用户名: 密码: 验证码:
复杂环境下煤岩体耦合致裂基础与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复杂条件下特厚煤层综放开采的关键是提高顶煤冒放性、降低煤岩体应力集中。注水和爆破作为煤岩体致裂有效的手段得到广泛使用。煤岩体结构及其材质的天然复杂性导致煤岩体耦合致裂问题是一个涉及煤/岩-裂隙-水-爆生气体多介质互相作用的复杂过程。研究固-液耦合体的耦合致裂机制、效果优化和煤体离散化的微观参数制取等有着重要的科学意义和工程应用价值。
     论文以复杂环境下急倾斜煤岩体的耦合致裂为背景,采用理论分析、岩石力学实验、数值模拟、神经网络、现场监测和工业试验相结合的方法开展研究。取得的主要成果有:
     (1)急倾斜煤层开采环境与应力条件复杂。急倾斜煤层顶板岩体裂隙发育不显著,整体较为致密,易产生重力坍塌等动力灾害问题。工作面还面临特厚煤层的有效弱化、坚硬顶板岩石的卸压难题,涉及到采掘工作面相遇期间的应力集中、历史上小煤窑采煤情况不明、硫化氢气体以及动力灾害频发的影响,开采环境与应力条件复杂。
     (2)煤体冒放性的提高主要与爆破致裂产生的宏观裂隙区有关,对于某些严格控制爆破扰动的工程需将微观裂纹纳入到考虑范围内。爆炸后形成的压碎区、裂隙区与炸药性能及被爆体的物理力学特性有关,压碎区半径和裂隙区半径各自与炸药半径的比值并不会随着炸药半径的增大而增大,但压碎区和裂隙区半径随装药量的增加而加大。
     (3)确定了评估注水致裂强度劣化的评估指数。尺寸效应的存在使得试件破坏水压呈上升趋势,破坏水压和试件半径R/钻孔半径r呈现出较好的相关性,随着试件所需破坏范围的加大要求水压愈大。在渗透水压作用下试件破坏所需荷载减小,渗透水压较大,较早的对试件顶部产生破坏。掌握了注水致裂的劣化指数Y表征与渗透水压的关系,获得了渗透水压与试件强度和峰值荷载的表达式。
     (4)揭示了耦合致裂的致裂机制。耦合致裂的本质是爆炸形成的爆生气体和冲击波共同在已软化的煤岩体中传播,耦合致裂效果大于两者的简单叠加。引入强度劣化率f作为评估耦合致裂效果的指标,并给出了耦合致裂技术实施时裂纹的扩展准则,获得了耦合致裂主要参数与强度劣化程度f的关系。实现了煤体整体-散体的等效转化,获得了等效耦合致裂效果的离散元细观参数,建立了不同强度煤体和放出率间的关系、耦合致裂参数与放出率的关系,垮放试验表明散体介质流理论较适用于低位放顶煤的开采。耦合致裂不仅可以降低被爆炸体的强度,还可降低整体的应力水平,减小应力分布梯度。
     (5)完成了煤岩体耦合致裂技术的应用与效果的定量化评估。以复杂环境下急斜特厚煤岩体的耦合致裂为背景,制定了提高煤体冒放性和实现岩体卸压的耦合致裂方案,采用神经网络完成了煤岩体耦合致裂效果的预计,并对现场工业试验中煤体的垮放情况进行记录分析,对耦合致裂后表征岩体卸压程度的微震事件进行监测,验证了神经网络预测的准确性。实践结果反映出在煤岩体的耦合致裂措施下,顶煤的冒放性和动力灾害问题均得到了较好的控制和解决。
     论文研究结果在促进固液耦合致裂基础研究及其效果评估方面具有较好的科学及实用价值,为形成复杂条件下特厚煤层综放工作面顶煤的耦合致裂技术提供了指引。
The key to mine very thick coal seam under complicated conditions is to improve the topcoal caving and reduce stress concentration. Injecting water and blasting are widely used as aneffective means of fracturing. Because of the complex coal-rock structure and material, thecoupling fracturing problem is the complicated action of multi-media includedcoal/rock-crack-water-explosive gases. the study on the mechanism of coupling fracturing,optimization effect and microscopic parameters for discrete coal, have important scientificsignificance and application value.
