用户名: 密码: 验证码:
受限空间煤尘爆炸传播及伤害模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文基于气体和粉尘爆炸理论,采用实验测试、理论分析、数值模拟三种方法,系统地研究了受限空间煤尘爆炸传播规律及事故伤害特性。研究成果为煤尘爆炸事故危险性分析以及救援决策提供理论和技术支持。
     利用自行设计的爆炸实验系统,进行了管道和巷道内煤尘爆炸传播特性的物理对比实验。实验结果表明,煤尘爆炸冲击波超压的变化呈现先增加后衰减的整体趋势,大尺寸巷道较小尺寸巷道衰减较慢;巷道内的火焰传播距离是原煤尘集聚区长度的2倍左右,火焰在管道内的传播距离远大于巷道内的传播距离,两者并不遵循一般流体力学的相似率,存在尺度效应,通过实验数据得到管道内爆炸火焰传播距离随爆炸煤尘量变化的指数关系;爆炸冲击波过后冲击气流以一定的速度沿冲击波前进方向流动;爆炸毒害气体的传播是分阶段进行的。即,第一阶段是在火焰作用下高浓度毒害气体混合物在爆炸冲击动压的作用下快速膨胀,火焰传播距离与毒害气体传播距离基本相等,存在一个极限传播距离;当毒害气流团膨胀停滞后,则进入紊流扩散传播的第二阶段。不同煤尘量爆炸与毒害气体传播距离的实验数据拟合得到,二者服从指数变化关系。
     基于煤尘爆炸传播理论和超压伤害准则,建立了爆炸冲击波、火焰、冲击气流和毒害气体传播的事故伤害模型。实验值和理论值对照结果表明,冲击波传播的超压与煤尘爆炸能量成正比,与传播距离和巷道断面积的平方根成反比;火焰传播的火球热辐射伤害动态较静态模型能更准确地评估火球热辐射的后果;爆炸毒害气体沿巷道传播呈指数变化规律。所建立的伤害模型,能够较精确解算出伤害波及的范围和区域,确定伤害的死亡区、重伤区和轻伤区(“三区”)。理论分析还确立了煤尘在弱爆炸和强爆炸两种不同状态下爆炸冲击波随传播距离衰减的计算方法,应用此方法可以推算不同类型爆炸的伤害范围。
     以连续相、燃烧、颗粒相数理方程建立的煤尘爆炸传播数学模型,能较准确地模拟煤尘爆燃转捩爆轰以及爆炸冲击波、火焰和毒害气体传播衰减过程。煤尘爆炸数值模拟仿真了煤尘爆炸中沉积煤尘颗粒扬起、加速和减速的发展过程和爆炸毒害气体在一定风速下传播扩散的过程,数值模拟结果表明,实验及理论分析得出的爆炸毒害气体浓度随爆炸传播距离成指数规律衰减变化的结论与模拟结果吻合。
Based on gaseous and coal dust explosion theory, propagation law of coal dust explosion in confined space and law of accident injure are investigated systematically though the experimental testing, theoretical analysis and numerical simulation. This thesis provides important theoretical and technological supports for the coal dust explosion emergency decisions, accident investigation and analysis results from the coal dust explosion.
     Physical contrast experiments at the propagation characteristics of coal dust explosion in the pipeline and tunnel are made using self-designed piping explosion system. Research indicates that the overall trend of coal dust explosion blast wave is increases first and then attenuation, and large-size roadway tunnel decays more slowly than the small-size. Besides, the flame propagation distance in roadway is about twice as much as the raw coal dust concentration zone, and flame transmission distance in the pipe is much larger than the distance of the propagation distance inside the roadway which has size effect, and both do not follow the similitude of the general fluid mechanics. What's more, from the experimental data we obtained that the propagation distance is exponentially related to the variation of coal dust volume. After the blast wave, the blast air (explosion wind) flows along in the direction of the blast wave at a certain speed. The propagation of toxic gas generated by explosion is carried out in stages, that is, the first stage is that the mixture of high concentrations of toxic gas expanded rapidly under the action of the dynamic pressure. The propagation distance of flame and toxic gas are almost equal, and there may be a limit distance in the first phase. When the expansion of toxic gas group stagnate, then enter the second phase of the spread of turbulent diffusion. The result that the propagation distance is exponentially related to the variation of coal dust volume, is obtained by fitting of the experimental data.
