用户名: 密码: 验证码:
杂质对不同相磷石膏性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷石膏是生产磷酸所产生的一种工业废渣,其CaSO4·2H2O含量非常高,但目前未能得到有效利用,主要原因在于杂质对其应用性能会产生不利影响。杂质的影响随着石膏相的不同存在差异,因此,探究杂质对不同相磷石膏性能的影响是磷石膏预处理及资源化应用的一项重要工作。
     通过常规化学分析并结合采用原子吸收光谱(AAS)、X射线衍射光谱(XRD)、扫描电镜分析(SEM)和差示扫描量热分析(DSC)等微观测试手段结合物理力学性能试验,对原状磷石膏的性质进行了研究,结果表明:由于形成条件的不同,二水磷石膏的晶体形貌和颗粒分布与天然石膏存在较大差异;由于杂质成分的不同,磷石膏和天然石膏的溶解性存在一定差异;可溶杂质和有机物等的存在使磷石膏从二水相转变成半水相的第一次脱水温度较天然石膏低20~35℃不等。
     磷石膏用作缓凝剂对水泥性能的影响主要是由于杂质对磷石膏溶解和脱水性能的影响引起的。溶解性试验结果表明磷石膏在饱和石灰溶液中的溶解速率和溶解度随着温度升高而降低,因此当掺磷石膏的水泥水化温度变化时,溶液中溶解的硫酸钙浓度随之改变,磷石膏的缓凝作用受到影响。磷石膏在70~130℃的水泥粉磨温度范围内会出现明显的二水相向半水甚至无水相的转变。将磷石膏置于不同温度烘箱内恒温30min处理后取出进行相分析,结果显示磷石膏在70℃的处理温度下脱水产生了4%左右的半水相,天然石膏中则未能见半水或无水相;随着温度的升高,半水相含量增加,到130℃时磷石膏中半水相含量已经达到55%左右,并出现了少量无水相;天然石膏中半水相含量在7%左右。半水石膏的存在会造成水泥发生闪凝现象,因此二水石膏的脱水不利于水泥的凝结硬化。常规的预处理如水洗和石灰中和无法消除磷石膏中的共晶磷,共晶磷在温度升高时发生分解,降低二水石膏脱水温度,即使经过水洗处理后,磷石膏在90℃仍部分脱水生成3%左右的半水石膏,到了130℃时半水石膏生成量约为11%,因此预处理或原样磷石膏在用作水泥缓凝剂时必须注意石膏的溶解和脱水问题。
     通过对比试验,研究了天然石膏和磷石膏制备的半水石膏在相同石膏相组成条件下的性能。半水天然石膏初凝时间一般在7min左右,而半水磷石膏中由于杂质的存在,凝结时间延缓且硬化体强度降低,杂质对半水磷石膏的影响主要是可溶性杂质与钙离子在水化时生成难溶物质覆盖在二水石膏晶体表面,降低二水石膏的析晶饱和度,即杂质具有半水石膏常用缓凝剂的作用。对于纯半水石膏,杂质的延缓作用因其含量的不同而异,在本研究中杂质对凝结时间可延缓1倍以上。对凝结非常迅速而不利于施工的半水石膏而言,杂质的缓凝具有利用价值。与建筑石膏常用缓凝剂柠檬酸相比,在对强度影响程度相当的情况下,杂质的缓凝效应相对要小一些。
     对比试验结果显示,杂质对无水磷石膏的水化硬化影响较小,原因在于无水石膏水化非常缓慢,而杂质与钙离子的中和反应则非常迅速,因此无水石膏水化时,水化生成物有足够的时间冲破中和反应生成的难溶物质,从而其水化速率和水化产物的生长受到的影响较小。在无水和半水混合相磷石膏中,杂质对半水磷石膏水化硬化的影响对无水磷石膏的水化反而有利,磷石膏作为无水和半水混合相石膏的原料具有一定优势。
     本研究表明,杂质对不同相磷石膏的应用性能有不同程度的影响,虽然采用水洗和中和的预处理方式可一定程度上改善不同相磷石膏的一些特性,但从本文的研究结果来看,这些预处理手段并不能有效改善不同相磷石膏的应用性能。从不同相磷石膏的一些应用形式来看,杂质对磷石膏应用性能的不利影响是可以接受的,甚至能够加以利用,从不同角度正确认识杂质的影响机理对磷石膏的应用至关重要。
Phosphogypsum(PG), an industrial byproduct of phosphoric acid manufacture, has high content of CaSO4·2H2O. However, the utilization ratio of PG is very low due to the negative effect of impurities on the properties of PG plaster. The present studies on PG of its application in cement and plaster revealed that impurities in PG have harmful effects on the setting of cement and gypsum plasters. It is therefore, thought to be essential to beneficiate PG to reduce harmful impurities in it. In fact, effects of impurities on PG differ with differences in the form, type of gypsum and its applied cementing systems. For some binding materials, influences of impurities may be ignored. Pretreatments of PG should be different according the form of gypsum and its applied systems.