     Centered on the coupled-crack for steeply inclined coal-rock under the complicatedenvironment, the combination of theoretical analysis, rock mechanics experiments, numericalsimulation, neura network, field monitoring and industrial test are used in this study. Themain achievement are shown as below:
     (1)The mining environment and stress conditions of mining steeply dipping coal seamare complicated. The fracture in roof rock has not fully developed, the roof is nearly intact,which easily leads to the gravity collapse and other dynamic disaster. Working faceencounters puzzle of effectively weaken thick coal seam and pressure relief of hard roof rock.They are related to stress concentration caused by the encounter of mining and tunneling workface, the unknown mining history by small coal mines and H2S gas and frequent dynamicdisasters, which further complicate mining environment and stress conditions.
     (2)The improving caving effect of coal is mainly related to the macro fracture zoneproduced by blasting, the micro crack disturbance should be considered for some strictlycontrolled blasting engineering. The crushed zone and fractured zone induced by explosionare related to the explosive performance and physical and mechanical properties of blastedbody. The crushed zone radius and crack area radius respectively divided by explosive radius does not increase with the explosive radius, but the radius of fracture zone and cracked zoneincreases with the increase of explosive weigh.
     (3)The strength deterioration evaluation index is proposed to evaluate hydraulicfracturing. The specimen failure pressure has an increasing intend by the action of size effect,failure pressure showes a good correlation with the valued of specimen radius (R)/boreholeradius (r), the hydraulic pressure increases with the high demand of damage range. Therequired damage load is reduced under the effect of seepage pressure, the larger seepagepressure is, the earlier the damage of top specimen occurs. The relationship of degradationindex Y and seepage pressure of inject water is derived, the expressions of specimen strengthand peak load with seepage pressure are obtained.
     (4)The meaning and fracturing mechanism of coupled-crack are put forward and defined.The essence of coupled-crack is that the detonation gas and shock wave formed by explosionspread in soften coal-rock. The coupled-crack effect is greater than the simple superpositionof blasting and injecting water. The strength deterioration rate f is introduced as the evaluationindex of coupled-crack effect, and the crack growth criterion in the implementation ofcoupled-crack is given, the relationship between the main coupled-crack parameters andstrength deterioration degree is obtained. The equivalent conversion of coal from integral togranular is achieved, obtaining the micromechanical parameters for equivalent coupled-crackeffect based on discrete element, the relationships of release rate with different strength coaland coupled-crack parameters are established. The caving and releasing tests showed that thegranular medium flow theory is suitable for explaining the low-position top-coal cavingmining. Coupled-crack can not only reduce the strength of coal-rock, but also can reduce theoverall stress level, reducing the stress gradient.
     (5)The quantitative evaluation of coal-rock coupling-fracturing effect is achieved byusing BP neural network. Taking the steeply dipping extra-thick coal-rock coupling-fracturingin complex environment as the background, the coupled fracturing scheme of improvingcaving for coal and unloading for rock mass is designed, neural network is used to evaluatethe coupled-crack effect, and the caving effect of top-coal in industrial experiment isconsidered and analysed. The microseismic events is monitored to reflect relief degree ofcoupled-crack. Field results show that the problems of top coal caving and power disasterhave been better controlled and solved by the measures of coal-rock coupled-crack.
     The research results have better scientific and practical value in promoting the basicresearch of solid-liquid coupling and its effect evaluation, which provides guidelines for theformation of coupling-crack technology used in top coal caving faces with very thick coal seam under the complicated conditions.
引文
[1]钱鸣高.煤炭的科学开采[J].煤炭学报,2010,35(4):529-534.
    [2] H.P.Xie,Z.H.Chen,J.C.Wang.Three-dimensional numerical analysis of deformation andfailure during top coal caving, International Journal of Rock Mechanics and MiningScience.1999,36(5):651-656.
