用户名: 密码: 验证码:
面向过程的维修诱导关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
民用航空器维修保障是一项技术难度高、劳动强度大的工作,如何降低维修难度、避免维修差错、提高工作效率、压缩维修成本始终为航空公司所关心,因而以此为课题展开研究无论是在理论层面还是在应用层面都具有重大意义。本文以构建面向过程的维修作业系统为目标,以应用增强现实技术为基础,深入研究了在实际构建该系统时所必需的若干关键技术问题。该系统的功能是:以维修任务为中心、以维修过程为线索向现场维修人员提供所需的文字和图像,帮助他们理解维修任务、提高认知能力。现将本文的主要研究内容和创新点总结如下:
     (1)根据旋转矩阵是SO3流形的事实,文章提出了在2D-3D点对应情形下用流形优化的方法获取对象位姿的新颖算法,算法利用泰勒展开和收缩映射消除了用正交投影模型代替针孔投影模型所引入的理论误差,减小了连续视频对象位姿跟踪中累积误差的传播,实验表明流形优化法得到对象位姿精度和所需的迭代次数均优于正交迭代,在综合数据试验中噪声方差为1时,前者的旋转轴、旋转角的相对误差为0.5%和0.25%,仅为后者相对误差的1/5和1/2;随后文章针对工业对象表面通常缺乏点特征,但具有共面圆特征一类常见工业对象的事实,研究了利用共面圆特征作为对象坐标系,依据绝对二次曲线的射影理论求解对象位姿的新方法,真实对象的试验表明该方法得到的位姿最大相对误差分别只有:旋转轴2.7%,旋转角1.7%,平移1.7%;最后针对特征点3D坐标不易获取的实际问题,文章给出了重构稳定匹配的SIFT特征点3D坐标的方法。
     (2)动态地跟踪对象位姿是实现连续视频图像注册的前提。本文改进了具有直线边缘轮廓对象位姿跟踪方法,提出了基于共面圆轮廓特征的对象位姿跟踪方法。文章利用前一帧图像的轮廓位置,采用计算轮廓的梯度归一化互相关系数的方式隐式缘搜索直线边缘或椭圆轮廓,建立2D-3D的轮廓对应关系,为提高隐式轮廓搜索的效率文章还采用扩展卡尔曼滤波,一方面预测当前帧图像的对象位姿,另一方面限制直线或共面圆轮廓特征搜索起点和搜索位置。对于直线边缘对象,文章综合采用Tukey估计子和权重直线拟合构造位姿计算目标函数并用SVD法求解,实验表明本文基于直线的位姿跟踪方法的旋转角最大的平均偏差0.29o,绝对偏差为1.90o,跟踪速度大约为10帧/秒,综合性能明显优于基于LM的位姿跟踪算法;对共面圆轮廓图像,文章则采用Sampson距离剔除野值、采用各项异性数据回归通过提高椭圆拟合精度获得高精度对象位姿,实验表明该方法跟踪对象位姿的最大角度误差为1.4o、平移为3.5mm,跟踪速率达10~12帧/秒。实验还表明利用扩展卡尔曼滤波的可以有效地将位姿跟踪速度提高近一倍。
     (3)标定光学透视式头盔(HMD)是实现信息增强的基础工作,文章改进了Azuma所提出的HMD标定方法,克服了其标定方法中的缺陷。利用前两章共面圆位姿的研究成果,首先在标定过程用相机替代电磁位置跟踪器的HMD的位姿;其次用3D重构的方式确定对象坐标系与世界坐标系间的变换,免除了使用标定工作台确定该变换关系所需的高昂代价;最后将HMD的内、外参数分开标定,且认为外参数固定不变,减轻普通用户标定HMD的负担。标定性能评估实验中HMD标定单眼最大平均误差为2.15像素,说明本文改进的HMD方法是有效的、可行的,假设外参数固定不变是正确的;随即文章还简单地研究了3D模型获取过程中涉及到的位姿变换以及比例因子的问题。
     (4)维修环境中的指令增强和人机自然交互可以有效地免除维修人员注意力频繁切换的弊端。基于此本文设计与实现了利用菜单式人机自然交互的方式,用于切换虚拟的维修指令,具体内容包括:将维修任务中的指令信息抽象成维修任务菜单和维修任务子菜单、菜单的内容以虚拟成像的方式出现在HMD上、菜单的输入焦点通过对象位姿跟踪和虚拟成像的方式固定在对象表面、输入焦点区域的点击动作则来自于手势识别、最后则采用菜单状态转换有限状态机建立手势输入与菜单内容切换的联系。实验表明该方式的人机交互成功率可达76%,输入速度达8~10帧/秒。
     (5)文章最后以实现面向过程的维修原型系统为目标,首先研究了如何利用现有的民航维修技术出版物获得指令增强、2D图像增强信息,提出利用RM模型构建3D信息增强以及对象位姿跟踪所需要的信息;然后研究了实现这样的一个原型系统在软件结构和软件实现上所应考虑的问题;最后以APU点火嘴安装为例,实现了一个小型的原型演示系统,以直观的形式演示本文的研究目标以及面向过程的维修在民用航空器维修领域的作用。
Maintenance support for civil aircraft is an intensive and difficult labor. The eternal problemconcerned by Airline Company is how to reduce difficulty, improve efficiency, avoid error duringmaintenance and compress direct cost. Thus, research the theory and technology on the problem issignificant from theoretical and technological perspective. This thesis aims at construction ofprocess-oriented maintenance guiding system to make an intensive study on informative enforcementand information organization that are two inevitable contents for constructing the mentioned system.Functions of the system are to provide suggestive information including texts&graphics that arebased on maintenance task and process so that maintenance personnel can improve quickly theircognitive competence and understand easily maintenance task. Main contents and innovativehighlights of this research are now generized as follows:
     (1)According to the fact that rotation matrix is SO3manifold, this thesis proposes the novelalgorithm of estimation object pose based on optimization over manifold under the condition ofestablished2D-3D correspondences. The approach exploits Taylor Expansion and retraction mappingto eliminate the principal deviation imported by the substitution orthogonal projection model with thatof pin-hole projection and degrade the propagation of accumulated error when pose tracking inconsecutive video images. Experiments show that object pose obtained by optimization on manifold isbetter at precision and the number of iteration than orthogonal iteration,i.e., when noise varianceequals1, the relative deviation of new algorithm with synthetical datum is0.5%for rotation axis and0.25%for rotation angle respectively, which are only fifth and half of those for orthogonal iteration.In industrial environment, the object, generally short of point features on its surface, but with coplanarcircles, represents a category of industrial object. Thus, this thesis deliberates on how to constructobject coordinate frame and estimate its pose from coplanar circles using projective theory of absoluteconic. Experiment on real object illustrates that the relatively maximum errors obtained by coplanarcircles are respectively: is only2.7%for rotation axis,1.7%for rotation angle and1.7%fortranslation. Considering the difficult problem of retrieving3D coordinates for feature points,reconstruction of3D coordinates for stable matched SIFT points is showed as an applied example ofpose estimated from coplanar circles that is full of engineering significance.