     The constitution of PG and natural gypsum(NG) was investigated by atomic adsorption spectra(AAS) in this study and by a combination of x-ray diffraction(XRD), scanning electron microscope(SEM), differential scan calorific(DSC) and tests on chemical and physical performance, the properties of raw PG were studied. The results show: PG differs significantly from natural gypsum in crystal morphology and grading due to differences in formation process between them. PG has distinct solubility compared with NG. Thermal behaviour of NG and PG was determined and transformation temperature of dihydrate to hemihydrate of PG is 20~35℃lower than that of NG and washed PG, which indicates that water soluble impurities reduce the dehydration temperature of dihydrate.
     The effect of PG on the performance of cement is mainly due to the influcens of impurities on the solubility and dehydration behaviour of PG. The results of test on solubility of PG showed that with increases in ambient temperature, the solubilization rate and solubility limit of PG in saturated lime solution reduce. Changes in the hydration temperature of cement leads to variation in the concentration of calcium sulfate, thus the retardation of PG was affected. Due to the lower transformation temperature of dihydrate to hemidrate, PG appears to be prone to loss its combined water at various isothermal conditions between 70 and 130℃in a first effort to simulate milling conditions. About 4% hemihydrate was present in PG at 70℃and in NG no hemihydrate was found. The content of hemihydrate was about 55% in PG and 7% in NG at 130℃. The ratios of calcium sulphate forms occur in gypsum can have a profound effect on the setting behaviour of the cement, because their respective solubilities in water are significantly different from one another. The dihydrate form is the preferred form, so the present of hemi and anhydrate form is harmful to the setting of cement. P2O5 in crystal lattices of gypsum can’t be removed through pretreatment of water washed and lime neutralized, and decomposition of P2O5 in crystal lattices of gypsum because of being heated may reduce the dehydration temperature of PG, and at 90℃about 3% hemihydrate was present in washed PG and at 130℃, the content of hemihydrate was about 11%. Great care should be exercised under production conditions when using PG treated or not treated as a set retarder.
     Properties of hemihydrate made from PG and NG with same content of gypsum form were determined. The initial setting time of hemihydrate from NG is about 7 min, and setting of hemihydrate from PG was retarded and the strength of the hardenite was reduced. Insoluble products formed by the reaction of Ca2+ and soluble impurities covered at the surface of gypsum crystal, which leads to the coarsening of the crystal.The effect of retarding was correlated to the content of impurities. Setting time of hemihydrate made from PG was aobout twice than that of hemihydrate from NG. The fast setting of most building gypsum is unfavourable for construction. So the retarding effect of impurities can be utilized positively. Though the retarding effect of impurities was not better than the citric acid, it can still be used in some cementing systems.
     Impurities have hardly affected performances of anhydrate form of PG due to its slow hydration. Hydration products of anhydrate have enough time to break out the overburden layer formed by reaction of soluble P, F and Ca2+ to grow up. Compared with NG, PG has advantages to be use as raw materials for the hemihydrate and anhydrate mixing cementing systems.