    [3]王金华.综放开采是解决厚煤层开采难题的有效途径[J].煤炭科学技术,2005,33(2):1-6.
    [4]王家臣.厚煤层开采理论与技术[M].北京:冶金工业出版社,2009.
    [5]陈忠辉,谢和平,林忠明.综放开采顶煤冒放性的损伤力学分析[J].岩石力学与工程学报,2002,21(8):1136-1140.
    [6]宋选民,康天合,靳钟铭,等.顶煤冒放性影响因素研究[J].矿山压力与顶板管理,1995,3(4):85-88.
    [7]夏小刚,黄庆享.急斜煤层顶煤可放性因素分析[J].湖南科技大学学报自然科学版,2007,22(1):5-8.
    [8]朱川曲,缪协兴.急倾斜煤层顶煤可放性评价模型及应用[J].煤炭学报,2002,27(2):134-138.
    [9]黄庆享.急倾斜放顶煤工作面来压规律[J].矿山压力与项板管理,1993,1:50-54.
    [10]戴华阳,易四海,鞠文君,等.急倾斜煤层水平分层综放开采岩层移动规律[J].北京科技大学学报,2006,28(5):409-412.
    [11]邵小平,石平五,贺桂成.急斜放顶煤开采顶板卸载拱结构分析[J].北京科技大学学报,2007,29(5):447-451.
    [12]王金安,冯锦艳,蔡美峰.急倾斜煤层开采覆岩裂隙演化与渗流的分形研究[J].煤炭学报,2008,33(2):162-165.
    [13]谢广祥.综放工作面及其围岩宏观应力壳力学特征[J].煤炭学报,2005,30(3):309-313.
    [14]王卫军,侯朝炯.急倾斜煤层放顶煤顶煤破碎与放煤巷道变形机理分析[J].岩土工程学报,2001,23(5):623-626.
    [15]伍永平,来兴平,柴敬.大倾角综采放顶煤开采裂隙非稳态演化规律[J].长安大学学报(自然科学版)2003,23(3):67-70.
    [16]靳钟铭,魏锦平,闫志义,等.两硬”综放面煤岩冒放规律及控制研究[J].太原理工大学学报,1999,30(3):221-224.
    [17]谢和平.坚硬厚煤层综放开采爆破破碎顶煤技术研究[J].煤炭学报,1999,24(4):350-352.
    [18]徐刚,贾昆,于永江.深孔爆破技术在煤矿中的应用[J].辽宁工程技术大学学报,2006,25增刊:28-30.
    [19]索永录.综放开采大放高坚硬顶煤预先弱化方法研究[J].煤炭学报,2001,26(26):616-620.
    [20]张子飞,来兴平.复杂条件下急斜厚煤层高阶段综放开采超前预爆破[J].煤炭学报,2008,33(8):845-849.
    [21]来兴平,漆涛,蒋东晖,等.急斜煤层(群)水平分段顶煤超前预爆范围的确定[J].煤炭学报,2011,36(5):718-721.
    [22] Cui, F., Lai, X.P., Cao, J.T. Analysis on weakening effect of pre-blasting in top coal ofsteep and thick seams based on nonlinear dynamics,2ndINTERNATIONAL YOUNGSCHOLARS’ SYMPOSIUM ON ROCK MECHANICS,775-778,Beijing,2011.10.14-16.
    [23]西安科技大学,神华新疆能源公司.碱沟煤矿急倾斜煤层综放开采顶煤超前预爆弱化技术[R].西安:西安科技大学,2010.
    [24]靳钟铭,赵阳升,张惠轩,等.预注水软化项板岩石在特厚煤层多分层开采中的实践[J].岩土工程学报,1991,13(1):68-74.
    [25]吴健,张勇.顶煤裂隙的发展趋势及其对注水防尘的影响.煤炭学报[J],1998,23(6):580-584.
    [26]张坤,来兴平,王宁波.急斜特厚煤层顶煤注水弱化技术试验[J].西安科技大学学报,2010,30(2):154-158.
    [27]康天合.顶煤冒放性与预注水处理顶煤的理论研究及其应用[D].武汉:中国科学院武汉岩土力学研究所,2002.