     According to coal dust explosion propagation theory and the overpressure injury 0criterion, set up the accident damage model of explosion blast wave, flame, impact air-flow and toxic gas. After comparing experimental value with theoretical value of the model, we find that the size of blast wave overpressure is proportional to the amount of coal dust explosion, but is inversely proportional to the square root of transmission distance and the sectional area of roadway. Compared with the static model, the dynamic model about the fireball thermal radiation damage of flame spread can be more rational assessment of the consequences of fireball thermal radiation. Furthermore, this damage model is able to calculate the exact solution about injury affected range or area, and ascertain the dead area, deep wounds area and slight injury area (“three areas”). The calculation method of attenuation of blast wave propagation distance under two different states of the coal dust explosion in the weak and strong explosion is also established through theoretical analysis, and this method can calculate the injurie range of different types of blast.
     The mathematical model of coal dust explosion propagation established according to the continuous phase, combustion, particles of mathematical equations, which can effectively simulate the transtion of explosive burning to explosive detonation. Numerical simulation of coal dust explosion can emulate the development process of coal dust particles scatter, acceleration and deceleration in coal dust explosion and the diffusion process of toxic gas in a certain wind speed. Numerical simulation results show that the conclusion that the decay law of toxic gas concentration is exponentially related to the propagation distance, derived from experimental and theoretical analysis, which conforms to the simulation results.
     Typical accident of coal dust explosion induced by gas explosion of coal-mine is analysed through appling the accident damage model of explosion blast wave, flame, impact air-flow and toxic gas which established through experiments, theoretical analysis and numerical simulation. Test results indicate that model data is in basic agreements with the actual data measured from the accident, and this model is also featured with a certain reliability, can be applied in hazard analysis of explosion accident.
引文
[1]范维唐,卢鉴章,申宝宏等.煤矿灾害防治的技术与对策[M].徐州:中国矿业大学出版社,2007.
    [2]国家安全生产监督管理总局事故查询[EB/OL].Http://www.creader.com/news/2001 1219/ 200912190019.html.
    [3]国家发展和改革委员会.《能源发展“十一五”规划》[Z].2007,4.
    [4]《煤矿瓦斯治理与应用总体方案》编写小组.煤矿瓦斯治理与应用总体方案[M].北京:国家安全生产监督管理总局,2005.6.
    [5]范维唐.中国煤炭工业发展战略与煤矿安全[R].青岛:山东科技大学,2005.
    [6]吴中立.矿井通风与安全[M].徐州:中国矿业大学出版社,1990
    [7] Methods for the determination of possible damage to people and objects from releases of hazardous materials CPR 16E (Green Book), 1st edition 92, Netherlands.
    [8] D. J. Bayless, A. R. Schroeder. The effects of natural gas co2firing on the ignition delay of pulverized coal and coke particles [J]. Combustion Science and Technology, 1994 (98):185-198.
    [9] Ficken W,Davis W C.Detonation[M].Berkeley:University of CMi-mia Press,1979.
    [10] Yoshitomo Indaba, Tetsuo Nishihara, Mark A.Groethe, Yoshikazu Nays. Study on explosion characteristics of natural gas and methane in semi-open space for the HTTR hydrogen production system. Nuclear Engineering and Design, 232(2004):111-119.
    [11]孙金华.燃烧理论[M].安徽淮南:淮南矿业学院,1995.
    [12]何朝远,张引合.煤尘爆炸特性与挥发分的关系[J].工业安全与防尘,l997,(11):24-27.
