用户名: 密码: 验证码:
利用磷石膏、钾长石制备硫酸钾的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷石膏是湿法磷酸生产过程产生的主要固体废弃物,目前我国利用率不足10%,其所引发的环境污染、土地占用和资源浪费问题已成为制约磷肥企业可持续发展的关键。与此同时,我国可溶性钾资源严重不足而不溶性钾资源如钾长石矿储量却十分丰富。将钾长石与磷石膏有机地结合起来生产硫酸钾,实现钾长石与磷石膏的合理利用,具有重大的经济价值和学术意义。
     本文以磷石膏、钾长石和焦炭为原料,以理论失重率、硫酸钙分解率和钾熔出率为指标,在管式反应器中进行高温煅烧,考察了反应气氛、物料配比、原料粒度、助熔剂种类及用量等因素对体系实验指标的影响,并得到了最优化配方。
     经实验研究得出如下结论:
     (1)磷石膏—焦炭、分析纯石膏—焦炭配料体系分别在还原性气氛、氧化性气氛、复合气氛下的煅烧失重率和CaSO4分解率呈现随反应温度升高而增大趋势;但是分解产物明显不同,还原气氛的分解产物主要是硫化钙,氧化气氛和复合气氛下的分解产物主要是氧化钙。
     (2)磷石膏—焦炭—钾长石、分析纯石膏—焦炭—钾长石配料体系在还原气氛、氧化气氛、复合气氛下的煅烧失重率和CaSO4分解率也随反应温度升高呈现明显增大趋势;在相同温度下,在还原性气氛下钾熔出率最低,氧化气氛和复合气氛下钾熔出率较高。
     (3)为了获得较高的钾熔出率,采用单因素实验法得出以下结论:钙硅比为1.2,焦炭用量超出实验给定区间上限,仍需增加,焦炭粒度在160目≤d≤140目区间,助熔剂为焦炭质量25%的Na2CO3。
     (4)利用正交实验法分析了钾长石、磷石膏、焦炭和助剂四个因素对反应的影响,获得了钾熔出率较高的工艺条件。优化方案为:焙烧温度为1000℃、焙烧时间为1.0h、在弱氧化性气氛中反应、助熔剂用量为钾长石总量的30%,钾熔出率可达90.0%。
     (5)采用XRD和红外探讨了反应机理,验证了煅烧产物中硫酸钾的存在。
     (6)针对提取硫酸钾后得到的固体废渣,进行了碳分提铝,并将二次废渣用于制备CBC复合材料,取得了初步结果。
Phosphogypsum is that main solid waste in wet process of phosphoric acid production. The utilization ratio of phosphogypsum in our country does not reach 10% at present. The problems of environmental pollution, land occupancy and resources waste initiated by phosphogypsum have already become the key of restricting sustainable development of phosphate fertilizer enterprise. Meanwhile, solubility potassium resource in our country is grave insufficient but the reserve of insoluble potassium resource such as potassium feldspar ore is very rich. The way that organically combine potassium feldspar and phosphorus gupse to produce potasium sulphate, and to make reasonableness use of potassium feldspar and phosphogypsum, has significant economic value and academic significance.
     In this paper, the influence of reaction atmosphere, materials ratio, particle size of raw materials and the type and amount of help flux to experimental indicators has been studied, through high temperature calcination in tubular reactor, taking phosphogypsum, potassium feldspar and coke as raw materials, and taking the theoretical weight loss rate, decomposition rate of calcium sulfate and potassium melt rate as indexes. The optimized formula has been founded.
     The study results show that:
     (1) Under the deoxidation atmosphere, oxide nature atmosphere and compound atmosphere, the calcination weightlessness rate and CaS04 decomposer rate of both phosphogypsum-coke and analytical pure gupse-coke system, have presentated an enhances trend with the reaction temperature raises; but break up outcomes are in great difference, the decomposition outcome under deoxidation atmosphere is mainly calcium sulfide, the decomposition outcome under oxide atmosphere and the compound atmosphere are mainly calcium oxide.
     (2) Under the deoxidation atmosphere, oxide nature atmosphere and compound atmosphere, the calcination weightlessness rate and CaS04 decomposer rate of both the phosphogypsum-coke-potassium feldspar and analyses pure gupse-coke-potassium feldspar system, have presentated an enhances trend with the reaction temperature raise; under the identical temperature, potassium melts out rates is minima under deoxidation nature atmosphere, potassium melts out rate is comparatively highly under the oxide atmosphere and the compound atmosphere.
     (3)For gaining higher potassium rate, adopt single factor experiment way to find the following conclusions:calcium silicon proportion is 1.2,coke dosages has exceeded upper limit of given experiment, still need to be increasd;coke granularity is in 160 mesh≤d≤140 mesh, helping flux is Na2CO3,25% of coke quality.