    [28]杨宽荣,景源,王忠武.注水技术在急倾斜煤层中的应用[J].中国矿山工程,2007,36(3):23-28.
    [29]刘增平,王坚志,孙京凯.深井低空隙率煤层注水技术研究与实践[J].山东科技大学学报自然科学版,2009,28(4):102-105.
    [30]孟智奇.煤层动压注水降尘技术在综放工作面的应用[J].中国煤炭,2009,35(4):66-68.
    [31]赵从国.煤层注水工艺与效果分析[J].煤炭科技,2005,1:45-47.
    [32]闫少宏,宁宇,屈天智等.用注水软化提高含较厚夹矸顶煤体冒放性的实践[J].煤炭科学技术,2001,29(10):6-8.
    [33]牛锡倬,谷铁耕.用注水软化法控制特硬顶板[J].煤炭学报,1983,1:1-10.
    [34]李林魁,孟海霞.空气炮在鄂尔多斯地区储煤仓的应用[J].内蒙古煤炭经济,2009,2:67-68.
    [35]周同龄,张萌.煤仓堵塞的空气炮疏通法[J].江苏煤炭,1997,3:5-7.
    [36]许学培.国外几种空气炮介绍[J].水泥工程,2001,1:22-24.
    [37]宋秀索.大型煤仓用空气炮的计算原理分析[J].选煤技术,2006,2:11-12.
    [38]张晋红.柱状药包在岩石中爆炸应力波衰减规律的研究.中山:中北大学硕士学位论文,2005.
    [39]杨善元.岩石爆破动力学基础[M].煤炭工业出版社,1993.
    [40]魏有志,谢和平.爆破机理的动云纹法研究[J].煤炭学报,1989,4:83-95.
    [41]杨小林,王梦恕.爆生气体作用下岩石裂纹的扩展机理[J].爆炸与冲击,2001,21(2):111-116.
    [42]杨小林,王树仁.岩石爆破损伤及数值模拟[J].煤炭学报,2000,25(l):19-23
    [43]钱七虎.岩石爆炸动力学的若干进展[J].岩石力学与工程学报,2009,28(10):1945-1968.
    [44]钱七虎,戚承志,王明洋.岩石爆炸动力学[M].北京:科学出版社,2006.
    [45]王明洋,戚承志,钱七虎.岩体中爆炸与冲击下的破坏研究[J].辽宁工程技术大学学报(自然科学版),2001,20(4):385-389.
    [46]陈士海,王明洋,赵跃堂,等.岩石爆破破坏界面上的应力时程研究[J].岩石力学与工程学报,2003,22(11):1784-1788.
    [47]陈士海,王明洋,钱七虎.岩体中爆破破坏分区研究[J].爆破器材,2004,33(3):33-35.
    [48]夏祥,李海波,李俊如,等.岩体爆生裂纹的数值模拟[J].岩土力学,2006,27(11):1987-1991
    [49]索永录.坚硬顶煤弱化爆破的破坏区分布特征[J].煤炭学报,2004,29(6):650-653.
    [50]戴俊.岩石动力学特性与爆破理论[M].北京:冶金工业出版社,2002.
    [51]戴俊.柱状装药爆破的岩石压碎圈与裂隙圈计算[J].辽宁工程技术大学学报,2001,20(2):144-146.
    [52]戴俊.深埋岩石隧洞的周边控制爆破方法与参数确定[J].爆炸与冲击,2004,24(6):493-498.
    [53]戴俊,万元林,徐长磊.周边爆破造成围岩损伤的试验研究[J].岩石力学与工程学报,2005,24(增1):4728-4734.
    [54]宗琦,孟德君.炮孔不同装药结构对爆破能量影响的理论探讨[J].岩石力学与工程学报,2003,23(4):641-645.
    [55]宗琦.岩石内爆炸应力波破裂区半径的计算[J].爆破.1993,(l):15-17.
    [56]夏祥,李俊如,李海波,等.广东岭澳核电站爆破开挖岩体损伤特征研究[J].岩石力学与工程学报,2007,26(12):2510-2516.