    [13] Faraday and Lyle,C.“Report to the home secretary on the explosion at the HASWELL Colliery on Sept 28,1844,”Phil.Magi,26,ppl6,1845.
    [14] Bartknecht,W.,Explosions-Course,Prevention and Protection,Springer Verlag,New York,1980.
    [15] Swift, I,“Development in dust explicability testing: The effect of test Variables”,Proctor Intl Confront Fuel-Ail Expl.Migill University, Montrea l 4-6 Nov, 1981.
    [16]卢鉴章.工业粉尘防爆与治理[C].北京,中国科学技术出版社,l990.
    [17]浦以康,袁生学.粉尘爆炸机理研究国外现况综述[J].爆炸与冲击,l995,15(2):12-15.
    [18]邓煦帆,赫冀成.粉尘爆炸反应工程学简要综述[J].中国安全科学学报,1995,5(3):21-29.
    [19]范喜生,李丽.粉尘爆炸的均匀流理论与临界熄火直径的估算[J].工业安全与防尘,1996,(5):36-37.
    [20]自春华.工业粉尘“二次爆炸过程研究”[J].中国安全科学学报,1995,5(1):6-11.
    [21]赵雪峰.浅析煤尘爆炸事故机理[J].科技信息,2007,(3):208.
    [22]费国云.独头巷道中瓦斯爆炸引爆沉积煤尘的试验[J].煤炭工程师,l997,(4):16-19.
    [23]严楠,浦以康.封闭圆柱形粉尘爆炸罐内扬尘诱导湍流特性的确定[J].流体力学实验与测量,l999,13(3):59-64.
    [24]周心权,吴兵,徐景德.煤矿井下瓦斯爆炸的基本特性[J].中国煤炭,2002,28(9):8-11.
    [25]司荣军.瓦斯煤尘爆炸传播规律研究[D].山东:山东科技大学,2007.
    [26]赵衡阳.气体和粉尘爆炸原理[M].北京:北京理工大学出版社,1996.
    [27]梁春利.内置障碍物受限空间内可燃气体爆炸数值模拟[D].辽宁大连:大连理工大学,2005.
    [28] SmirnovNN,antilogⅡ.flagration to detonation transition in combustible gas mixtures[J]. Combustion and Flame,1995(101):91-100.
    [29] UlrichB,Martins.Numerical simulation of premixed combustion processes in closed tube[J].Combustion and Flame,1998(114):397-419.
    [30]费国云.瓦斯爆炸沿巷道传播特性探讨[J].煤矿安全,l996,(2):32-34.
    [31] Marx W.P.M,Johnson D M,Petcock J.Validation of Scaling Techniques for Experimental Vapor Cloud Explosion Investigations,Georgia,USA:AJCHE Loss Prevention Symposium,1994:1-20.
    [32] Marx W.P.M,Van debag A.C.,Developments in vapor cloud explosion blast modelin9,Journal of Hazardous Materials 2000,71(2):301-319.
    [33] Michele MJ Genera R,Ernesto S,etal.Numerical Simulation of Gas Explosions in Linked Vessels.J Loss Prevention in Process Industries,1999,12:189-194.
    [34]黎体发,张莉聪,徐景德.瓦斯爆炸火焰波与冲击波伴生关系的实验研究[J].矿业安全与环保,2005,2(2):4-6.
    [35]菅从光.管内瓦斯爆炸传播特性及影响因素研究[D].北京:中国矿业大学(北京校区)博士学位论文,2003.
    [36]徐景德,周心权,吴兵.瓦斯浓度和火源对瓦斯爆炸传播影响的实验分析[J].煤炭科学技术,2001,29 (11):15-17.
    [37] C. K萨文科.井下空气冲击波〔M〕.北京:冶金工业出版社, 1979.
    [38]徐景德,徐胜利,杨庚宇等.矿井瓦斯爆炸传播的实验研究[J].科学技术,2004,3(7):55 -57.
