用户名: 密码: 验证码:
磷石膏品质的影响因素及其建材资源化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷石膏是湿法磷酸生产的副产物,生产1吨磷酸产生约5吨磷石膏。磷石膏的年排放量5000多万吨,有效利用率不足10%,严重影响磷化工行业的可持续发展。磷石膏的晶形较差,有害杂质多,品质波动不定,缺乏质量评定标准,是制约其建材资源化的重要原因。目前磷石膏资源化的技术路线是通过预处理和改性提高磷石膏的品质,资源化成效并不显著。磷石膏的品质主要取决于湿法磷酸工艺。本文采用在实验室模拟二水法湿法磷酸工艺的方法,系统研究了湿法磷酸生产工艺与磷石膏的晶形、可溶磷、共晶磷含量的关系,通过改进和优化磷酸工艺来实现磷石膏品质的提升和磷资源的有效回收。深入研究了杂质和晶形对磷建筑石膏性能的影响规律和作用机理,在此基础上,结合国内排放磷石膏的品质情况,研究并建立定量评定磷石膏质量的指标体系,并探讨了磷石膏制备建筑石膏和粉刷石膏的技术途径,对规范磷石膏的排放和资源化有较好的指导意义。
     磷石膏中可溶磷的含量主要取决于过滤洗涤工艺。磷石膏的晶形、洗涤水温度、洗涤液固比和洗涤次数是影响洗涤率的主要因素。磷石膏的晶形由细针状和薄片状变为粗大的柱状和斜方板状,洗涤率提高约3%,可溶磷的含量降低42%;洗涤水温度由40℃提高到80℃,洗涤率提高1.6%,磷石膏中可溶磷的含量降低36%;洗涤液固比由1.5:1提高到2.5:1,洗涤率提高2.2%,磷石膏中可溶磷的含量降低47%;洗涤次数由1次增加到3次,洗涤率提高1.8%,磷石膏中可溶磷的含量降低32%。通过实验优化了过滤洗涤工艺,使磷石膏中可溶磷的含量与现有工艺相比降低了约40%。
     磷石膏中共晶磷的含量与二水石膏的析晶过饱和度呈正相关。提高反应温度和液相SO3浓度或降低液相P2O5浓度,都可降低析晶过饱和度。当析晶过饱和度控制在1.4以下时,磷石膏中共晶磷的含量可降到0.4%以下。
     萃取反应过程的析晶过饱和度是影响磷石膏晶形的主要因素。通过研究湿法磷酸的萃取反应工艺,结果表明:(1)磷矿粉的细度、液相SO3浓度和液相P2O5浓度对磷石膏的晶体形貌和大小都有影响。液相SO3浓度提高,析晶过饱和度降低,磷石膏的晶体由薄片状和细针状变为粗大的柱状和斜方板状,再向聚晶转变,平均粒径变大;磷矿粉的比表面积增大、液相P2O5浓度提高,析晶过饱和度升高,晶体由粗大的板状变为柱状,再向细针状转变,平均粒径变小。(2)反应温度、料浆液固比、养晶时间和养晶温度仅影响磷石膏的晶体大小。提高反应温度、减小料浆液固比、延长养晶时间和提高养晶温度,都可使析晶过饱和度降低,晶体尺寸变大,晶形均为柱状或板状。
     可溶磷降低了磷石膏的脱水温度,特别是对一次脱水温度影响较大;在建筑石膏水化时,使其凝结时间延长,液相过饱和度降低,晶体粗化,硬化体强度降低;三种形态可溶磷的影响程度为H3PO4>H2PO4->HPO42-。共晶磷在石膏煅烧过程中不发生变化,在水化过程中从晶格中释放出来转变为可溶磷HPO42-溶解在浆体中,其电离出的PO43-迅速与溶液中大量存在的Ca2+结合,转变为难溶性Ca3(PO4)2覆盖在晶体表面,阻碍了石膏的进一步水化,电离出的H+使浆体的pH值降低。磷石膏的晶体形貌和晶体尺寸对磷建筑石膏的物理力学性能有很大影响。粗大的斜方板状结晶对磷石膏胶结材的性能最为不利,长径比较大的棱柱状次之,长径比较小的短柱状结晶的性能最好;当磷石膏晶形为斜方板状时,晶体的长宽比越大,厚度越大,越接近棱柱状,磷石膏胶结材的性能越好。
     与现有的标准按照磷石膏的品位进行分级不同,论文以“磷石膏是否需要经过预处理生产出合格品建筑石膏”为分级原则,将可溶磷、可溶氟、共晶磷、有机物以及pH值、细度加入磷石膏质量评定指标体系,以国内排放的磷石膏的品质情况和杂质、pH值、细度对磷石膏性能的影响规律为依据,设立了评价指标的相应限值,将磷石膏分为两级。一级磷石膏可直接生产出合格品建筑石膏,二级磷石膏经过简单的非水洗预处理可生产出合格品建筑石膏。按照指标体系的分级方法,国内排放的磷石膏约75%达到二级以上标准,其中符合一级标准的约20%。其余约25%不符合指标体系要求的磷石膏的生产企业,可通过改进磷酸生产工艺,生产出满足指标体系要求的磷石膏。
     磷石膏制备建筑石膏的煅烧制度与天然石膏不同,煅烧温度随可溶磷含量的增多而降低。一级磷石膏的煅烧温度应控制在150℃~160℃之间,恒温1.5h~2.0h,可制备出优等品建筑石膏;二级磷石膏的煅烧温度应降低20℃~30℃,可制备出合格品建筑石膏。采用粘结剂、缓凝剂和保水剂对二级磷石膏制备的磷建筑石膏加以改性,配制的磷石膏基粉刷石膏性能优良,有良好的应用前景。
Phosphogypsum (PG) is the byproduct of wet-process phosphoric acid (WPA),producing one tonne phosphoric acid will produce about five tons PG. The output of PGis more than5000tons, while the effective utilization rate is less than10%, whichseriously affect the sustainable development of phosphorus chemical industry. Poorcrystal form, harmful impurities, volatility of the quality and lack of quality assessmentstandards of PG are important reasons restricting PG used as building materials. Thecurrent resource utilization technologies