    [57]夏祥.爆炸荷载作用下岩体损伤特征及安全阈值研究[D].武汉:中国科学院武汉岩土力学研究所,2006.
    [58] X. Xia, H.B. Li, J.C. Li, et al. A case study on rock damage prediction and controlmethod for underground tunnels subjected to adjacent excavation blasting[J].Tunnellingand Underground Space Technology,2013,35:1-7.
    [59]喻长智,古德生,杜炜平,等.炮孔堵塞长度的计算[J].矿冶工程,1999,19(4):9-11.
    [60]王仲琦,张奇.单自由面垂直炮孔爆炸作用的数值模拟[J].工程爆破,2000,6(4):9-13.
    [61]郝亚飞,李海波,刘恺德等.单自由面爆破振动特征的炮孔堵塞长度效应[J].岩土力学,2011,32(10):3105-3110.
    [62]唐海,李海波,周青春,等.预裂爆破震动效应试验研究[J].岩石力学与工程学报,2010,29(11):2277-2284.
    [63]唐海.地形地貌对爆破振动波影响的试验和理论研究[D].武汉:中国科学院武汉岩土力学研究所,2007.
    [64]赵坚,陈寿根,蔡军刚,等.用UDEC模拟爆炸波在节理岩体中的传播[J].中国矿业大学学报,2002,31(2):111-115.
    [65]李清.爆炸致裂的岩石动态力学行为与断裂控制试验研究[D].北京:中国矿业大学,2009.
    [66]徐颖,丁光亚,宗琦,沈兆武等.爆炸应力波的破岩特征及其能量分布研究[J].金属矿山.2002,608(2):13-16
    [67]李启月.深孔爆破破岩能量分析及其应用[D].长沙:中南大学,2008.
    [68]龚敏,黄毅华,王德胜,等.松软煤层深孔预裂爆破力学特性的数值分析[J].岩石力学与工程学报,2008,27(8):1674-1681.
    [69]龚敏,刘万波,王德胜,等.提高煤矿瓦斯抽放效果的控制爆破技术[J].北京科技大学学报,2006,28(3):223-226.
    [70]卢文波,陶振宇.预裂爆破中炮孔压力变化历程的理论分析[J].爆炸与冲击,1994,14(2):140-147.
    [71]谢冰,李海波,王长柏等.节理几何特征对预裂爆破效果影响的数值模拟[J].岩土力学,2011,32(12):3812-3820.
    [72]谢冰.岩体动态损伤特性分析及其在基础爆破安全控制中的应用[D].武汉:中国科学院武汉岩土力学研究所,2010.
    [73] Lockner D, Byerlee J D. Hydrofracture in weber sandstone at high confining pressureand differential stress[J].Journal of Geophysical Research,1977,82(14):2018-2026.
    [74] Gidley J.L.,Holditch S.A.,Nierode D.E. et al. Recent advances in hydraulic fracture[J].Society Petroleum Engineering Monograph,1989:452.
    [75] Murdoch L.C., Slack W.W. Forms of hydraulic fractures in shallow fine-grainedformations [J].Journal of Geotechnical and Geoenvironment Engineering,2002,128(6):479-487.
    [76] Keighin C W, Sam path K. Evaluation of poregeometry of some low-permeabilitysandstone-Uinta Basin[J].Journal of Petroleum Technology,1982,(34):65-70.
    [77] Du W, Kemeny J M. Modeling borehole breakout by mixed mode crack growth,interaction and coalescence [J].Internal Journal of Rock Mechnicm Mining Science&Geomech,1993,30(7):809-812.
    [78]李夕兵,贺显群,陈红江.渗透水压作用下类岩石材料张开型裂纹启裂特性研究[J].岩石力学与工程学报,2012,31(7):1317-1324.
    [79]杨天鸿,唐春安,刘红元,等.水压致裂过程分析的数值试验方法[J].力学与实践,2001,23(5):51-54.