     Impurities are thought to be harmful in almost all studies on PG, but in this paper some effects of impurities are discussed tentatively to be utilized and PG should not be necessarily pretreated in some cementing systems. Pretreatment of PG can’t always effectively improve the properties of PG. In some cases effect of impurities on the properties can be ignored and even be utilized. To find out the mechanism of effect of impurities on PG according to the applied systems of gypsum is very important.
引文
[1]袁润章等.胶凝材料学[M].北京:中国建筑工业出版社, 1996.
    [2]陈燕.石膏建筑材料[M].北京:中国建材工业出版社, 2003.
    [3]法国石膏工业协会.石膏[M].北京:中国建筑工业出版社,1987.
    [4]卢芳仪,卢爱军.石膏综合利用的研究[J].化工矿物与加工,2000, (8):4-6.
    [5]向才旺.建筑石膏及其制品[M].北京:中国建材工业出版社,1998.
    [6]伏尔仁斯基,弗朗斯卡娅.石膏胶结料和制品[M].北京:中国建筑工业出版社,1980.
    [7]杨彦克,李固华,潘绍伟.建筑材料[M].西安:西安交通大学出版社, 2006.
    [8]蔡丽朋.建筑材料[M].北京:化学工业出版社, 2005.
    [9]沈威等.水泥工艺学[M].武汉:武汉工业大学出版社, 1991.
    [10]杨静.建筑材料[M].北京:中国水利水电出版社, 2004.
    [11]王建民,章守陶.磷石膏的特性及其在农业上的应用[J].磷肥与氮肥,1997,(3):67-71.
    [12]李见云,化全县,牛俊玲等.磷肥增效技术研究进展[J].磷肥与复肥, 2007, 22(5):64-67.
    [13] C. Papastefanou, S. Stoulos, A. Ioannidou and M. Manolopoulou. The application of phospho- gypsum in agriculture and the radiological impact[J]. Journal of Environmental Radioactivity, 2006, 89(2):188-198.
    [14]毛常明,刘晶晶,尹进华等.湿法磷酸的工艺研究进展[J].河北化工, 2005, (4):14-16.
    [15]王邵东,张红映.中国磷矿资源和磷肥生产与消费[J],化工矿物与加工, 2007,(9):30-32.
    [16]高永峰.我国磷矿资源的特点及加工利用建议[J].化学工业, 2007, 25(11):1-4.
    [17]武雪梅.“十五”期间我国磷肥、硫酸行业生产和消费概述[J].磷肥与复肥, 2006, 21(4):1-5.
    [18]武雪梅. 2006年我国磷肥磷肥、硫酸行业生产消费概述[J].磷肥与复肥, 2007, 22(4):1-5.
    [19] A.J. Poole, D.J. Allington, A.J. Baxter and A.K. Young. The natural radioactivity of phosphate ore and associated waste products discharged into the eastern Irish Sea from a phosphoric acid production plant[J]. Science of The Total Environment, 1995, 173-174:137-149.
    [20] V.K. Shukla, T.V. Ramachandran, S. Chinnaesakki, etc. Radiological impact of utilization of phosphogypsum and fly ash in building construction in India[J]. International Congress Series, 2005, 127(6):339-340.
    [21] P. M. Rutherford, M. J. Dudas and R. A. Samek, Environmental impacts of phosphogypsum. The Science of The Total Environment, 1994, 149(1-2): 1-38.
    [22]杨兆娟,向兰.磷石膏综合利用现状评述[J].无机盐工业, 2007, 39(1):8-10.
    [23]纪罗军,陈强.我国磷石膏资源化利用现状及发展前景综述[J].硫磷设计与粉体工程, 2006, (5):5-9.
    [24]郑林树,李桂贤.磷石膏的处理和回收[J].粉煤灰, 2006(2):39,48.
    [25] Manjit Singh. Role of phosphogypsum impurities on strength and microstructure of selenite plaster[J]. Construction and building materials, 2005(19):480-486.
    [26] Manjit Singh. Effect of phosphatic and fluoride impurities of phosphogypsum on the properties of selenite plaster[J]. Cement and Concrete Research, 2003, 33(9) :1363-1369.
