Coal Geol., 2008, 76:14-24
    [75] Liu Y.J., Chen Y.P., Jin P.K., Wang X.C. Bacterial communities in a crude oil gathering and transferring system [J], Anaerobe, 2009, 15:214-218
    [76] Kotsyurbenko O.R., Chin K.-J., Glagolev M.V., Stubner S., Simankova M.V., Nozhevnikova A.N., Conrad R. Acetoclastic and hydrogenotrophic methane production and methanogenic populations in an acidic West-Siberian peat bog [J], Environ. Microbiol., 2004, 6(11): 1159-1173
    [77] Dhillon A., Lever M., Lloyd K. G., Albert D. B., Sogin M. L., Teske A.. Methanogen diversity evidenced by molecular characterization of methyl coenzyme Mreductase A (mcrA) genes in hydrothermal sediments of the Guaymas Basin [J], Environ. Microbiol., 2005, 71: 4592-4601
    [78] Breitenstein A., Wiegel J., Haertig C., Weiss N., Andreesen J.R., Lechner U. Reclassification of Clostridium hydroxybenzoicum as Sedimentibacter hydroxybenzoicus gen. nov. [J], Evol. Microbiol, 2002, 52: 801-807.
    [79] Jones E.P., Voytek M.A., Warwick P.D., Corum M.D., Cohn A., Bunnell J.E., Clark A.C., Orem W.H. Bioassay for estimating the biogenic methane-generating potential of coal samples [J], Coal Geol., 2008, 76:138-150
    [80] Fedorak P.M., Hrudey S.E. The effects of phenol and some alkyl phenolics on batch anaerobic methanogenesis [J]. Water Res, 1984, 18 (3): 361-367
    [81] Chakraborty, R., O’Connor S. M., Chan E., Coates J. D. Anaerobic degradation of benzene, toluene, ethylbenzene, and xylene compounds by Dechloromonas strain RCB [J], Environ. Microbiol. 2005, 71: 8649-8655
    [82] Embley T. M., Finlay B. J. Systematic and morphological diversity of endosymbiotic methanogens in anaerobic ciliates [J], Antonie van Leeuwenhoek, 1993, 64: 261-271
    [83] Koga Y., Nishihara M., Morii H., Akagawa-Matsushita M. Ether polar lipids of methanogenic bacteria: structures, comparative aspects, and biosyntheses [J], Microbiol. Rev., 1993, 57: 164-182
    [84] Johnson J. W., Oelkers E. H., Helgeson H. C. SUPCRT92: a software package for calculating the standard molal properties of minerals, gases, aqueous species and reactions among them from 1 to 5000 bars and 0 to 1000°C [J], Comput. Geosci., 1992, 18: 899-947
    [85] Smith D.R., Doucette-Stamm L.A., Deloughery C., Lee H., Dubois J., Aldredge T., Bashirzadeh R., Blakely D. Complete genome sequence of Methanobacterium thermoautotrophicum deltaH: functional analysis and comparative genomics [J], Bacteriol., 1997, 179(22): 7135-7155
    [86] Hostettler F. D. Methanogenic biodegradation of n-alkanes and nalkylated cyclohexanes and benzenes in the oil spill long-term study site at Bemidji, MN [R], GSA 2004 Denver Annual Meeting, 2004, 248-6.
    [87] Christensen, N., Batstone D. J., He Z., Angelidaki I., Schmidt J. E. Removal of polycyclic aromatic hydrocarbons (PAHs) from sewage sludge by anaerobic degradation[J], Water Sci. Technol., 2004, 50: 237-244
    [88] Hungate R. E. A roll tube method for cultivation of strict anaerobes [J], Methods Microbiol., 1969, 3B: 117–132
    [89] Huber T., Faulkner G., Hugenholtz P. Bellerophon: a program to detect chimeric sequence alignments [J], Bioinformatics, 2004, 20: 2317-2319
    [90] Jackson B. E., McInerney M. J. Anaerobic microbial metabolism can proceed close to thermodynamic limits [J], Nature., 2002, 415: 454-456
    [91] Levine D.G., Schlosberg R.H., Silbernagel B.G. Understanding the chemistry and physics of coal structure [J], Proc. Natl. Acad. Sci., 1982, 79:3365-3370
    [92] Heuer H., Elvert M., Tille S., Krummen M., Prieto Mollar X., Hmelo L. R., Hinrichs K.U. Online 13C analysis of volatile fatty acids in sediment / porewater systems by liquid chromatography-isotope ratio mass spectrometry [J], Limnol. Oceanogr. Methods., 2006, 4: 346-357
    [93] Hermann M., Noll K. M., Wolfe R. S. Improved agar bottle plate for isolation of methanogens or other anaerobes in a defined gas atmosphere [J], Environ. Microbiol., 1986, 51: 1124-1126
    [94] Stueber, A.M., Walter, L.M. Glacial recharge and paleohydrologic flow systems in the Illinois basin: Evidence from chemistry of Ordovician carbonate (Galena) formation waters[J], Geological Society of America Bulletin, 1994, 106(11), 1430–1439
    [95] Klein D.A., Flores R.M., Venot C., Gabbert K., Schmidt R., Stricker G.D., Pruden A., Mandernack K. Molecular sequences derived from Paleocene Fort Union Formation coals vs. associated produced waters: implications for CBM regeneration [J], Coal Geol., 2008, 76:3-13
    [96] Hower, J.C., Mastalerz, M., Drobniak, A., Quick, J.C., Eble, C.F., Zimmerer, M.J. Mercury content of the Springfield coal, Indiana and Kentucky [J], International Journal of Coal Geology, 2005, 63:205–227
    [97] Bekins B. A., Hostettler F. D., Herkelrath W. N., Delin G. N., Warren E.. Progression of methanogenic degradation of crude oil in the subsurface [J]. Environ. Geosci., 2005, 12:139-152
    [98] Catcheside, D. E. A., Ralph J. P. Biological processing of coal [J], Microbiol. Biotechnol., 1999, 52: 16-24
    [99] Lemay T.G., Konhauser K.O. Water chemistry of coalbed methane reservoirs [R], Alberta Energy and Utilities Board, 2006, 356-372
    [100] Ulrich G., Bower S. Active methanogenesis and acetate utilization in Powder River Basin coals, United States [J], Coal Geol., 2008, 76: 25-33
    [101] Zhu X.Y., Lubeck J., Kilbane J.J. Characterization of microbial communities in gas industry pipelines [J]. Environ. Microbiol., 2003, 69(9):5354-5363.
    [102] SanFilipo J R. A primer of the occurrence of coalbed methane on low-rank coals, with special reference to its potential occurrence in Pakistan [R], US Geologica1 Survey, 2000: l-13
    [103] Rice D.D., Claypool G.E. Generation, accumulation and resource potential of biogenic gas [J], AAPG Bull, 1981, 65: 5-25
    [104] Shcherbakova V.A., Chuvil'skaya N.A., Golovchenko N.P., Suzina N.E., Lysenko A.M., Laurinavichyus K.S., Akimenko V.K. Analysis of the anaerobic microbial community capable of degrading p-toluene sulfonate [J], Microbiology, 2003, 72(6): 666-671
    [105] Zeikus J. G., Winfrey M. R. Temperature limitations of methanogenesis in aquatic sediments [J], Applied and Environmental Microbiology, 1976, 31: 99-107

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700