    [39]菅从光,林伯泉,翟成等.瓦斯爆炸过程中爆炸波的结构变化规律[J].中国矿业大学学报,2003,32(4):363-365.
    [40]陆守香,范宝春.激波后沉积粉尘的燃烧特征[J].京理工大学学报,l996,20(1):17-20.
    [41]陆守香,范宝春.激波卷扬可燃粉尘的理论模型[J].南矿业学院报,1996,16(1):49-53.
    [42]陆守香.沉积粉尘的激波卷扬点火与燃烧[D].北京:中国矿业大学,1994.
    [43]陆守香,黄涛,龙新平,范宝春.沉积粉尘的激波点火[J].爆炸与冲击,1996,16(1):68-73.
    [44]周宁.有沉积煤尘的管道内瓦斯爆炸火焰传播特性的实验研究[J].科学技术,2004(06):31-35.
    [45]李学来,胡敬东.煤矿瓦斯爆炸事故调查分析及模拟验证技术[J].煤炭科学技术,2005,(04):39-42.
    [46]苗德俊.煤矿事故模型与控制方法研究[D].青岛:山东科技大学,2004.11.02.
    [47]王岳.煤尘-甲烷爆炸的实验研究[D].辽宁:大连理工大学硕士学位论文,2006.
    [48]王洪雨.密闭空间甲烷—煤尘复合爆炸强度研究[D].辽宁:大连理工大学硕士学位论文,2007.
    [49]刘义.甲烷、煤尘火焰结构及传播特性的研究[D].安徽:中国科学技术大学博士学位论文,2006.
    [50]李志宪.含爆炸性气体、粉尘系统爆炸危险性智能评价决策系统[D].北京:中国矿业大学(北京校区)博士学位论文,2002.
    [51]邬燕云.摩擦引燃瓦斯煤尘爆炸机理及其试验研究[D].北京:中国矿业大学(北京校区)博士学位论文,2003.
    [52]吴兵.矿井封闭空间瓦斯爆炸爆燃过程热动力学研究[D].北京:中国矿业大学(北京校区)博士学位论文,2003.
    [53]徐景德.矿井瓦斯爆炸冲击波传播规律及影响因素的研究[D].北京:中国矿业大学(北京校区)博士学位论文,2003.
    [54] Lin Baiquan. The Influence of Barriers on Flame and Explosion Wave in Gas Explosion [J]. Journal of Coal Science of Engineering, 1998, 4(2):53-57.
    [55]周同岭.瓦斯-煤尘云爆炸火焰内部流场结构的实验研究[D].北京:中国矿业大学(北京校区)博士学位论文,2004.
    [56]叶青.管内瓦斯爆炸传播特性及多孔材料抑制技术研究[D].江苏徐州:中国矿业大学(徐州校区)博士学位论文,2007.
    [57]高健康,菅从光,林柏泉等.壁面粗糙度对瓦斯爆炸过程中火焰传播和爆炸波的作用[J].煤矿安全,2005(2):4-6.
    [58]孙承纬.爆轰传播理论的解析研究方法(二)[J].爆炸与冲击,1991,11(1):84-95.
    [59] BarrPamelaK.Acceleration of Flame-Vortex Interactions. Combustion and 990, 82:115-125.
    [60] Lebecki K.Gasdynamic phenomena occurring in coal dust explosions. Przegl Gom, 1980, 36(4):203
    [61] Pickles J H .A model for coal dust duct explosions. Comb & Flame, 1982, 44:153-168.
    [62] Hi D N, Perlee H I. Numerical simulation of flame-induced aerodynamics in a coal-mine passage way semi-empirical model.Bumines RI-8016,1975[13].
    [63] Dunn-Rankin,M.A.McCann.Overpressures fromnondetonating baffle acceleratedtur bulent flamesintubes. Combustion Institute, 2000(10): 504-514.