for PG are focus on improving its quality bypretreatment and modified, the effectiveness is not remarkable. The quality of PGmainly depends on the phosphoric acid process. In this paper, the relationship betweenthe dihydrate WPA production process and the crystalline form, water-soluble P2O5,co-crystallized P2O5of PG was explored by simulating dihydrate WPA production inlaboratory, improving and optimizing the phosphoric acid process to realize thepromotion of PG quality and the effective recovery of phosphorus resource. Theinfluencing rule and mechanism of impurities and crystalline form on performances ofphosphorus building gypsum were deeply studied, on this basis, an assessment systemfor PG quality was studied and proposed combining the quality of domestic PG, thendiscussed the technical ways for PG to prepare building plaster and wall plaster, theseprovide a strong theoretical basis for regulating emissions and resource utilization ofPG.
     The content of water-soluble P2O5in PG mainly depends on the filtration washingprocess of PG in phosphoric acid production. The crystalline form, washing watertemperature, washing liquid to solid ratio and washing times mainly affect the washingrate. When the crystalline form of PG changed from the fine needle and thin sheet to thethick columnar and rhombic, the washing rate increased by about3%, and the content ofwater-soluble P2O5reduced by42%. The washing water temperature raised from40℃to80℃, the washing rate increased by1.6%, and the content of water-soluble P2O5reduced by36%. The washing liquid to solid ratio improved from1.5:1to2.5:1, thewashing rate increases by2.2%, and the content of water-soluble P2O5reduced by47%.The washing times increased from1to3, the washing rate increased by1.8%, and thecontent of water-soluble P2O5reduced by32%. When the filtration washing process was optimized through experiments, the water-soluble P2O5content in PG reduced by40%compared with the existing plant process.
     The degree of crystallization supersaturation of dihydrate gypsum is the mainfactor influencing the content of co-crystallized P2O5. The content of co-crystallizedP2O5is positively correlated with the degree of crystallization supersaturation. Raisingthe reaction temperature, increasing the SO3concentration in liquid phase or decreasingthe P2O5concentration in liquid phase can reduce the degree of crystallizationsupersaturation. When the degree of crystallization supersaturation is controlled below1.4, the content of co-crystallized P2O5of PG will reduce to below0.4%.