     (2)Tracking dynamically object pose is the prerequisite for image registration. This thesisimproves object pose tracking with straight lines and proposes a tracking algorithm based on coplanar circles. Contour’s location in previous frame is utilized to calculate normalize cross correlationefficiency of image gradient for search contour points implicitly. In order to promote searchingefficiency, Extended Kalman Filter (EKF) is used to predict object pose in current frame on one handand limit searching range and departure location. For object with straight line, Tukey Estimator andweight line fitting are exploited to construct objective function and obtain object pose via SVD.Experiments show that line-base tracking approach in this thesis can achieve the performance thatmaximum mean error for rotation angle is0.29o, absolute angle error is1.90o, and tracking speed isabout10frames per second. This explains that the comprehensive performance of ours is better thanthe LM-based one. For object with coplanar circles, Samposon distance becomes the standard ofremoving outliers and heteroscadastic regression is imported to improve accuracy of ellipse fitting forresolving object’s pose. Experiments for coplanar circles’ tracking illustrate that the maximumdeviation is1.4ofor angle,3.5mm for translation and tracking speed is10~12frames per second.Evidences’ from experiments verify the effectiveness of using EKF that promote tracing rate morethan100percent.
     (3)Calibration of optical See-through Helmet Display (HMD) is a fundamental work inimplementation Augmented Reality. This thesis improves the calibration method and eliminates thedisadvantage proposed by Azuma. Basing on proceeding research perform, we firstly substituteelectromagnetic tracker with camera when calibrating to obtain HMD’s extrinsic pose. Secondly,3Dreconstruction is used to determine the transform relationship between world coordinate system andobject ones which exempt the procedure from expensive calibration workbench; at last, intrinsic&extrinsic parameters are individually calibrated and the hypothesis that extrinsic parameters isconstant to reduce the burdens who takes parting in calibration. Evaluation of calibration gives us thatthe single maximum error is only2.15pixels that shows the promoted calibration method is effective,feasible and the hypothesis is right. Subsequently, this thesis studies how to calculate the posetransformation and scale factor during obtaining3D models for pose tracking.
     (4)In maintenance environment, enhanced instructions and human machine interaction (HMI)can exempt maintenance personnel from the defect of switching attention focus repeatedly. Because ofthe background, this thesis designs and implements a menu-typed HMI to modify instructions’registration. At first, the HMI translates maintenance task instructions into two layer menus anddisplays menu items on HMD as virtual image. Secondly, virtual images that act as focus and acceptclicking are fixed on object’s surface with the help of object pose tracking. At last, finite state machineis utilized to drive relationship between gesture input and alteration of menu content. Experiments illustrate the success rates of the proposed HMI achieve76%, and input capacity achieves8~10frames per second.
     (5)Aiming at implement prototyped system of process-orientated, this thesis interprets how toobtain instructions and2D images for enhanced information from existing technical publications andpropose to construct necessary information for3D enhancement and object pose tracking; then thinkssome practical problems when actually implementing the system. Demo system is implemented viainstallation of oil warm-up torch on APU to exhibit intuitively the research objectives of this thesisand the effect of process-orientated maintenance would be taken in civil aircraft maintenance fields.
引文
[1]杨家忠,张侃.航空维修差错分析及其管理.中国安全科学学报,2004,14(2):46–49.
    [2]左洪福,刘明,倪现存,等.航空维修工程学.南京航空航天大学航空安全与保障技术研究所,南京,2008.
    [3]赵新灿.增强现实维修诱导系统关键技术研究[博士学位论文].南京:南京航空航天大学,9,2007.
    [4] Buderatht M, McDonald N, Grommes P, et al. The Operational Impact to the Maintainer.Proceedings of2008IET Seminar on Aircraft Health Management for New Operational andEnterprise Solutions, London,1996.913–919.
    [5] Webster A, Feiner S, Maclntyre B, et al. Augmented Reality in Architectural Construction,Inspection and Renovation. Proceedings of Third Congress on Computing in Civil Engineering,Anaheim, CA: ASCE,2008.1–48.
    [6] Azuma R, Baillot Y, Behringer R. Recent Advances in Augmented Reality. Computers&Graphics,2001,36(7):53–62.
    [7] Feiner S, Macintyre B, Seligmann D. Knowledge-based Augmented Reality. Communications ofthe ACM,1993,36(7):53–62.
    [8] Sutherland. A Head-mounted Three Dimensional Display. Proceedings of the AFIPS Fall JointComputer Conference, San Francisco, California: ACM,1968.757–764.