     (4) Though orthogonality experiment way to analyze the impact of potassium feldspar, phosphogypsum, coke and assistant over reaction. Have gained higher potassium melting out rate technological conditions. Optimize scheme is:the baking temperature is 1000℃, baking time is 1.0h, reacted in weak oxide nature atmosphere, helping flux dosages is 30% of potassium feldspar quantity, potassium melting out rate amounts to 90.0%.
     (5) Though XRD and infrared investigation way discussed reaction mechanism and verified that there existed potasium sulphate in calcination outcome.
     (6) Aiming at the waste residue that potasium sulphate have been extracted, carried the carbon separating progress to extracte aluminium, repeated waste residue has been used to prepare CBC compound material and has got first step result.
引文
[1]吴佩芝.湿法磷酸[M].北京:化学工业出版社,1987,(6).344-376
    [2]郑苏云,陈通,郑林树.磷石膏综合利用的现状和研究进展[J].化工生产与技术.2003,(4):33-35.
    [3]陈燕,岳文海,董若兰.石膏建筑材料[M].北京:中国建材工业出版社,2003
    [4]张社教.加快磷石膏资源化步伐 促进磷肥行业可持续发展[J].磷肥与复肥,2006,(6):12—15
    [5]Lutz R. Preparation of phosphate acid wastes gypsum for further processing to make building material[J]. Zement-Kalk-Gips,1995,48(2):98-102
    [6]Tabikh A, Miller F M. The nature of phosphogypsum impurities and their influence on cement hydration[J]. Cement and Concrete Research,1971, 1(2):663-678
    [7]Olmez H, Yilmaz V T. Infrared study on the refinement of phosphogypsum for cements[J]. Cement and Concrete Research,1988,18(3):449-454
    [8]A. V. Slack:Phosphoric Acid, Part Ⅱ, New York, (1968):25-28
    [9]Mehta P K, Brady J R. Utilization of phosphogypsum in Portland cement industry. Cem and Concr Res,1977,7(2):92-96
    [10]张春光.利用磷石膏生产水泥缓凝剂[J].磷肥与氮肥,2005,(04):66
    [11]钟伯明.改性磷石膏用作水泥缓凝剂[J].水泥,2002,(10):11-12
    [12]沈卫国,周明凯,赵青林等.固化磷石膏作水泥缓凝剂的研究[J].中国水泥,2002,(07):11
    [13]Weiping Ma, Paul W. Brown, etc. Hydrothermal Reactions of fly ash with Ca(OH)2 and CaSO4 · 2H2O[J]. Cement and Concrete Research,1997,27(8): 1237-1248
    [14]潘群雄,张长森,徐凤广.煅烧磷石膏作水泥缓凝剂和增强剂[J].新世纪水泥导报,2003,(05):40-41
    [15]Mehta P K, Brady J R. Utilization of phosphogypsum in Portland cement industry. Cem and Concr Res[J],1977,7(2):92-96
    [16]董风芝,刘心中,李梦红.磷石膏空心砌块的研制[J].建筑石膏与胶凝材料, 2004,(08):58-59
    [17]刘代俊,刘玉琨,钟本和等.高强度磷石膏砌块的研制[J].磷肥与复肥,2004,(01):29-30
    [18]闫久智.磷石膏制硫酸联产水泥工艺[J].磷肥与复肥,2004,(03):53-55
    [19]庞仁杰.磷石膏制酸联产水泥的设计及建设[J].磷肥与复肥,1998,(05)53-54
    [20]刘代俊,李军,钟本和.磷石膏转化法生产硫酸钾的新工艺[J].磷肥与复肥,1996,22(3):17-19
    [21]邱龙会,王励生,金作美.钾长石-石膏-碳酸钙热分解过程的动力学研究[J].高校化学工程学报,2000,14(6):3
    [22]邱龙会,王励生,金作美.钾长石-石膏-碳酸钙热分解烧成物中硫酸钾的浸取过程[J].高校化学工程学报.2000,14(10):5
    [23]薛彦辉.一种利用废石膏分解钾长石生产钾肥的方法[P].山东科技大学.200610069568.4
    [24]刘金荣.一种由钾长石生产钾肥的方法[P].陕西省商州市科委.94103856.4
    [25]上海化工研究院编.钾长石及明矾石土法生产钾肥[M].北京:石油化学工业出版社,1971,6:6
    [26]姚卫棠,韩效钊,胡波,邓正涛.论钾长石的研究现状及开发前景[J].化工矿产地质.2002,9(3):151-152
    [27]南京大学地质系岩矿教研室编.结晶学与矿物学[M],北京:地质出版社,1978:488-489.
    [28]吴智慧.我国钾盐找矿突破的可能途径和对策研究[J].地质矿产信息.1994:44:19—20
    [29]陈静.含钾岩石资源开发利用及前景预测[J].化工矿产地质,2000,(1).