    [27]彭家惠等.磷石膏中杂质组成形态分布及其对性能的影响[J].中国建材科技, 2000(6):31-35.
    [28]彭志辉.磷石膏中杂质影响机理及共建材资源化研究[D].重庆:重庆建筑大学博士学位论文,2000.
    [29] J. H. Potgieter and S. S. Howell-Potgieter. A plant investigation into the use of treated phosphogypsum as a set-retarder in OPC and an OPC/fly ash blend[J]. Minerals Engineering, 2001, 14(7):791-795.
    [30] Manjit Singh. The effect of chemical gypsum on the properties of blended cements[M] . The 4th Beijing International Symposium On Cement And Concrete.1998,166~169.
    [31]江开宏.改性磷石膏作水泥缓凝剂的研究[J].新世纪水泥导报, 2006, (3):25-27.
    [32] J.H.Potgieter et al.. An investigation of various chemical and physical treatments of a South African phosphogypsum to render it suitable as a set retarder for cement[J]. Cement and concrete research, 2003, (33):1223-1227.
    [33]潘淑琴,王中伟.磷石膏作缓凝组分材料的生产应用[J].水泥技术, 2006,(4):89-90.
    [34]沈卫国,聂纪强,周明凯.磷石膏水泥缓凝剂的研究[J].磷肥与复肥, 2005,(9):21-23.
    [35]沈卫国,周明凯,赵青林等.固化磷石膏作水泥缓凝剂的研究[J].中国水泥, 2007,(7):30-31.
    [36]王庆乐,汤振峰.磷石膏作调凝剂生产缓凝水泥[J].水泥技术, 2006(2):88-89.
    [37]孙国芳.磷石膏作缓凝剂在水泥生产中的应用[J]. 1994, (10):25-28.
    [38]彭家惠,彭志辉,张建新等.磷石膏中可溶磷形态、分布及其对性能影响机制的研究[J].硅酸盐学报,2000,28(4):309-313.
    [39] Manjit Singh and Mridul Garg. Study on anhydrite plaster from waste phosphogypsum for use in polymerised flooring composition[J]. Construction and Building Materials, 2005,19(1):25-29.
    [40]范征宇,李家和,宋亮.磷石膏脱水及凝结硬化性能研究[J].哈尔滨理工大学学报,2002,7(3):48-51.
    [41]马林转等.磷石膏预处理工艺综述[J].磷肥与复肥, 2007, 22(3):62-63.
    [42]胡旭东,赵志曼.磷石膏的预处理工艺综述[J].建材发展导向, 2006(1):48-51.
    [43]谢超凌,高惠民,朱芳.磷石膏预处理及利用[J].云南化工, 2006,33(2):64-67.
    [44]王兆利,高倩,赵铁军.建筑石膏和磷石膏的改性[J].粉煤灰综合利用, 2001, (4):13-16.
    [45]马行美.磷石膏净化及石膏煅烧工艺综述[J].硫磷设计与粉体工程, 2003, (5):17-19.
    [46]段庆奎,王立明.闪烧法一磷石膏的无害化处理新工艺[J].宁夏石油化工, 2004, (3):13-16.
    [47] Manjit Singh, Mridul Garg, C.L. Verma, et al. An improved process for the purification of phosphogypsum[J]. Construction and Building Materials, 1996,10(8): 597-600.
    [48] Manjit Singh, Mridul Garg,Durability of cementing binders based on fly ash and other wastes[J], Construction and Building Materials, 2007(21):2012–2016.
    [49] Mohammad M. Smadi, Rami H. Haddad and Ahmad M. Akour.Potential use of phosphogypsum in concrete[J]. Cement and Concrete Research, 1999,29(9): 1419-1425.
    [50] Manjit Singh and Mridul Garg. Cementitious binder from fly ash and other industrial wastes[J]. Cement and Concrete Research, 1999, 29(3):309-314.
    [51] Kelly A. Rusch, Tingzong Guo and Roger K. Seals. Stabilization of phosphogypsum using class C fly ash and lime: assessment of the potential for marine applications[J].Journal of Hazardous Materials, 2002, 93(2):167-186.