    [80]杨天鸿,唐春安,梁正召,等.脆性岩石破裂过程损伤与渗流耦合数值模型研究[J].力学学报,2003,35(5):533-541.
    [81]杨天鸿.岩石破裂过程渗透性质及其与应力耦合作用研究[D].沈阳:东北大学,2001.
    [82] Tang C A,Tham L G,Lee P K K,et al. Coupled analysis of flow,stress and damage (FSD)in rock failure[J]. International Journal of Rock Mechanics and MiningScience,2002,39:477-489.
    [83]朱珍德,胡定,裂隙水压力对岩体强度的影响,岩土力学,2001,21(1):61-67.
    [84]姜文忠,张春梅,姜勇,等.水压致裂作用对岩石渗透率影响数值模拟[J].辽宁工程技术大学学报(自然科学版),2009,28(5):693-696.
    [85]李根,唐春安,李连崇.等水压致裂过程的三维数值模拟研究[J].岩土工程学报,2010,32(12):1875-1881.
    [86]张春华,刘泽功,王佰顺,等.高压注水煤层力学特性演化数值模拟与试验研究[J].岩石力学与工程学报,2009,28(增2):3371-3375.
    [87]康红普.水对岩石的损伤[J].水文地质与工程地质,1994,(2):39-40.
    [88]邓广哲.煤层裂隙应力场控制渗流特性的模拟实验研究[J].煤炭学报,2000,25(6):593-597.
    [89]邓广哲,王世斌,黄炳香.煤岩水压裂缝扩展行为特性研究[J].岩石力学与工程学报,2004,23(20):3489-3493.
    [90]康天合,张建平,白世伟.综放开采预注水弱化顶煤的理论研究及其工程应用[J].岩石力学与工程学报,2004,23(15):2615-2621.
    [91]康天合.煤层注水渗透特性及其分类研究[J].岩石力学与工程学报,1995,14(3):260-268.
    [92]李宗翔,孙广义,王继波.煤层长钻孔注水过程的数值模拟与参数的合理确定[J].煤炭学报,2001,26(4):389-393.
    [93]李宗翔,潘一山,题正义.木城涧矿煤层高压注水的数值模拟分析[J].岩石力学与工程学报,2005,24(11):1895-1899.
    [94]章梦涛,宋维源,潘一山.煤层注水预防冲击地压的研究[J].中国安全科学学报,2003,13(10):69-72.
    [95]秦书玉,秦伟瀚,李健.煤层注水参数的数量化理论正交设计优化法[J].系统工程理论与实践,2004,3:139-143.
    [96]金龙哲,傅清国,任宝宏.煤层注水中添加粘尘棒降尘试验[J].北京科技大学学报,2001,23(1):1-5.
    [97]李丽丽.煤层注水效果分析的仿真研究[J].计算机仿真,2012,29(4):234-237.
    [98]刘增平,王坚志,孙京凯.深井低空隙率煤层注水技术研究与实践[J].山东科技大学学报(自然科学版),2009,28(4):102-106.
    [99]郭建卿.液固全耦合爆破致裂防治冲击地压机理与应用研究[D].中国矿业大学,2010.
    [100]蔡美峰,冯锦艳,王金安.露天高陡边坡三维固流耦合稳定性[J].北京科技大学学报,2006,28(1):6-11.
    [101] Beaty M H, Byrne P M.A synthesized approach for modeling liquefaction anddisplacements.[A].FLAC and Numerical Modeling in Geomechanics, Proc. Int. FLACSymp.on Num. Modeling inGeomechanics,Rotterdam:Balkema,1999:339-347.
    [102] Wang Z-L, Egan J, Scheibel L, Makdisi F I. Simulation of Earthquake Performance of aWaterfront Slope Using Fully Coupled Effective Stress Approach[A]. Proceedings ofthe2nd International FLAC Conference,Lyon, France:Balkema,2001:101-108.
    [103] Cundall P A. A simple hysteretic damping formulation for dynamic continuumsimulations[A].4thInternational FLAC Symposium on Numerical Modeling inGeomechanics,Madrid, Spain:Itasca Consulting Group,2006:07-04.