    [9] Caudell T, Mizell D. Augmented Reality: An Application of Heads-up Display Technology toManual Manufacturing Processes. Proceedings of the Twenty-Fifth International Conference onSystem Sciences, volume2, Hawaii: IEEE Computer Society,1992.659–669.
    [10] Mizell D. Boeing’s Wire Bundle Assembly Project. In: Erlbaum L, Associates,(eds.).Proceedingsof Fundamentals of Wearable Computers and Augmented Reality,2001.447–467.
    [11] Feiner S, Macintyre B, Seligmann D. Knowledge-based Augmented Reality. Communications ofthe ACM,1993,36(7):53–62.
    [12] Bajura M, Fuchs H, Ohbuchi R. Merging Virtual Objects with the RealWorld:Seeing UltrasoundImagery within the Patient. SIGGRAPH Computer Graphics,1992,26(2):203–210.
    [13] Sá A, Manue, Fernández L. Augmented Reality to Aid Construction Management. Proceedings ofCMNE/CILAMCE2007, Junho, Portugal: APMTAC,2007.1–13.
    [14] Rose E, Breen D, Ahlers K H. Annotating Real-world Objects using AugmentedReality.Computer Graphics: Developments in Virtual Environments,1995.357–370.
    [15] Schwald B, Laval B. An Augmented Reality System for Training and Assistance to Maintenancein the Industrial Context. Journal of WSCG,2003,11(1):53–62.
    [16] Friedrich W. ARVIKA-Augmented Reality for Development, Production and Service.Proceedings of Proceedings of the International Symposium on Mixed and Augmented Reality,Washington, DC: IEEE Computer Society,2002.3–4.
    [17] Boulanger P. Application of Augmented Reality to Industrial Tele-Training. the First CanadianConference on Computer and Robot Vision,2004.320–328.
    [18] Young A, Stedman A, Cook C. The Potential of Augmented Reality Technology for TrainingSupport Systems. the International Conference on Human Interfaces in Control Rooms,Cockpits and Command Centres,1999.242–246.
    [19]刘光久,张绍祥,唐泽圣.首例中国数字化可视人体脊柱区颈段的三维重建研究.局解手术学杂志,2003,12(3):177–179.
    [20]孙敏,薛勇.基于格网划分的大数据集DEM三维可视化.计算机辅助设计与图形学学报,2002,14(6):566–570.
    [21]王涌天,郑伟.基于增强现实技术的圆明园现场数字重建.科技导报,2006,24(3):36–40.
    [22]王涌天,林倞.亦真亦幻的户外增强现实系统-圆明园的数字重建.中国科学基金,2006,2:76–80.
    [23] Rolland J, Davis L, Baillot Y. A Survey of Tracking Technologies for Virtual Environments.Fundamentals of Wearable Computers and Augmented Reality,2001,62:67–112.
    [24] Kato D H. ArToolKit. Technical report, University of Washington HIT Lab NZ at the Universityof Canterbury, New Zealand and ARToolworks. http://www.hitl.washington.edu/artoolkit/.
    [25]OOda, Feiner S. ARTag. Technical report, Columbia University’s Goblin XNAproject.http://www.artag.net/.
    [26] Azuma R. Predict Tracking for Augmented Reality[D]. Department of Computer Science,SItterson Hall: UNC-Chapel Hill,2,1995.
    [27] Antoniac P. Augmented Realtiy Based User Interface for Mobile Application And Services[D].Oulu,Finland: University of Oulu,2005.
    [28] Sin A, Zaman H. Tangible Interaction in Learning Astronomy through Augmented RealityBook-Based Educational Tool. Lecture Notes in Computer Science,2009,5857:302–313.
    [29] Slay H, Thomas B, Vernik R. Tangible User Interaction Using Augmented Reality.AustralasianConference on User interfaces,2002.13–20.
    [30] Kaufmann H. Dynamic Differential Geometry in an Educational Augmented Reality. Journal forGeometry and Graphics,2009,13(2):131–144.
    [31] Schmalstieg D, Fuhrmann A. The Studierstube Augmentead Reality Project. Teleoperators andVirtual Environments,2002,19(1):3354–3355.
    [32] Conner B. Three-dimensional Widgets. Proceedings of the1992Symposium on Interactive3DGraphics, Cambridge, Massachusetts: ACM,1992.183–188.
    [33] Zeleznik R, Herndon K, Robbins D. An Interactive3D Toolkit for Constructing3DWidgets.Proceedings of the20th annual conference on Computer graphics and interactive techniques,Anaheim, CA: ACM,1998.81–84.
    [34] Molineros J. Computer Vision and Augmented Realtiy for Guiding Assembly[D]. Pennsylvania,USA: Department of Computer Science and Engineering, Pennsylvania State University,5,2002.
    [35] Reitmayr G. On Software Design for Augmented Reality[D]. Wien,Swiss: TechnischenUniversitat Wien,3,2004.
    [36] Zauner J, Haller M, Brandl A, et al. Authoring of a Mixed Reality Assembly Instructor forHierarchical Structures. Proceedings of the Second International Symposium on Mixed andAugmend Reality, Santa Clara, CA: IEEE Computer Society,2003.237–246.
    [37]金晓红.基于概率论的汽车产品可拆解性评价方法研究[博士学位论文].长春市:吉林大学,9,2009.
    [38]贾云德.机器视觉.科学出版社,北京,2000.
    [39] Sturm. Critical Motion Sequences for Monocular Selfcalibration And Uncalibrated EuclideanReconstruction. Proceedings of the IEEE International Conference on Computer Vision andPattern Recognition, Puerto Rico,1997.1100–1105.
    [40] Horn, BKP. Robot Vision. MIT Press, Cambridge,1986.
    [41] Ts′ai. A Versatile Camera Calibration Technique for Highaccuracy3D Machine Vision MetrologyUsing off the Shelf TV Cameras and Lenses. IEEE Journal of Robotics and Automation,1987,3(4):323–344.