    [52] . Ak?n Altun and Yesim Sert. Utilization of weathered phosphogypsum as set retarder in Portland cement[J]. Cement and Concrete Research, 2004, 34(4): 677-680.
    [53]潘群雄,张长森,徐凤广等.煅烧磷石膏作水泥缓凝剂和增强剂[J].新世纪水泥导报, 2003, (5):40-41.
    [54] Manjit Singh. Treating waste phosphogypsum for cement and plaster manufactur[J]. Chemical and Concrete Research, 2002, (32):1033-1038.
    [55]冯金煌.磷石膏及其综合利用的探讨[J].无机盐工业, 2001, 33(4):34-36.
    [56]杨斌,李沪萍,罗康碧.磷石膏综合利用的现状[J].化工科技, 2005, 13(2):61-65.
    [57]胡振玉,王健,张先等.磷石膏的综合利用[J].中国矿山工程, 2004, 33(4):41-44.
    [58]张朝.浅析磷石膏的综合利用[J].化工技术与开发, 2007, 36(2):54-57.
    [59]蒋永安.磷石膏制硫酸联产水泥的装置情况介绍[J].硫酸工业, 2002, (6):5-10.
    [60]方贤根.磷石膏综合利用现状及对策分析[J].安徽化工, 2007, 33(1):54-55.
    [61]曹广秀,曹广连,马淮凌.磷石膏一步法制取硫酸钾工艺研究[J].应用化工, 2005,34(7):421-423.
    [62] N. P. Stamford, A. D. Ortega, F. Temprano, D. R. Santos. Effects of phosphorus fertilization and inoculation of Bradyrhizobium and mycorrhizal fungi on growth of Mimosacaesalpiniaefolia in an acid soil[J]. Soil Biology and Biochemistry, 1997, 29 (5-6): 959-964.
    [63] Janusz Zwolinski, Mike Johnston, Heyns Kotze. Soil treatments for improved timber production in Pinus radiata plantations in South Africa,Forest Ecology and Management. 2002(1-2):199-207.
    [64] A. V. Gorbunov, M. V. Frontasyeva, S. F. Gundorina, et al.. Effect of agricultural use of phosphogypsum on trace elements in soils and vegetation. The Science of The Total Environment, 1992, 122( 3):337-346.
    [65]纪罗军,陈强.我国磷石膏资源化利用现状及发展前景综述(续完)[J].硫磷设计与粉体工程, 2006, (6):9-19.
    [66]姜洪义,刘涛.磷石膏颗粒级配、杂质分布对其性能影响的研究[J].武汉理工大学学报,2004,26(1):28-30.
    [67]伏锦容,丁山泉,李健生等.用磷石膏作水泥缓凝剂的试验研究.水泥工程, 2005, (5)::18-20.
    [68] Masamoto Tafu and Tetsuji Chohji. Reaction between calcium phosphate and fluoride in phosphogypsum[J]. Journal of the European Ceramic Society, 2006, 26(4): 767-770.
    [69]崔素萍,顾雪慈,王子明等.石膏种类对硅酸盐水泥性能的影响[J].水泥技术,2005(2):29-33.
    [70] 70成希弼.水泥中所用石膏种类与其溶解速率的关系[J].硅酸盐学报, 1987, 15(2):179-181.
    [71] Saloua Sebbahi, Mohamed Lemine Ould Chameikh, Fatima Sahban, et al. Thermal behaviour of Moroccan phosphogypsum[J].Thermochimica Acta, 1997, 302(1-2): 69-75.
    [72]郑建国,杨久俊,李西中,等.磷石膏作缓凝剂对水泥性能的影响[J].河南建材, 2004, 3:11-12.
    [73]刘建华,李若东,赵益民.磷石膏代替天然石膏作水泥缓凝剂的应用研究[J].陕西建材, 1995, 1:18-19.
    [74] M.A. Taher. Influence of thermally treated phosphogypsum on the properties of Portland slag cement Resources[J]. Conservation and Recycling, 2007, 52(1): 28-38.