     The degree of crystallization supersaturation in extraction reaction process mainlyaffects the crystalline shape of PG. The extraction of WPA production process wasstudied, the results showed that:(1)The fineness of ground phosphate rocks, SO3andP2O5concentration in liquid phase affect both crystal shape and crystal size. When theSO3concentration in liquid phase increased, the crystallization supersaturationdecreased, the crystal shape changed from thin sheet into thick columnar and rhombic,finally changed to polycrystal, the average size of crystal became larger. When thespecific surface area of ground phosphate rock increased, the P2O5concentration inliquid phase increased, the crystallization supersaturation increased, the crystal shapechanged from thick plate into thick columnar, finally changed to thin needle, theaverage size of crystal became smaller.(2)The reaction temperature, liquid-solid ratio ofslurry, crystal growing time and crystal growing temperature, only impact crystal size.To improve the reaction temperature, reduce liquid-solid ratio of slurry, extend crystalgrowing time and improve crystal growing temperature, the crystallizationsupersaturation decreased, crystal size became larger, crystalline form was stillcolumnar or plate.
     The water-soluble P2O5reduces the dehydration temperature of PG, especially forthe first dehydration temperature. During the hydration of the building gypsum, thesetting time was delayed, the crystallization supersaturation of dihydrate gypsumdecreased, the gypsum crystal became thick, the strength of the hardened paste becamelower. Among the three forms of water-soluble P2O5, the effect on the gypsumproperties arranged in this order: H3PO4>H2PO4->HPO42-. The co-crystallized P2O5didnot change in the process of calcination, still existed in the gypsum crystal lattice, but inthe hydration process, the co-crystallized P2O5continuously dissolved from the crystal lattice, changed into water-soluble HPO42-, which ionized to H+and PO43-, PO43-quickly binded with Ca2+in the solution, changed to Ca3(PO4)2which covered on thecrystal surface, hindered the gypsum further hydration, resulted in the reduction ofhardened paste strength, and the surplus of H+led to decrease in pH value of the slurry.The crystal shape and crystal size of PG seriously influence the physical and mechanicalproperties of its cementitious materials. Thick rhombic plate crystal has the worstperformance on phosphorus building gypsum, prismatic crystal with largerlength-diameter ratio is superior, short columnar crystal with smaller length-diameterratio is the best. When the crystal shape is rhombic tabular, the larger the aspect ratio,the greater the thickness, the more close to the prismatic, the better the phosphorusbuilding gypsum properties.
     In this paper,“whether PG needs to be pretreated so as to produce the qualifiedproduct " is used as the classification principle, which is different from the existingstandards according to the grade to classify PG, adding the content of water-solubleP2O5, water-soluble fluoride, co-crystallized P2O5, organic matter, pH value andfineness to the quality evaluation index system. Based on the quality situation ofdomestic PG and the influence rule of the impurities, pH value and fineness on theperformance, set up the corresponding limit value of the evaluation index, divided PGinto two grades. The first level PG produce the qualified building gypsum directly, thesecond level needs non-washing pretreatment. According to the classification indexsystem, about75%of domestic PG reached to the standard of the second level andabove, of which about20%conformed to the first level. The PG production enterprises,which produced the remaining25%PG not conformed to the index system requirements,need to improve the phosphoric acid production process, and the production can alsomeet the index system requirements.
     The calcination system for preparation of phosphorus building gypsum is differentfrom natural gypsum. The calcination temperature of PG decreased with the increase ofthe water-soluble P2O5content. The high-class building gypsum can be prepared usingthe first level PG when controlling the calcination temperature at150℃to160℃and keeping constant temperature for1.5h to2.0h. To produce the qualified productusing the second level PG, the calcination temperature should be decreased by20℃to30℃. The phosphogypsum-based plaster gypsum can be produced by adding binder,retarder and water-retaining agent to the building gypsum prepared with the second level PG, its performance is excellent and it has a good prospect.
引文
[1]张允湘.磷肥及复合肥料工艺学[M].北京:化学工业出版社,2008,1.