    [42] Haralick, Shapiro. Computer and Robot Vision. AddisonWesley Publishing, Cambridge,1992.
    [43] Hartley R, Zisserman著A,杨尚骏译.计算机视觉中的多视图几何.安徽大学出版社,合肥,2002.
    [44] Meng X, Hu Z. A New Easy Camera Calibration Technique Based on Circular Points. PatternRecognition,2003,36:1155–1164.
    [45] Doignon C, Abba G. A Practical Multi-plane Method for A Low Cost Camera CalibrationTechnique. Proceedings of the fifth European Control Conference, Karlsruhe, Germany:Springer-Verlag,1999.
    [46] Zhang Z. A Flexible New Technique for Camera Calibration. Proceedings of the InternationalConference on Computer Vision, Corfu, Greece: IEEE Computer Society Press,1999.666–673.
    [47] Faugeras, Toscani. Camera Calibration for3-D Computer Vision. Proceedings of theInternational Workshop on Machine Vision and Machine Intelligence, Tokyo, Japan,1987.
    [48] Liu Y, Huang T. Determination of Camera Location from2D to3D Line and Point. IEEETransactions on Pattern analysis and Machine Intelligence,1990,12(1):28–37.
    [49] Salvi J, Armangué X, Batalle. A Comparative Review of Camera Calibrating Methods withAccuracy Evaluation. Pattern Recognition,2002,35(7):1617–1635.
    [50]吴健康.计算机视觉基本理论和方法.中国科学技术大学出版社,合肥,1993.
    [51] Stricker D. Tracking with Reference Images: A Real-time and Markerless Tracking Solution forOut-door Augmented Reality Applications. Proceedings of the2001Conference on VirtualReality, Archeology, and Cultural Heritage, Glyfada, Greece,2001.77–82.
    [52] Dickmanns E, Gr′afe. Dynamic monocular machine vision. Machine Vision Applications,1988,1:223–240.
    [53] Moreno F, Lepetit V. Pose Priors for Simultaneously Solving Alignment and Correspondences.Proceedings of the10th European Conference on Computer Vision, Marseille: Springer-Verlag,2008.405–418.
    [54] David P, Dementhon D. SoftPOSIT: Simultaneous Pose and Correspondence Determination.International Journal of Computer Vision,2004,59(3):259–284.
    [55]李利军,刘伟等.基于粒子滤波的虚实配准方法研究.工程图学学报,2009,1:119–124.
    [56]王涌天,林精敦等.随机树特征匹配算子性能研究.北京理工大学学报,2009,29(11):988–993.
    [57] Subbarao R, Meer P. Nonlinear Mean Shift over Riemannian Manifolds. International Journal ofComputer Vision,2009,84(1):1–20.
    [58] Nister D. A Efficient Solution to the Five-point Relative Pose Problem. IEEE Transactions onPattern Analysis and Machine Intelligence,2004,26(6):756–777.
    [59] David N, Henrik. A Minimal Solution to the Generalised3-Point Pose Problem. Journal ofMathematical Imaging and Vision,2007,27(1):67–79.
    [60] DeMenthon, Davis L. Model-based Object Pose in25Lines of Code. International Journal ofComputer Vision,1995,15:124–141.
    [61] Comport A, Kragicx D. Robust Real-Time Visual Tracking: Comparison, Theoretical Analysisand Performance Evaluation. Proceedings of IEEE International Conference on Robotics andAutomation, Barcelona, Spain: IEEE Computer Society,2005.2852–2857.
    [62] Gao X, Tang J. On the Probability of the Number of Solutions for the P4P Problem. Journal ofmathematical imaging and vision,2006,25(1):79–86.
    [63] Kutulakos, Kiriakos N, Vallino, et al. Affine Object Representations for Calibration-freeAugmented Reality. Proceedings of IEEE1996Virtual Reality Annual InternationalSymposium, Santa Clara, CA: IEEE Computer Society,1996.25–36.[64] Absil, Mahony.Optimization Algorithms on Matrix Manifolds. New Jersey: Princeton University Press,2008.
    [65] Garpestad B. Applications of Differential Geometry in Computer Graphics. Technical report,Matematisk institutt, University of Bergen,2009. http://folk.uib.no/amu003/STUDENTS/.
    [66] Helmke, Uwe, Huper. Essential Matrix Estimation Using Gauss-Newton Iterations on a Manifold.International Journal of Computer Vision,2007,74(2):117–136.
    [67] Lu C, Hager, Mjolsness. Fast and Globally Convergent Pose Estimation from Video Images.IEEE Transaction of Pattern Analysis and Machine Intelligence,2000,22(6):610–622
    [68] Selig J,杨向东译.机器人学的几何基础.清华大学出版社,北京,2008.
    [69] Madsen K, Nielsen H, Tingieff O. Methods for Non-linear Least Squares Problems.Technicalreport, Informatics and Mathematical Modelling, Technical University of Denmark,2004. http://www2.imm.dtu.dk/pubdb/views/publication details.php?id=3215.
    [70] Dementhon. ModernPOSIT Code in C++. Technical report, Johns Hopkins University’s AppliedPhysics Lab,2007. http://www.cfar.umd.edu/~daniel/Site2/Code.html.
    [71] Pastarmov G B Y. Real-time3D Camera Tracking for Industrial Augmented Reality Applications.Proceedings of WSCG2005, University of West Bohemia, Germany,2005.47–54.
    [72] Lowe D. Is It Instictive Image Features from Scale-invariant Keypoints. Interanational Journal ofComputer Vision,2004,2(60):91–110.
    [73] Pelel O, Werman M. A Linear Time Histogram Metric for Improved SIFT Matching. Proceedingsof the10th European Conference on Computer Vision, Heidelberg, Berlin,2008.495–508.