    [64] Moen I O, donato M. Flame Acceleration due to Turbulence Produced by Obstacles. Combustion and Flame, 1980, 39:21-32.
    [65] Babkin V S, et al. Propagation of Premixed Gaseous Explosion Flame in Porous Median. Combustion and Flame, 1998, 87:182-190.
    [66]林柏泉,周世宁.障碍物对瓦斯爆炸过程中火焰和爆炸波的影响[J].中国矿业大学学报,1999,28(2):104-107.
    [67] M Fair-weather, Studies of premixed flame propagation in explosion tubes [J], Combustion and Flame. 1998.
    [68] Chekhov A M, The role of shock-flame interactions in turbulent flames [J], Combustion and Flame. 1999.
    [69] Guilder O L, Flame front surface characteristics in turbulent premixed propane/air combustion [J].ombustion and Flame. 2000.
    [70]陆守香,范宝春.激波与沉积可燃粉尘相互作用的实验研究实验力学[J].997,12(1):18-22.
    [71]翟成、林柏泉、菅从光.瓦斯爆炸火焰波再分叉管路中的传播规律[J].中国安全科学学报,2005,15(6):69-7l.
    [72]王大龙、周心权.煤矿瓦斯爆炸火焰波和冲击波传播规律的理论研究与试验分析[J].矿业安全与环保,2002,29(6):4-6.
    [73] J.亨利.爆炸动力学及其应用〔M〕.北京:科学出版社,1987.
    [74]李翼祺,马素贞.爆炸力学〔M〕.北京:科学出版社,1987.
    [75]王从银.瓦斯爆炸火焰高内聚力与火焰传播机理研究[D],北京:中国矿业大学博士学位论文,2004.
    [76] White. Methods for the Determination of Possible Damage to People and Objects from Releases of Hazardous. Materials CPR 16E(Green Book),Netherlands,1992.
    [77] Zhu Jianhua, Calculation of the characteristic parameters of jet flame and the assessment of its heat radiation hazard, Progress in safety Science and Technology, Beijing: Science Press, 2002.
    [78]宇德明.重大危险源评价及火灾爆炸事故严重度的若干研究[D].北京:北京理工大学博士学位论文,1996
    [79]曲志明.瓦斯爆炸衰减规律和破坏效应〔J〕.煤矿安全,2006,(2):3-5.
    [80]居江宁,吴文权,吴中立等. TVD方法在瓦斯爆炸可压缩流场中的应用〔J〕.淮南工业学院学报:自然科学版,2000 (03):10-14.
    [81]林柏泉,张仁贵,吕恒宏等.瓦斯爆炸过程中火焰传播规律及其加速机理的研究〔J〕.煤炭学报,1999 (01):14-16.
    [82]居江宁,吴文权.巷道瓦斯爆炸二次反冲的数值模拟〔J〕.上海理工大学学报,1999 (01):10-14.
    [83] Qiu Zhihao, Application of On-line Detecting Harmful Substances in Flue Gas in Safety Assessment and Harmfulness Forecast, Proceedings of the 2002 International Symposium on Safety Science and Technology, 2002.10.10.
    [84] Tian GuanSan, Study on the Leakage Processes of Gas from Indoor Gas Supply Pope, The 4th International symposium on Heating,Ventilating and Air Conditioning, 2003.10.09.
    [85] Wu ZuTang, Monitoring of CO Gas Diffusion in Medium during Chemical Explosion Test, Proceedings of the 3rd International Symposium on Instrumentation Science and Technology, 2004.08.18.
    [86]李恩良.井巷紊流传质过程的纵向弥散模型及纵向弥散系数[J].阜新矿业学院学报1989,8(3):65-69.
    [87] PENG XiaoYuan, Analysis on Research Methods of Harmful Gas Conveyance in Large SpaceBuildings, Proceedings of the 2004 International Symposium on Safety Science and Technology, 2004.10.25.