    [2] Papastefanou C, Stoulos S, Ioannidou A, etc. The application of phosphogypsum inagriculture and the radiological impact[J]. Journal of Environmental Radioactivity,2006,89(2):188-198.
    [3]姚永发,方天翰,王拟云,等.磷酸、磷铵、重钙技术与设计手册[M].北京:化学工业出版社,1996,7.
    [4]武雪梅.“十五”期间我国磷肥、硫酸行业生产和消费概述[J].磷肥与复肥,2006,21(4):1-5.
    [5]武雪梅.2006年我国磷肥、硫酸行业生产消费概述[J].磷肥与复肥,2007,22(4):1-5.
    [6]张儒全.磷石膏综合利用方法及其发展方向[J].磷肥与复肥,2009,24(2):61.
    [7]师红.磷石膏的利用[J].建材发展导向,2005,1:44-46.
    [8] Poole A J, Allington D J, Baxter A J, etc. The natural radioactivity of phosphate ore andassociated waste products discharged into the eastern Irish Sea from a phosphoric acidproduction plant[J]. Science of the Total Environment,1995,(173-174):137-149.
    [9] Shukla V K, Ramachandran T V, Chinnaesakki S, etc. Radiological impact of utilization ofphosphogypsum and fly ash in building construction in India[J]. International CongressSeries,2005,127(6):339-340.
    [10]杨敏.杂质对不同相磷石膏性能的影响[D].重庆:重庆大学博士学位论文,2008.
    [11]李军.磷石膏全面资源化利用曙光初见[J].中国化工报,2008,5(6):1-2.
    [12]陈燕,岳文海,董若兰.石膏建筑材料[M].北京:中国建材工业出版社,2003.
    [13]韩敏芳,王军伟,刘泽.世界性的研究课题:磷石膏特性及开发前景[J].国外建材科技,2003,6:15-17.
    [14]赵拉,解田,刘佳,等.磷石膏的物化特征及其作为建筑材料的性能研究[J].西安建筑科技大学学报(自然科学版),2009,41(4):589-590.
    [15]俞政一.磷石膏结晶特征与磷矿物性状[J].硫磷设计与粉体工程,2007,3:1-7.
    [16]万体智,彭家惠,张建新.磷石膏中磷的分析及对性能影响研究[J].房材与应用,2001,29(4):38-41.
    [17]彭家惠.磷石膏中可溶磷形态、分布及其对性能影响机制的研究[J].硅酸盐学报,2000,28(4):309-313.
    [18] Singh M. Processing of phosphogypsum for the manufacture of gypsum plaster [J]. Res.Ind.,1982,27:167-169.
    [19] lmez H, Yilmaz V T. Infrared study on the refinement of phosphogypsum for cements [J].Cement and Concrete Research,1988,18(3):449-454.
    [20]彭家惠,万体智,汤玲,等.磷石膏中有机物、共晶磷及其对性能的影响[J].建筑材料学报,2003,6(3):221-226.
    [21]彭志辉.磷石膏中杂质影响机理及其建材资源化研究[D].重庆:重庆建筑大学博士学位论文,2000.
    [22] Singh M. Effect of phosphatic and fluoride impurities of phosphogypsum on the propertiesof selenite plaster[J]. Cement and Concrete Research,2003,33(9):1363-1369.
    [23]王显斌,林春玉,吴兆正.磷石膏的微量组分及其对水泥凝结、水化和硬化的影响[J].水泥,1993,5:1-5.
    [24]曹建新,陈前林,刘毅,等.磷石膏中杂质的形态及水溶性磷对水泥物理性能的影响[J].环境工程,2001,19(5):40-43.
    [25]彭家惠,张建新,彭志辉,等.磷石膏作水泥缓凝剂及其成粒工艺研究[J].水泥,2001,2:13-15.
    [26]李莉.磷石膏作水泥调凝增强剂的研究与应用[J].粉煤灰,1999,4:27-29.
    [27] lmez H, Erdem E. The effects of phosphogypsum on the setting and mechanical propertiesof Portland cement and trass cement[J]. Cement and Concrete Research,1989,19(3):377-384.
    [28] Tabikh A, Miller F M. The nature of phosphogypsum impurities and their influence oncement hydration[J]. Cement and Concrete Research,1971,1(6):663-667.