    [74] Chen Q, Wu H. Camera Calibration with Two Arbitrary Coplanar Circles. Proceedings ofEuropean Conference of Computer Vision, Hong Kong: CiteSeerX Inc.,2004.521–532.
    [75] Wang G, Wu Q, Jonathan, et al. Pose Estimation from Circle or Parallel Lines in a Single Image.Lecture Notes in Computer Science,2007,4844:363–372.
    [76] Pierre G, Peter S, Wu Y. Euclidean Structure from N≥2Parallel Circles: Theory andAlgorithms.Proceedings of the9th European Conference on Computer Vision, volume1, Graz,Austria: Springer-Verlag,2006.238–252.
    [77] Gill P, MurrayW. Algorithms for the solution of the nonlinear least-squares problem. SIAMJournal on Numerical Analysis,1978,15(5):977–992.
    [78] Nocedal, Jorge, Wright, et al. Numerical Optimization.2nd Edition,Springer-Verlag, Cambridge,2006.
    [79] Kanzow C, Yamashita N, Fukushima M. Levenberg-Marquardt Methods for ConstrainedNonlinear Equations with Strong Local Convergence Properties. Journal of Computational andApplied Mathematics,2004,172:375–397.
    [80] Kim J, Gurdjos P, Kweon I. Geometric and Algebraic Constraints of Projected Concentric Circlesand Their Applications to Camera Calibration. IEEE Trans. on Pattern Analysis MachinceIntelligence,2005,27(4):637–642.
    [81] Jiang G, Quan L. Detection of Concentric circles for Camera Calibration. Proceedings of10thIEEE International Conference on Computer Vision, Beijing,2005.333–340.
    [82] Ansar A, Daniilidis K. Linear Pose Estimation from Points or Lines. IEEE Transaction PatternAnalysis Machince Intelligence,2003,25(5):578–589.
    [83]宋新,罗军,王鲁平等.基于凸包的椭圆检测方法.光电工程,2007,34(10):40–44.
    [84] Welch G, Foxlin E. Motion Tracking: No Silver Bbullet, But a Respectable Arsenal. ComputerGraphics and Applications,2002,22(6):24–38.
    [85] Weiss I. Noise Resistant Invariants of Curves. IEEE Transactions on Pattern Analysis andMachine Intelligence,1993,15(9):943–948.
    [86] Werghi N, Doignon C. Contour Decomposition withWavelet Transform and Parametrisation ofElliptic Curves with an Unbiased Extended Kalman Filter. Proceedings of the Second AsianConference on Computer Vision, Singapore: IEEE Press,1995.186–190.
    [87] Pilu M, Fitzgibbon A, Fisher R. Ellipse Specific Direct Least Square Fitting. ProceedingsofProceedings of the IEEE International Conference on Image Processing, Switzerland: IEEEPress,1996.599–602.
    [88] Horaud R. New Methods for Matching3-D Objects with Single Perspective Views. IEEETransactions on Pattern Analysis and Machine Intelligence,1987,9(3):401–412.
    [89] Haralick R. Monocular Vision Using Inverse Perspective Projection Geometry: AnalyticRelations. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,Hawaii, USA: IEEE Press,1989.370–378.
    [90] DeMenthon D, Davis L. Exact and Approximate Solutions of the PerspectiveThreePointProblem. IEEE Transactions on Pattern Analysis and Machine Intelligence,1992,14(11):1100–1105.
    [91] Alter T.3D Pose from3Points Using Weak Perspective. IEEE Transactions on Pattern Analysisand Machine Intelligence,1994,16(8):802–808.
    [92] Grimson. Object Recognition by Computer: The Role of Geometric Constraint. MIT Press,Cambridge,1990.
    [93] Lamdan Y, Wolfson H. Geometric Hashing: A General and Efficient Modelbased RecognitionScheme. Proceedings of the IEEE International Conference on Computer Vision, Tampa, USA,1988.238–249.
    [94] Ikeuchi K. Generating an Interpretation Tree from a CAD Model for3-D object Recognition inBinpicking Tasks. International Journal of Computer Vision,1987,1(2):145–165.
    [95] Hansen C, Henderson T. CAGD-based Computer Vision. IEEE Transactions on PatternAnalysis and Machine Intelligence,1989,11(11):1181–1193.
    [96] Bolles R, Cain R. Recognizing and Locating Partially Visible Objects, theLocalfeaturefocusMethod. International Journal of Robotics Research,1982,1(3):57–82.
    [97] Olson C. A General Method for Geometric Feature Matching and Model Extraction. InternationalJournal of Computer Vision,2001,45(1):39–54.
    [98]Gold S, Rangarajan A, Lu C. New Algorithms for2D and3D Point Matching: PoseEstimationand Correspondence. Pattern Recognition,1998,31:1019–1031.
    [99]Huttenlocher D, Ullman S. Recognizing Solid Objects by Alignment with an Image.InternationalJournal of Computer Vision,1990,5(2):195–212.
    [100]Torr P, Zisserman A. Feature based Methods for Structure and Motion Estimation. Proceedingsof Vision Algorithms Workshop: Theory and Practice, London: Springer-Verlag,1999.278–294.
    [101]Bartoli A, Sturm P. The3D Line Motion Matrix and Alignment of Line Reconstructions.Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition,Hawaii: IEEE Computer Society Press,2001.287–292.
    [102]Haralick R, Chu Y, Watson L. Matching Wire Frame Objects from Their2D PerspectiveProjection. Pattern Recognition,1984,17(6):607–619.103]Lowe D. Three-dimensional Object Recognition from Single Two-dimensional Images. ArtificialIntelligence,1987,31(3):355–395.
    [104]Thompson D, Mundy J. Three-dimensional Model Matching from an Unconstrained Viewpoint.Proceedings of the IEEE International Conference on Robotics and Automation, Raleigh, NC,USA: IEEE Press,1987.208–220.