    [88]张志泉.事故性泄漏的有毒气体的风险性评价[J].北方环境,2004,29(4):77-80.
    [89]谷清.我国大气模式计算的若干问题[J].环境科学研究,2000,13(1):40-43.
    [90]王克全.煤尘与矿井特大爆炸伤亡事故的关系[J].工业安全与防尘,1998,(1):25-29.
    [91]刘永立.矿井瓦斯爆炸毒害气体传播规律初步研究[J].煤矿安全,2008,(5):4-7
    [92] Ulrich Boehlert, Numerical simulation of premixed combustion processes in chose tubes. Combustion and Flame, 1998.
    [93] E Salzano, Numerical simulation of turbulent gas flames in tubes, Journal of Hazardous Materials, 2002.
    [94] Salzano E, Numerical simulation of turbulent gas flames in tubes, Journal of hazardous materials, 2002.
    [95] TuldT, Numerical simulation of explosion phenomena in industrial environments, Journal of Hazardous Materrals, 1996.
    [96] Keun-shik chang, Numerical investigation of in viscid shock wave dynamics in an expansion tube, Shock Waves, 1995.
    [97]徐景德,杨庚宇.置障条件下的矿井瓦斯爆炸传播过程数值模拟研究[J].煤炭学报,2004,29(1):53-5 6.
    [98]张莉聪,徐景德,吴兵等.甲烷-煤尘爆炸波与障碍物相互作用的数值研究[J].中国安全科学学报,2004,(8) :11-13.
    [99] Smarmy N N,PanfilvⅡ.Deflagration detonation transition in combustible gas mixtures[J].Combustion and Flame,1995(101):91-100.
    [100] U1richB,MartinS.Numerical simulation of premixed combustion processes in closed tubes [J].Combustion and Flame,1998(114):397-419.
    [101] Rankin D.D,McCann M.A.Overpressures from no detonating,baffleac-celerated turbulent flames in tubes[J].Combustion and Flame,2000(120):504-514.
    [102] Clifford L.J,Milne A.M.Numerical modeling of chemistry and gas dynamics during shock-induced ethylene combustion[J].Combust in and Flame,1996(104):311-327.
    [103]吴兵,张莉聪,徐景德.瓦斯爆炸运动火焰生成压力波的数值模拟[J].中国矿业大学学报,2005,34(4):423-426.
    [104]陈志华,范宝春,刘庆明等.大型管中两相爆炸现象的试验研究[J].流体力学试验与测量,1998,12(1):44-49.
    [105]陈志华,范宝春,李鸿志等.大型管中气粒两相湍流燃烧加速机理的研究[J].弹道学报,l998,10(2):33-37.
    [106]陆守香,汪大立,范宝春等.激波卷扬附壁煤尘的湍流模型[J].淮南矿业学院报,1 994,1 4(3):45-49.
    [107]司荣军,王春秋.瓦斯煤尘爆炸传播数值仿真系统研究[J].山东科技大学学报,2006,25(4) :10-13.
    [108]徐旭常,周力行.燃烧技术手册〔M〕.北京:化学工业出版社. (2007):73-109.
    [109] J.Zelkowski,煤的燃烧理论与技术〔M〕.上海:华东化工学院出版社,(1990): 150-163.
    [110]范宝春.两相系统的燃烧、爆炸和爆轰[M].北京:国防工业出版社,1998.
    [111]邓煦帆.粉尘爆炸反应工程削简要综述[J].中国安全科学学报,1995,5(3):21-29.
    [112]王显政,何学秋.“十五”国家安全生产优秀科技成果汇编(煤矿分册)〔M〕.北京:煤炭工业出版社.2007(4):501-505.
    [113] KaminskiJ.L, Buckius R O, Krier H. Coal dust flames[J]. Progress in Energy and Combustion Science,1979,5(1):31-71.
    [114] Wheeler R V. Explosions in Mines Mommittee. 4th Report. London: H. H. S. O., 1913.