    [104] Han Y, Hart R. Application of a simple hysteretic damping formulation in dynamiccontinuum simulations[A].4th International FLAC Symposium on Numerical Modelingin Geomechanics,Madrid, Spain:Itasca Consulting Group,2006:04-02.
    [105]题正义,衣东丰.爆堆矿岩块度分布测试方法概述[J].辽宁工程技术大学学报,2003,22(增刊):1-3.
    [106] Kippme, Gradyde. Numerical studies of rock fragmentation[R].Albuquerque,USA:Sandia National Laboratories,1978.
    [107] Kuszmaul J S. A New constitutive model for fragmentation of rock under dynamicloading[C]//Proceedings of the2nd International Symposium on Rock Fragmentationby Blasting. Columbia:[s.n.],1987:412–423.
    [108]谢和平,陈忠辉,段法兵,等.综放顶煤爆破能量的分形研究[J].力学与实践,2000,22(1):16-18.
    [109]谢和平.分形-岩石力学导论[M].北京:科学出版社,1997.
    [110]谢贤平,谢源.分形理论与岩石爆破块度的预报研究,工程爆破,1995,1(1):26-32.
    [111]张继春,钮强,徐小荷.节理岩体爆破的块度计算模型[J].金属矿山,1997,257:1-5.
    [112]杨更社,刘增荣.岩石爆破块度分布的分形结构[J].西安矿业学院学报,1994,2:120-124
    [113]刘慧,冯叔瑜.炸药单耗对爆破块度分布影响的理论探讨[J].爆炸与冲击,1997,17(4):359-362.
    [114]谭云亮,刘传孝,赵同彬.岩石非线性动力学初论[M].北京:煤炭工业出版社,2008.
    [115]王家臣,白希军,吴志山,等.坚硬煤体综放开采顶煤破碎块度的研究[J].煤炭学报,2000,25(3):238-242.
    [116]王家臣,熊道慧,方君实.矿石自然崩落块度的拓扑研究[J].岩石力学与工程学报,2001,20(4):443-447.
    [117]张宪堂,陈士海.考虑碰撞作用的节理裂隙岩体爆破块度预测研究[J].岩石力学与工程学报,2002,21(8):1141-1146.
    [118]张宪堂.节理裂隙岩体爆破效果预测研究[D].泰安:山东科技大学,2000
    [119]董卫军.矿石崩落块度的三维模型与块度预测[J].矿冶,2002,11(2):1-3.
    [120]张力民,王明,刘红岩.岩石爆破块度的数值流形方法预测[J].矿业研究与开发,2008,28(6):73-76.
    [121]葛宏伟,梁艳春,刘玮.人工神经网络与遗传算法在岩石力学中的应用[J].岩石力学与工程学报,2004,23(9):1542-1550.
    [122] Wang Ming, Hao Hong, Ding Yang, et al. Predictionof fragment size and ejectiondistance of masonry wallunder blast load using homogenized masonry materialproperties[J]. International Journal of Impact Engineering,2009,36(6):808-820.
    [123]郭连军.爆破优化的神经网络模型[J].工程爆破,1996,2(2):11-15.
    [124]祝文化,朱瑞赓,夏元友.爆破块度预测的神经网络方法研究[J].武汉理工大学学报,2001,23(1):60-62.
    [125]汪学清,单仁亮.人工神经网络在爆破块度预测中的应用研究[J].岩土力学,2008,29(增刊):529-532.
    [126]梁富生.放顶煤煤体破碎度实验研究[J].科技情报开发与经济,2005,15(13):170-171.
    [127]东兆星,周同岭.工程爆破中岩石破碎块度的理论研究[J].爆破,1998,15(2):1-4
    [128]戚承志,王明洋,钱七虎,等.爆炸作用下岩石破裂块度分布特点及其物理机理[J].岩土力学,2009,30(增刊):1-4.
    [129]单仁亮,黄宝龙,李广景.基于灰色关联分析的综合评价模型在爆破方案选定中的应用[J].岩土力学,2009,30(增):206-210.