    [75] Nurhayat Degirmenci. The using of waste phosphogypsum and natural gypsum in adobe stabilization[J].Construction and Building Materials, 2008, 22(6): 1220-1224.
    [76]杨淑珍,宋汉唐,杨新亚,等.磷石膏改性及其作水泥缓凝剂研究[J].武汉理工大学学报, 2003, 25(1):23-25.
    [77] C.A. Stydom, J.H. Potgieter. Dehydration behaviour of a natural gypsum and a phosphogypsum during milling[J]. Thermochimica Acta, 1999, 332:89-94.
    [78] Dongxu Li, Yimin Chen, Jinlin Shen, et al.. The influence of alkalinity on activation andmicrostruct-ure of fly ash[J]. Cement and Concrete Research, 2000, 30:881-886.
    [79] S. Antiohos, A. Papageorgiou, S. Tsimas. Activation of fly ash cementitious systems in the presence of quicklime. Part II: Nature of hydrate- on products, porosityand microstructure development[J]. Cement and Concrete Research, 2006,(36):2123–2131.
    [80] Caijun Shi, Robert L. Day. Acceleration of the reactivity of fly ash by chemical activation[J]. Cement and Concrete Research, 1995,25(1):15-21.
    [81] M. Criado, A. Fernández-Jiménez, A. Palomo. Alkali activation of fly ash: Effect of the SiO2/Na2O ratio: Part I: FTIR study[J]. Microporous and Mesoporous Materials, 2007, 106(1-3):180-191.
    [82] S. Antiohos, S.Tsimas. Activation of fly ash cementitious systems in the presence of quicklime Part I.Compressive strength and pozzolanic reaction rate[J]. Cement and Concrete Research, 2004, (34):769–779.
    [83]张登良,许永明,沙爱民.石灰、粉煤灰稳定土的早强试验研究[J].粉煤灰综合利用, 1995, 1:17-24.
    [84]李兴源,李华华.石灰-粉煤灰-土作道路基层的性能浅析[J].黑龙江交通科技, 2007, 9:32-32.
    [85] S.K. Antiohos, V.G. Papadakis. Chaniotakis, et al..Improving the performance of ternary blended cements by mixing different types of fly ashes[J]. Cement and Concrete Research, 2007(37):877-885.
    [86]高万海,由平均.石灰粉煤灰粒料基层的强度形成机理和裂缝防治[J].城市道桥与防洪, 2007, 10:10-14.
    [87] A.Ferna′ndez-Jime′nez, A. Palomo. Characterisation of fly ashes:Potential reactivity as alkaline cements[J]. Fuel,2003, 82:2259-2265.
    [88] P. Chindaprasirt, K. Pimraksa. A study of fly ash–lime granule unfired brick[J]. Powder Technology, 2008,182:33-41.
    [89]王晓钧,杨南如,钟白茜.粉煤灰-石灰-水系统反应机理探讨[J].硅酸盐学报, 1996, 24(2):137-141.
    [90]王智,钱觉时,卢浩.石灰对粉煤灰活性激发作用的研究进展[J].粉煤灰综合利用, 1999,1:27-29.
    [91]钱觉时,肖保怀,袁江,等.粉煤灰-石灰-硫酸盐系统[J].新型建筑材料,1998, 8:19-21.
    [92] M.J. Renedo, J. Ferna′ndez. Kinetic modelling of the hydrothermal reaction of fly ash, Ca(OH)2 and CaSO4 in the preparation of desulfurant sorbents[J].Fuel, 2004(83):25–532.
    [93] S.K. Antiohos, A. Papageorgiou, V.G. Papadakis, et al.. Influence of quicklime addition onthe mechanical properties and hydration degree of blended cements containing different fly ashes[J]. Construction and Building Materials, 2008(22):1191-1200.
    [94] John H. Taplin. Hydration kinetics of calcium sulphate hemihydrate-a comment[J].Cement And Concrete, 2004,(34):1963.