    [105] Sugihara K. Some Location Problems for Robot Navigation Using a Single Camera. Journal ofComputer Vision, Graphics and Image Processing,1988,42(1):112–129.
    [106]Grimson W, Huttenlocher D. On the Verification of Hypothesized Matches in Model-BasedRecognition. IEEE Transactions on Pattern Analysis and Machine Intelligence,1991,13(12):1201–1213.
    [107] Jurie F. Solution of the Simultaneous Pose and Correspondence Problem Using Gaussian ErrorModel. Computer Vision and Image Understanding,1999,73(3):357–373.
    [108] Fischler M, Bolles R. Random Sample Consensus: A Paradigm for Model Fitting withApplication to Image Analysis and Automated Cartography. Communications of the ACM,1981,24(6):381–395.
    [109] Hutchinson S, Hager G, Corke P. A Tutorial on Visual Servo Control. IEEE Transactions onRobotics and Automation,1996,12(5):651–670.
    [110] Dickmanns E, Graefe V. Dynamic Monocular Machine Vision. Machine Vision Applications,1988,1:223–240.
    [111]弋英民,刘丁.基于单目视觉的轮式机器人同步定位与地图构建.仪器仪表表学报,2010,31(1):117–121.
    [112]张文玲,朱明清.基于强跟踪UKF的自适应SLAM算法.机器人,2010,32(3):190–195.
    [113]孙凤池,康叶伟等.基于综合互信息的视觉SLAM主动探索.模式识别与人工智能,2010,23(3):434–440.
    [114] Tian M, Zhang W. On-line Ensemble SVM for Robust Object Tracking. Lecture Notes inComputer Science,2007,4843:355–364.
    [115]陈荣元,蒋加伏.基于神经网络和层次SVM的多姿态人脸识别.计算机工程,2006,32(24):209–210.
    [116] Kalman R. A New Approach to Linear Filtering and Prediction Problems. Transactions of theASME–Journal of Basic Engineering,1960,82:35–45.
    [117]宋文尧,张牙.卡尔曼滤波.科学出版社,北京,1991.
    [118] Maybeck, S P. Stochastic Models, Estimation and Control. Academic Press, Inc.,1979.
    [119]张有为.维纳与卡尔曼滤波理论导论.人民教育出版社,北京,1980.
    [120]赵其杰,屠大伟.基于Kalman滤波的视觉预测目标跟踪及其应用.光学精密工程,2008,16(5):937–942.
    [121] Francesc M, Vincent L, Pascal F. Pose Priors for Simultaneously Solving Alignment andCorrespondences. Proceedings of the10th European Conference on Computer Vision: Part II,Marseille, France,2008.405–418.
    [122] W′ust H, Vial F. Adaptive Line Tracking with Multiple Hypotheses for Augmented Reality.Proceedings of Fourth IEEE and ACM International Symposium, Vienna, Austria: ACM,IEEE Computer Society,2005.62–69.
    [123] Comport A, Pressigout M. Real-time Markerless Tracking for Augmented Reality the VirtualVisual Servoing Framework. Vision and Computer Graphics,2006,12(4):615–628.124]Geusebroek J, Arnold W. Fast Anisotropic Gauss Filtering. IEEE Trans Image Process,2003,12(8):938–943.
    [125] Harris C, Stennet C. RAPID: A Video Rate Object Tracker. Proceedings of the BritishMachine Vision Conference, London,1990.233–236.
    [126] Papanikolopoulos N, Khosla P, Kanade T. Visual Tracking of a Moving Target by a CameraMounted on a Robot: A Combination of Control and Vision. IEEE Transactions on Roboticsand Automation,1993,9(1):14–35.
    [127] Toyama G H. The Xvision System: A Portable Substrate for Realtime Vision Applications.Computer Vision and Image Understanding,1998,69(1):23–37.
    [128] Kim S, Diverdi S. Implicit3D Modeling and Tracking for Anywhere Augmentation.Proceedingsof the Symposium on Virtual Reality Software and Technology, Newport Beach, CaliforniaACM,2007.19–28.
    [129]Tateno K, Kotake D. Model-based3D Object Tracking with Online Texture Update. Proceedingsof MVA2009IAPR Conference on Machine Vision Applications, Yokohama,Japan: IEEE Computer Society,2009.261–264.
    [130] Pressigout M, Marchand E. Hybrid Tracking Approach using Optical Flow and Pose Estimation.Proceedings of IEEE International Conference on Image Processing, San Diego, CA: IEEEComputer Society,2008.2720–2723.
    [131] Morwald T, Zillich M. Edge Tracking of Textured Objects with a Recursive Particle Filter.Proceedings of19th International Conference on Computer Graphics and Vision, Moscow,2009.96–103.
    [132] Rey J W J. Introduction to Robust and Quasi-Robust Statistical Methods. Springer-Verlag,Berlin, Heidelberg,1983.
    [133] Arya K, Gupta P. Image Registration using Robust M-estimators. Pattern RecognitionLetters,2007,28:1957–1968.
    [134] Holland P, Welsch R. Robust Regression Using Iteratively Reweighted Least-Squares.Statistics Theory and Methods,1977,6:813–827.
    [135] Wang H, Suter D. Robust Adaptive-Scale Parametric Estimation for Computer Vision. IEEETrans. Pattern Analysis and Machine Intelligence,2004,26(11):1459–1474.
    [136] Forsyth A, Ponce J. Computer Vision: A Modern Approach. Pearson Education, California, USA,2002.
    [137] Horaud R, Dornaika F. Object Pose: the Link between Weak Perspective Paraperspective andFull Perspective. Interanational Journal of Computer Vision,1997,22(2):173–189.