    [130]赵老生.改善高韧性顶煤爆破效果的数值模拟[J].辽宁工程技术大学学报(自然科学版),2010,29(1):17-19.
    [131]唐海,袁超,梁开水.基于神经网络的预裂爆破参数智能设计[J].工程爆破,2012,18(1):11-15.
    [132]谷拴成,于远,朱彬.坚硬顶煤预裂爆破弱化的数值模拟分析[J].矿业安全与环保,2008,35(2):36-38.
    [133]刘敦文,古德生,徐国元.模糊优选理论评价预裂爆破质量[J].中南工业大学学报,1999,30(5):449-452.
    [134] Cui,F.,Lai,X.P.,Cao,J.T.,et al.F.Exploration technology of sound wave andelectromagnetic wave united optical imagining verification for evaluating stability ofmining roadway in steeply dipping coal seams[C].Rock Characterisation,Modelling andEngineering Design Methods-Proceedings of the3rdISRMSINOROCK2013Symposium,2013:735-740.
    [135] Shan,PengFei,Lai,XingPing,Cao,JianTao,et al.Research on combined tests to entrydisturbed zone(EDZ) of rock masses in steep coal seams. Advanced Materials Research,2013:842-847.
    [136]王宁波,张农,崔峰,等.急倾斜特厚煤层综放面采场运移与巷道围岩破裂特征[J].煤炭学报,2013,33(8):1312-1318.
    [137]孙博.煤体爆破裂纹扩展规律及其试验研究[D].焦作:河南理工大学,2011.
    [138]褚怀保.煤体爆破作用机理及试验研究[D].焦作:河南理工大学,2011.
    [139]李夕兵,古德生.岩石冲击动力学[M].长沙:中南工业大学出版社,1994.
    [140]杨秀敏.爆炸冲击现象数值模拟[M].合肥:中国科技大学出版社,2010.
    [141]唐春安,王述红,傅宇方.岩石破裂过程数值试验[M].北京:科学出版社,2003.
    [142]潘鹏志,冯夏庭,吴红晓,等.水压致裂过程的弹塑性细胞自动机模拟[J].上海交通大学学报,2011,45(5):722-727.
    [143]倪冠华,林柏泉,翟成,等.脉动水力压裂钻孔密封参数的测定及分析[J].中国矿业大学学报,2013,42(2):177-182.
    [144]赵延林,曹平,汪亦显,等.裂隙岩体渗流-损伤-断裂耦合模型及其应用[J].岩石力学与工程学报,2008,27(8):1634-1643.
    [145] Itasca Consulting Group Inc. PFC2D/3D (Particle Flow Code in2/3Dimensions),Version2.0. Minneapolis, MN: ICG,1999
    [146] Yao-Shexie,Yang-ShengZhao.Numerical simulation of the top coal caving processusing the discrete element method[J].International Journal of Rock Mechanics&Mining Sciences,2009,46(6):983-991.
    [147] Ferhan Simsir, Muharrem Kemal Ozfirat.Determination of the most effective longwallequipment combination in longwall top coal caving (LTCC) method by simulationmodelling.International Journal of Rock Mechanics and Mining Sciences,2008,45(6):1015~1023.
    [148]吴顺川,周喻,高利立,等.等效岩体技术在岩体工程中的应用[J].岩石力学与工程学报,2010,29(7):1435-1441.
    [149]吴顺川,周喻,高斌.卸载岩爆试验及PFC3D数值模拟研究[J].岩石力学与工程学报,2010,29(增2):4082-4088.
    [150]武建文.急倾斜水平分段放顶煤顶煤放出规律研究[D].西安科技大学,2006.
    [151]朱晓喜,谢和平,彭建勋,等.坚硬厚煤层综放开采关键技术研究报告[R].大同:大同矿务局,中国矿业大学(北京校区),太原理工大学等,1998,33~35.
    [152] Cui,F.,Lai,X.P.,Cao,J.T.Numerical simulation of top-coal caving in steeply dipping andthick coal seam mining[C].47thUS Rock Mechanics/Geomechanics Symposium.2013,3:1896-1901.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700