    [29] Itzhak S. Effect of phosphogypsum of properties of Portland cement[J].American CeramicsSociety Bulletin,1983,63(12):1502-1505.
    [30]汪智勇.改性磷石膏型外加剂对水泥性能的影响研究[D].武汉:武汉理工大学,2005.
    [31]吕洁.改性磷石膏对水泥性能影响的试验研究[J].水泥,2008,9:4-6.
    [32]杨敏,庞英.化学预处理磷石膏用于水泥缓凝剂的研究[J].兰州理工大学学报,2007,33(6):58-60.
    [33]马雷,曹建新.煅烧磷石膏作水泥缓凝剂的研究[J].辽宁化工,2006,35(5):253-256.
    [34]郑建国,杨久俊,朱启贵,等.改性磷石膏作水泥缓凝剂生产水泥[J].水泥,2005,(1):23-24.
    [35]杨淑珍,宋汉唐,杨新亚,等.磷石膏改性及其作水泥缓凝剂研究[J].武汉理工大学学报,2003,1(25):23-25.
    [36] Singh M. Treating waste phosphogypsum for cement and plaster manufacture[J]. Chemicaland Concrete Research,2002,32(7):1033-1038.
    [37] Singh M, Garg M, Rehsi S S. Purifying phosphogypsum for cement manufacture[J].Constructure and Building Materials,1993,7(1):3-7.
    [38] Singh M. A chemical process for purifying phosphogypsum[J]. Environment Health,1983,25(4):300-306.
    [39] Potgieter J H, Potgieter S S, McCrindle R I, etc. An investigation into the effect ofvarious chemical and physical treatments of a South African phosphogypsum to render itsuitable as a set retarder for cement[J]. Cement and concrete research,2003,33(8):1223-1227.
    [40]曹建新,陈前林,姜华玉,等.改性磷石膏对不同品种水泥物理性能的影响[J].贵州工业大学学报(自然科学版),2001,30(3):75-78.
    [41] Singh M. An improved process for the purification of phosphogypsum[J]. Constructionand Building Materials,1996,10(8):597-600.
    [42] Tanaka H. Influence of phosphogypsum on hydration of Portland cement[J]. ChemicalAbstract,1968,69:61335.
    [43] Lewis R. Gypsum leaching with the removal of soluble salts by inlime filtration[J]. ZKG,1987,40:527-533.
    [44] Baron J, Neveu B, Stegherr. The new phosphoplant in Douvarinnear Arts/France[J]. ZKG,1977,30:385-390.
    [45] Kishimoto K, Murakami K. Improving quality of phosphogypsum[J]. Chemical Abstract,1974,80(4):18829.
    [46] Singh M, Rehsi S S, Taneja C A. Rendering phosphogypsum suitable for plastermanufacture[J]. Indian Journal Technology,1984,22:28-32.
    [47]段庆奎,王立明.闪烧法-磷石膏的无害化处理新工艺[J].宁夏石油化工,2004,3:13-16.
    [48]邓志拓,张春光.磷石膏滤饼再浆(酸化)水洗降磷效果及实践中再认识[J].磷肥与复肥,2004,3(19):24-26.
    [49]白有仙,詹骏,朱云勤.高品质磷石膏处理工艺研究[J].无机盐工业,2008,40(5):45-47.
    [50]白有仙,庞世花,朱云勤.对磷石膏不同处理方法脱磷效果的实验研究[J].磷肥与复肥,2009,24(3):21-22.
    [51]徐进,孙志岩.磷石膏综合利用制约因素分析及对策探讨[J].化工矿物与加工,2009,6:25.
    [52]叶学东.磷石膏的质量现状及综合利用中须注意的五个方面[J].磷肥与复肥,2009,24(6):60-64.
    [53]易妍睿,何迅,王忠良,等.DB281-2004《土壤调理剂—磷石膏》[S].武汉:湖北农业出版社,2004.
    [54]苏庆东,刘会忠,刘会友,等.NY/T1060-2006《水泥生产用磷石膏》[S].北京:中国农业出版社,2006.