    [138] KaewapichaiW, Kaewtrakulpong P. Robust Ellipse Detection by Fitting Randomly SelectedEdge Patches. Proceedings of World Academy of Science, Engineering and Technology,2008.
    [139] Nguyen T, Ahuja S. A Real-Time Ellipse Detection Based on Edge Grouping. Proceedings ofthe2009IEEE international conference on Systems, Man and Cybernetics,2009.3280–3286.
    [140]孙宏伟,房建成.椭圆拟合方法在磁罗盘罗差校准中的应用.光学精密工程,2008,17(12):3034–3039.
    [141] Rosin P. Analysing Error of Fit Functions for Ellipses. Pattern Recognition Letters,1996,17(14):1461–1470.
    [142] Sampson P D. Fitting Conic Sections to’Very Scattered’ Data: An Iterative Refinement of TheBookstein Algorithm. Computer Vision, Graphics and Image Processing,1982,18:97–108.
    [143] Matei B, Meer P. Reduction of Bias in Maximum Likelihood Ellipse Fitting. Proceedings of theInternational Conference on Pattern Recognition, Barcelona, Spain,2000.794–798.
    [144] Kanatani. Compact Algorithm for Strictly ML Ellipse Fitting. Proceedings of InternationalConference on Pattern Recognition, Tampa, FL,2008.1–4.
    [145] Kenichi, Prasanna. Hyperaccurate Ellipse Fitting without Iterations. Memoirs of the Faculty ofEngineering,2010,44:42–49.
    [146] Cakmakci O, Rolland J. Head-Worn Displays: A Review. Journal of Display Technology,2006,2(3):199–216.
    [147] Janin A, Mizell D, CaudelI T. Calibration of Head―mounted Displays for Augmented RealityApplications. Proceedings of IEEE Virtual Reality Annual International Symposium, Seattle,1993.246–255.
    [148] Oishi T, Tachi S. Methods to Calibrate Projection Transformation Parameters for SeethroughHead-mounted Displays. Presence: Teleoperators and Virtual Environments,1996,5(1):122–135.
    [149] Fuhrmann, Schmalstieg, Purgathofer. Fast Calibration for Augmented Reality. Proceedings ofthe ACM Symposium on Virtual Reality Software and Technology, volume2, London,1999.166–167.
    [150] Tuceryan M, Navab N. Single Point Active Alignment Method(SPAAM) for OpticalSee―through HMD Calibration for AR. Proceedings of the IEEE and ACM InternationalSymposium for Augmented Reality, M′unich,2000.149-158.
    [151] Genc Y, Tuceryan M, Khamene A. Optical See-through Calibration with Vision-based Trackers:Propagation of Projection Matrices. Proceedings of the IEEE and ACM InternationalSymposium on Augmented Reality, New York,2001.147–156.
    [152] Gao C, Hua H, Ahuja N. Easy Calibration of An Head―mounted Projective Display forAugmented Reality Systems. Proceedings of the IEEE Virtual Reality, Los Angeles,2003.53–60.
    [153]顾光珍,周雅,李玉等.光学透视式头盔显示器标定的退化影响.中国图象图形学报,2006,8:171–174.
    [154] Hua H, Gao C, Ahuja N. Calibration of an HMPD-based Augmented Reality System. IEEETransactions on Systems,Man and Cybernetics Part A: Systems and Humans,2007,37(3):416–430.
    [155]伍君,李树涛.基于小波分解和互信息测度的图像配准方法.计算机工程与应用,2005,73:73–75.
    [156]韦燕凤,赵忠明,闫冬梅.基于特征的遥感图像自动配准算法.电子学报,2005,33(1):161–165.
    [157] Buss S.3D Computer Graphics: A Mathematical Introduction with OpenGL. CambridgeUniversity Press, London,2003.
    [158]钱鑫.单帧图像立体显示的算法研究[硕士学位论文].合肥:合肥工业大学,4,2007.
    [159] De A G, Zachmann G. Integrating Virtual Reality for Virtual Prototyping. Proceedings of1998ASME Design Engineering Technical Conferences, Atlanta, Georgia,1998.13–16.
    [160]周伟光.利用CAD数据的虚拟现实视景高效建模技术研究[博士学位论文].南京:南京航空航天大学,9,2007.
    [161]李艳军.基于单摄像机结构的视觉坐标测量原理研究[硕士学位论文].天津:天津大学,1,2006.
    [162]张宇辉,吕国强,胡跃辉.立体视觉的双目模型算法及实现.计算机工程与应用,2006,35:65–67.
    [163]陈信钦,王卫国.交互式电子技术手册应用与发张展望.现代防御技术,2003,31(1):55–59.
    [164] Haritos T, Macchiarella N. A Mobile Application of Augmented Reality for AerospaceMaintenance Training. Proceedings of24th Digital Avionics Systems Conference, Heidelberg,2005.31–39.
    [165]王西颖,戴国忠.面向虚拟现实的层次化交互手势建模与理解方法.计算机辅助设计与图形学学报,2007,19(10):1334–1341.
    [166]徐德友.虚拟现实训练系统中基于手势在人机交互.系统仿真学报,2006,18(2):386–389.
    [167]郑轶,宁汝新.虚拟装配环境中的人机交互技术研究.北京理工大学学报,2006,26(1):19–22.
    [168]陈一民,张云华.基于手势识别的机器人人机交互技术研究.机器人,2009,31(4):351–356.
    [169] Wagner D. First Steps towards Handheld Augmented Reality. Proceedings of the7thinternational Conference on Wearable Computers, White Plains,NY,USA: IEEE ComputerSociety,2003.127–135.
    [170]任海兵,祝远新.复杂背景下的手势分割与识别.自动化学报,2002,12(8):256–261.
    [171]刘俊梅,阮秋琦.一种复杂背景下的手势分割新方法.北京电子科技学院学报,2006,14(2):23–27.