    [95] N.B. Singh,B. Middendorf. Calcium sulphate hemihydrate hydration leading to gypsum crystallization[J].Progress in Crystal Growth and Characterization of Materials, 2007, 53(1):57-77
    [96] Mohammed M. Gharieb, Geoffrey M. Gadd. Influence of nitrogen source on the solubilization of natural gypsum (CaSO4·2H2O) and the formation of calcium oxalate by different oxalic and citric acid-producing fungi[J]. Mycological Research, 1999, 103(4):473-481.
    [97] Elisabeth Badens, Stéphane Veesler, Roland Boistelle. Crystallization of gypsum from hemihydrate in presence of additives[J]. Journal of Crystal Growth, 1999, 198-199( 1):704-709.
    [98] Manjit Singh and Mridul Garg. Retarding action of various chemicals on setting and hardening characteristics of gypsum plaster at different pH[J].Cement and Concrete Research, 1997, 27(6):947-950.
    [99]彭家惠,陈明凤,瞿金东,等.柠檬酸对建筑石膏水化的影响及其机理研究[J].建筑材料学报,2005,8(1):94-99.
    [100] Mridul Garg, Manjit Singh, Rakesh Kumar. Some aspects of the durability of a phosphogypsum-lime-fly ash binder[J]. Construction and Building Materials, 1996, 10(4):273-279.
    [101] C.S. Poon et al.. Activation of fly/cement systems using calcium sulfate anhydrite(CaSO4)[J]. Cement and Concrete Research, 2001,(31):873-881.
    [102] Kumar S. A.Perspective study on the fly ash-lime-gypsum bricks and hollow blocks for cost housing development[J]. Construction and Building Materials, 2002,(16):519-25.
    [103] K.J. Mun, W.K. Hyoung, C.W. Lee, S.Y. So et al.. Basic properties of non-sintering cement using phosphogypsum and waste lime as activator[J]. Construction and Building Materials, 2007, 21(6):1342-1350.
    [104] Ismail Demir and M. Serhat Baspinar.Effect of silica fume and expanded perlite addition on the technical properties of the fly ash–lime–gypsum mixture[J]. Construction and Building Materials, 2008, 22(6):1299-1304.
    [105] Nurhayat Degirmenci, Arzu Okucu and Ayse Turabi .Application of phosphogypsum in soil stabilization[J].Building and Environment, 2007, 42(9):3393-3398.
    [106] Manjit Singh and Mridul Garg. Making of anhydrite cement from waste gypsum[J].Cement and Concrete Research, 2000, 30(4): 571-577.
    [107] Manjit Singh, Mridul Garg, S. S. Rehsi. Durability of phosphogypsum based water-resistant anhydrite binder[J].Cement and Concrete Research, 1990,20(2):271-276.
    [108]邓鹏,王培铭.天然硬石膏的活性激发及改性[J].新型建筑材料, 2007,1:62-65.
    [109] Mariana Moreira, Cavalcanti Canut. Microstructural analyses of phosphogypsum generated by Brazilian fertilizer industries.Materials Characterization[J]. 2008, 59(4): 365-373.
    [110] L. Kacimi, A. Simon-Masseron, A. Ghomari and Z. Derriche. Reduction of clinkerization temperature by using phosphogypsum[J]. Journal of Hazardous Materials, 2006, 137(1):129-137.
    [111] A. Fernández-Jimenez et al.. Quantitative determination of phases in the alkali activation of fly ash. Part. Potential ash reactivity[J]. Fuel, 2006, (85):624-634.
    [112] A.Xu, S.L. Sarkar. Microstructural study of gypsum acticated fly ash hydration in cement pastes[J]. Cement and Concrete Research, 1991,(21):1137-1147.
    [113] Qian Jueshi, Shi Caijun, Wang Zhi. Activation of blended cements containing fly ash[J].Cement and Concrete Research, 2001, 31(7):1121-1127.
    [114] Kolias S, Kasselouri-Rigopoulou V, Kaarhalios A. Stabilization of clayey soils with high calcium fly ash and cement[J]. Cement and Concrete Composites, 2005,(27):301-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700