    [55]郑建国,王德伦,袁运法,等.GB/T23456-2009《磷石膏》[S].北京:中国标准出版社,2010,1.
    [56]吴兆正.我国资源化利用磷石膏的若干建议[J].中国建材,2008,1:65-67.
    [57]郑苏云,陈通,郑林树.磷石膏综合利用的现状和研究进展[J].化工生产与技术,2003,10(4):33-35.
    [58]纪罗军,陈强.我国磷石膏资源化利用现状及发展前景综述(续完)[J].硫磷设计与粉体工程,2006,6:12-14.
    [59]彭家惠,彭志辉,张建新.磷石膏基无水石膏胶结材研究[J].混凝土与水泥制品,2002,2:42-45.
    [60]沈卫国,周明凯,赵青林,等.固化磷石膏作水泥缓凝剂的研究[J].中国水泥,2002,7:30-32.
    [61]江开宏.改性磷石膏作水泥缓凝剂的研究[J].新世界水泥导报,2006,3:25-27.
    [62] Akin A I, Yesim S. Utilization of weathered phosphogypsum as set retarder in Portlandcement[J]. Cement and Concrete Research,2004,34(4):677-680.
    [63] Taher M A. Influence of thermally treated phosphogypsum on the properties of Portland slagcement[J]. Resources Conservation&Recycling,2007,52(1):28-38.
    [64] Potgieter J H, Howell-potgieter S S. A plant investigation into the use of treatedphosphogypsum as a set-retarder in OPC and an OPC/fly ash blend[J]. MineralsEngineering,2001,14(7):791-795.
    [65]周至宏,谢云,李莉.磷石膏作水泥矿化剂的研究及应用[J].粉煤灰,1998,3:36-39.
    [66]张学丽,韩利华.磷石膏制硫酸联产水泥工艺条件的研究[J].山东化工,2007,36(1):26-27.
    [67]李德栋,毕利坤,王晓华,等.磷石膏作原料试生产硫铝酸盐水泥熟料[J].水泥,2002,6:21-22.
    [68]彭家惠,彭志辉,陈明凤,等.磷石膏基粉刷材料配制与性能研究[J].施工技术,2000,29(10):39-40.
    [69]李秉政,刘卫平,王晓华.磷石膏制烧结砖的试验研究及工业化应用[J].磷肥与复肥,2003,6:53-55.
    [70]匡晓静.800万块/年免烧石膏砖生产工艺的探讨[J].磷肥与复肥,2003,6:51-52.
    [71]张天保,池济亨.磷石膏免烧砖及其生产工艺[P].中国,CN00109901.9,2000-07-07.
    [72]李卫国,蒋志全.我国石膏砌块生产发展评述[J].非金属矿,1998,122(2):4.
    [73]穆惠民,刘勇军.我国新型石膏空心砌块成型机械的应用及发展现状[J].砖瓦,2004,7:61-64.
    [74]王俊玲,刘继良,陈乃华.粉煤灰铺筑道路基层的研究[J].焦作工学院学报,2002,4:315-317.
    [75]苏素芹.工业副产石膏的开发与利用[J].山东建材,2008,2:45.
    [76]杨三可,刘代俊,胡厚美,等.用磷石膏生产建筑材料的新进展[J].硫磷设计与粉体工程,2004,1:5-6.
    [77]王沁芳,张朝辉,杨江金.磷石膏的特性及其建材资源化利用[J].砖瓦,2008,5:57-59.
    [78]马兴祥.用磷石膏生产的型材及其制法[P].中国,CN200410081601.6,2004-12-24.
    [79]赵青林,吴科佩.磷石膏废物资源化利用浅析[J].河南建材,2001,4:7-9.
    [80]权刘权,李东旭.用磷石膏配制石膏基自流平材料研究[J].非金属矿,2007,30(3):19-22.
    [81]郭泰民.工业副产石膏应用技术[M].北京:中国建材工业出版社,2010,1.
    [82]佚名.德国CHEMIEALGENBA USTASSFURTAG公司磷石膏生产硫酸钾工艺介绍[J].纯碱工业,1998,3:59-64.
    [83] Wen F. Chang-University Miami; Murray I. Mantell-University of Miami. Engineeringproperties and construction application of phosphogypsum[J]. Florida Institute of PhosphateReseach,1990,1:68-70.