    [30]邹力行.陶瓷生产技术问答[M].北京:中国建筑工业出版社,1993:12
    [31]陶红,马鸿文.钾长石合成13X分子筛的实验研究[J].无机材料学报,2001,(1):63-68
    [32]马鸿文编.工业矿物与岩石[M].北京:地质出版社,2002,(4):45-53
    [33]亢宇,马鸿文,杨静.利用钾长石合成介孔分子筛AlMCM-41[J].非金属矿,2005,(04):12-14
    [34]Zhao X S, et al.Advances in mesoporous molecular sieves MCM-41[J].Ind Eng Chem Res,1996(35):2075-2090
    [35]Luan Z, et al.Mosopore molecular sieve MCM-41 containing framework aluminum[J].J Phys Chem,1995,99(3):1018-1024
    [36]陶红,马鸿文,廖立兵.钾长石制取钾肥的研究进展及前景.矿产综合利用,1998.(1):28
    [37]张允湘.化肥工业[J].1999,26(4):25-29
    [38]王万金,白志民,马鸿文.利用不溶性钾矿提钾的研究现状及展望[J].地质科技情报,1996,19(3)
    [39]赵立刚.钠熔盐浸取法从钾长石中提钾[J].吉林大学学报,1997,18(3)
    [40]郭峰,袁孝享.高炉冶炼钾长石适宜的操作制度[J].化肥工业,1986,(4):25-29
    [41]任志学.高炉冶炼钾长石联产石膏熔渣白水泥总结[J].化肥工业,1986,(3):20-269
    [42]郭峰,袁孝享.钾长石热分解及还原热力学分析[J].化肥工业,1988,(1):29-33
    [43]王守明.注重不溶性钾矿开发利用的研究[J].矿产保护与利用,1989,(1):7-91
    [44]化工部科技情报所.霞石制碱[J].化工地质,1992(4):52
    [45]化工部科技情报所.霞石制碱[J].化工地质,1992(4):5
    [46]高恩元.化肥需求与市场[J].中国化工信息,1999,5-6
    [47]刘卫海.铵法处理磷石膏制硫酸钾的研究[J].湖南化工,1999,8,(4):26-29
    [48]省发改委.云南省人民政府办公厅关于《“九五”—2010年云南以磷化工和有色金属为重点的矿业发展规划》,2005.3.17
    [49]Bhattacharya. Production of Sulphuric acid and cement from phosphogypsum using the OSW-Process. Chemical Age of india 1976[J], (12):33
    [50]彭新站,周松林,胡道和.磷石膏分解新技术进展.材料科学与工程[J].1999,3(42):51
    [51]Gruvcharow I.Effect of some additive on the thermochemical decomposition of phosphogypsum. Gypsum & Lime.1986[J],205
    [52]Wheelock T D. Sulfuric acid from calcium sulsfate. Chemical Engineering Progress,1968[J], (11):21
    [53]Jae Seung Oh, Wheelock TD. Reductive Decomposition of Calcium Sulfate with Carbon Monoxisd.Reaction Mechanism. Ind. Eng. Chem. Res[J].1990, (29): 544-550
    [54]周松林,胡道和,肖国先.磷石膏分解反应机理及影响因素浅析[J].新世纪水泥导报,1994,(05):16-18
    [55]戚龙水,马鸿文,苗世顶.碳酸钾助熔焙烧分解钾长石热力学实验研究[J].中国矿业,2004,(01):73-75
    [56]薛彦辉,宋超,杜树涛等.氟化物在低温烧结钾长石中行为的研究[J].中国非金属矿工业导刊,2002,(01):29-30
    [57]彭清静,彭良斌,邹晓勇等.氯化钙熔浸钾长石提钾过程的研究[J].高校化学工程学报,2003,(02):185-188
    [58]彭清静,邹晓勇,黄诚.氯化钙熔浸钾长石提钾过程[J].过程工程学报,2002,(02):146-150
    [59]王文华,王东升,姜戈.低分子量有机酸对钾长石中结构钾释放的影响研究[J].辽宁农业科学,2005,(03):9-11
    [60]CRC. Handbook of chemistry and physics (74th Edition) [M].Boca Raton: CRC Press,1994
    [61]Pittman ED. Organic acids in geological process[M]. Berlin: Springer-verlag,1993
    [62]Copyright (C) Outokumpu Research Oy, Pori, Finland, A. Roine.
    [63]洪广言编著.无机固体化学[M].北京:科学出版社.2002,(7).118-120
    [64]杨斌.水热法处理磷石膏过程研究,昆明理工大学研究生院,2006
    [65]国家技监局.GB/T 5484-2000石膏化学分析方法.标准出版社.2001,4,1
    [66]董庆年.红外光谱法[M].北京:化学工业出版社.1979,(9).25-207
    [67]刘光启,马连湘,刘杰主编.化学化工物性数据手册[M].北京:化学工业出版社工业装备与信息工程出版中心.2002,(4):320-420

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700