    [115] Juntgen H,van Heek K H. Fuel Proc Teechnol, 1979,2: 262-293.
    [116] R.H.Essenhigh,R.W. Frobergo.J.B. Howard, Ind.Eng.Chem. 57,32,1965.
    [117]廉乐明,李力能,吴家正等.工程热力学[M].北京:中国建筑工业出版社.1999.
    [118]周心权,吴兵.矿井救灾理论与实践[M].北京:煤炭工业出版社.1996.
    [119]宇德明,冯常根等.爆炸的破坏作用与伤害分区[J].中国安全科学学报,1995,5增刊:13-17.
    [120]朱建华.爆炸波破坏/伤害效应评价[J].劳动保护科学技术,1999,19(3):38-41.
    [121]曲志明,周心权,和瑞生等.掘进巷道瓦斯爆炸衰减规律及特征参数分析〔J〕.煤炭学报,2006:325-328.
    [122]王海燕,曹涛,周心权等.煤矿瓦斯爆炸冲击波衰减规律研究与应用〔J〕.煤炭学报,2009:771-782.
    [123]冯昌普.最新风力发电新技术开发与发电工程安全运行管理标准规范实用手册[M].北京:中国科技出版社,2006.
    [124]张董莉,刘茂,王炜等.火球热辐射后果计算动态模型的应用[J].安全与环境学报,2007,7(4):131-135.
    [125] MARTINSEN W E,MARXJ D. An improved model for the prediction of radiant heat flux from fireball[C]//proceedings of CCPS International Conference and Workshop on Modeling Consequences of Accidental Releases of Hazardous Materials, San Francisco, California September 28-Octomber 1, 1999:605-621.
    [126] CCPS/AIChE.Guidelines for Consequence Analysis of Chemical Releases [M].New York:Center for Chemical Process Safety,American Institute of Chemical Engineers,1999.
    [127] LIUMao,YUSulin,LIXueliang,etal.Analysisofconsequencesofflashfire[J].Journal of Safety andEnvironment(安全与环境学报),2001,1(4):282311.
    [128] LIUMao,DONGZhao,YUSulin,etal.Riskanalysisoffreewaypropanetankerexplosion[J]. Journal ofSafety and Environment (安全与环境学报),2002,2(5):6281.
    [129]王英敏.矿内空气动力学与矿井通风系统[M].北京:冶金工业出版社,1994.
    [130]刘晓兵,周心权,张景飞等.煤矿井下烟流区域温度密度及浓度衰减规律[J].矿业安全与环保,2004,31(4):10-12.
    [131] U.S.Bureau of Mines.MFIRE User’s Manual [M].1994.3.
    [132]贾智伟,景国勋,张强.瓦斯爆炸事故有毒气体扩散及危险区域分析[J] .中国安全科学学报,2007,17(1):91-95.
    [133]崔辉,徐志胜,宋文华等.有毒气体危害区域划分之临界浓度标准研究[J].灾害学,2008,23(3):80-84.
    [134]邢志祥.有毒化学品事故潜在危险区的预测[J].劳动保护科学技术,1999,19(1):59-61.
    [135]高尔新,白春华,薛玉,等.巷道瓦斯爆炸的数值模拟研究[J].爆破,2002,21(4).
    [136]胡学义.煤矿瓦斯爆炸数值模拟分析[J].爆破. 2003,20(3).
    [137]高泰荫,黄军涛.CH4-O2混合气体爆燃爆震转捩的数值模拟[J].爆炸与冲击,1998,118(4),323-330.
    [138]范宝春,雷勇,姜孝海.激波与堆积粉尘相互作用的数值模拟[J].爆炸与冲击,2002, 22(3):216 -220.
    [139]邹鸿江,蒲春生.高能气体压裂过程中CO气体浓度扩散规律[J].石油钻采工艺,2000,29(1):58-60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700