    [84]齐曾荫,郑竹人.湿法磷酸聚晶工艺的研究与开发[J].磷肥与复肥,1998,3:11-13.
    [85]何建芳.浅析湿法磷酸过滤系统的影响因素及处理措施[J].化肥工业,2005,3(1):12-17.
    [86]孔令发.助滤剂在湿法磷酸中的应用[J].磷肥与复肥,2005,20(2):32-35.
    [87]王仁宗,周玉新,郑治超.湿法磷酸生产中絮凝剂的研究和应用[J].磷肥与复肥,2007,22(4):26-28.
    [88]余琼粉,宁平,杨月红.磷石膏的预处理及其资源化途径[J].江西农业学报,2008,20(2):109-111.
    [89]彭文世,刘高魁.矿物红外光谱图集[M].北京:科学出版社,1982.
    [90] Waggaman W H. Phosphoric Acid and Phosphoric Fertilizer[M]. New York,1952.
    [91] Roessler M, Odler I. Relationship between pore structure and strength of set gypsum pastes.PartⅡ: Influence of chemical admixtures[J]. ZKG,1989,8:419-424.
    [92]邓金玉.二水法湿法磷酸生产中提高磷收率的探讨[J].磷肥与复肥,2005,20(4):34-36.
    [93]陈永松.影响磷石膏中残磷含量的主要因素分析[J].贵州化工,2003,28(5):15-18.
    [94]周贵云,张允湘,钟本和.改性剂对二水硫酸钙结晶习性及过滤性能的影响[J].化学世界,1994,12:632-634.
    [95]涂敏端,童云清,何锐章,等.杂质对硫酸钙结晶习性的影响[J].成都科技大学学报,1988,38(6):47-51.
    [96] Becker P. Phosphates and Phosphoric Acid: Raw Materials, Technology and Economics ofthe Wet Processes[M]. Marcel Decker Inc., New York,1989.
    [97]李军,王建华,钟本和,等.Al3+对二水硫酸钙结晶动力学影响的研究[J].成都科技大学学报,1996,90(2):53-59.
    [98]彭家惠,张建新,彭志辉,等.磷石膏颗粒级配、结构与性能研究[J].武汉理工大学学报,2001,23(1):6-11.
    [99]庞英,杨林,杨敏,等.磷石膏中杂质的存在形态及其分布情况研究[J].贵州大学学报(自然科学版),2009,26(3):95-99.
    [100]姜洪义,刘涛.磷石膏颗粒级配、杂质分布对其性能影响的研究[J].武汉理工大学学报,2004,26(1):28-30.
    [101]席美云.磷石膏的综合利用[J].环境科学与技术,2001,11(3):11-13.
    [102] Yunus E, Ayhan D, Hasan G. Partly refined chemical by-product gypsum as cement additive[J]. Cement and Concrete Research,1994,24(4):601-604.
    [103] Ghafoori N, Chang W F. Investigation of phosphate mining waste for constructionmaterials[J]. Journal of Materials in Civil Engineering,1993,5(2):249-264.
    [104] Singh M, Mridul G, Rehsi S S. Durability of phosphogypsum based water-resistantanhydrite binder[J]. Cement and Concrete Research,1990,20(2):271-276.
    [105]余淑华,陆文雄,杨瑞海,等.脱硫粉刷石膏的配制与性能研究[J].新型建筑材料,2007,9:82-85.
    [106]陈苗苗,冯春花,张超,等.脱硫粉刷石膏的制备与性能研究[J].非金属矿,2011,34(3):35-37.
    [107]白杨,李东旭.活性掺合料对脱硫基粉刷石膏制品性能的影响[J].材料科学与工程学报,2009,27(3):447-450.
    [108]赵立群,张鑫.脱硫粉刷石膏的研制[J].粉煤灰,2006,3:22-23.
    [109]姜丛盛,王莹.外加剂及掺材对粉刷石膏性能的影响[J].硅酸盐通报,2003,5:92-94.
    [110]岑如军,唐蕾,鲍水红,等.建筑粉刷石膏的研制[J].新型建筑材料,2003,11:36-40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700