    [172]范保玲,王民.基于肤色检测技术的手势分割.计算机技术与发展,2008,18(3):105–107.
    [173]任海兵,祝远新.连续动态手势的时空表观建模及识别.计算机学报,2000,23(8):824–828.
    [174]刘法旺,丁刚毅.基于ICONDESNATION算法的人手跟踪与手势识别算法.北京理工大学学报,2007,27(12):1069–1072.
    [175]王修晖,鲍虎军.基于自适应遗传算法的手势识别.计算机辅助设计与图形学学报,2007,19(8):1056–1032.
    [176]王西颖,戴国忠.基于HMM-FNN模型的复杂动态手势识别.软件学报,2008,19(9):2302–2312.
    [177] Mahmoudi S, Daoudi M. A Probabilistic Approach for3D Shape Retrieval by CharacteristicViews. Pattern Recognition Letters,2007,28:1705–1718.
    [178]吕玉增,彭启民.基于参数化求和不变量与特征重整的形状匹配.中国图象图形学报,2010,15(1):122–128.
    [179] Lin W, Li J. Efficient Shape Retrieval Using Elliptical Shape Coding. Asian Journal of Healthand Information Sciences,2009,3(1-4):101–109.
    [180]林应明,董士海.多通道融合算法和软件平台的实现.计算机学报,2000,23(1):90–94.
    [181]李茂贞,戴国忠,董士海.多通道界面软件结构模型及整合算法.计算机学报,1998,21(2):111–118.
    [182] Coutaz J. PAC, An Object Oriented Model for Dialog Design. Proceedings of Interact’87, NorthHolland: Springer―Verlag,1987.431–436.
    [183] Orkshop. A Metamodel for the Runtime Architecture of An Interactive System: The UIMS ToolDevelopers Workshop. North Holland: SIGCHI Bulleti,1992.32–37.184] Molineros J. Computer Vision and Augmented Reality for Guiding Assembly. Pennsylvania StateUniversity, Pennsylvania,2002.
    [185]周虹,左洪福.基于功能结构树的复杂系统SDG自动建模研究.中国机械工程,2011,22(5):566–570.
    [186]Zauner J, Haller M, Brandl A. Authoring of a Mixed Reality Assembly Instructor forHierarchical Structuress. Proceedings of the2nd IEEE/ACM International Symposium onMixed and Augmented Reality, Washington, DC: IEEE Computer Society,2003.237–246.
    [187]Reitmayr G. On Software Design for Augmented Reality[D]. Wien: an der TechnischenUniversit′at Wien Fakult′at f′ur Informatik,3,2004.
    [188]Badr Y, Sayah M, Laforest F. Transformation Rules from Semi-structured XML Documents toDatabase Model. Proceedings of the ACS/IEEE International Conference on Computer Systemsand Applications, Washington DC,2001.181–182.
    [189]Wu G, Chen E. An Approach of Storing Semi-structured Data with XML. Computer Engineering,2004,10:41–43.
    [190]张月雷.航空维修IETM关键技术研究和应用框架设计[硕士学位论文].南京:南京航空航天大学,9,2007.
    [191]王宏.基于J2EE的IETM创作系统的设计与实现.计算机工程与设计,2008,29(19):5105–5109.
    [192]张峰.单一数据源在IETM创作与发行系统中的应用.电子设计工程,2010,18(4):73–75.
    [193]宋继强,苏丰,蔡士杰.基于线条识别的扫描工程图字线分割方法.南京大学学报(自然科学),2001,37(5):535–541.
    [194]江早,刘积仁,刘晋军.工程图纸图像图文自动分割工具SegChar.软件学报,1999,10(6):589–594.
    [195]Aas K, Eikvil L. Text Recognition from Grey Level Images Using Hidden Markov Models.Pattern Recognition,1996,29(6):977–985.
    [196]Safronov K, T, W′orn H. Optical Character Recognition Using Optimisation Algorithms.Proceedings of the9th International Workshop on Computer Science and InformationTechnologies, Ufa, Russia,2007.
    [197]王恺靳,靳简明,王庆人.西文OCR后处理中的有限自动机模型.计算机工程与应用,2002,23:25–29.
    [198]Bimber O, Raskar R. Spatial Augmented Reality: Merging Real and Virtual Worlds. A K Peters,Ltd, Massachusetts,2005.
    [199]Rekimoto J. The Magnifying Glass Approach to Augmented Reality Systems. Proceedings ofInternational Conference on Artificial Reality and Tele-Existence/Conference onVirtualReality Software and Technology, Makuhari, Japan: IEEE Computer Society,1995.123–132.
    [200]Reitmayr G, Schmalstieg D. OpenTracker-An Open Software Architecture for Reconfigurable.Tracking Based on XML. Proceedings of IEEE Virtual Reality2001, Yokohama, Japan: IEEEPress,2001.13–17.
    [201]董士海.人机交互的进展及面临的挑战.计算机辅助设计与图形学学报,2004,16(1):1–13.
    [202]赵新灿,卢朝阳.头部自由运动的视线跟踪方法.南京航空航天大学学报,2010,42(4):435–439.
    [203]Kainz B, Streit M. How to Write an Application with Studierstube4.0. Technical report, GrazUniversity of Technology,2004.
    [204] Aarsten A, Brugali D, Menga G. Patterns for Three-tier Client/Server Applications. Proceedingsof PLoP’96, llerton Park, Illinois, USA: Addison-Wesley,1996.4–6.
    [205]国营一二零厂.涡桨五甲-I型发动机技术说明书.国营一二零厂,沈阳,1985.
    [206] Alzahrani F, Chen T. Real-time Edge Detector: Algorithm and VLSI Architecture. Real TimeImage,1997,3(5):363–378.
    [207]Yakup Genc, Frank Sauer, Fabian Wenzel et.al. Optical See-through HMD Calibration: A StereoMethod Validated with Video See-through System.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700