用户名: 密码: 验证码:
500MPa级高性能钢(Q500qE)在铁路钢桥中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高性能钢是一种综合优化了材料力学性能,便于加工制造,可用于低温和腐蚀环境,具备较高性价比的桥梁结构用钢。它不仅保持了较高的强度,而且在材料的耐候性能、可焊性和抗脆断性能等方面都比传统的钢材有明显的提高和改善。高性能钢在相当程度上代表着钢桥用材的发展方向。
     本文针对国产新型500MPa级高性能钢(Q500qE)的力学性能进行了系统和全面的试验研究,力图解决高性能钢在大跨度铁路桥梁工程中推广使用所面临的技术问题。
     通过对500MPa级高性能桥梁钢(Q500qE)的材料和板状试样的拉伸和低应力循环、低温冲击、疲劳裂纹扩展、断裂韧性(CTOD)、铁路钢桥典型构造细节疲劳、宽板拉伸和全尺寸模型梁的静载试验和有限元分析计算等力学性能试验和研究,得到如下研究结论:①材料的屈强比与其塑性、疲劳裂纹扩展速率、低应力循环性能和断裂韧性(CTOD)关系不大,Q500qE母材虽然屈强比不同,但其延伸率都在20%以上,具有良好的塑性和较好的止裂能力以及对应力集中的再分配能力。另外,Q500qE高性能桥梁钢母材韧脆转变温度比Q370qE和Q345qD桥梁钢大大降低,具有良好的低温冲击韧性,焊缝金属韧脆转变温度与Q370qE桥梁钢焊缝相当。②随着温度的降低,44mm以下板厚Q500qE母材的断裂韧性(CTOD)变化不大,但60mm板厚Q500qE母材的断裂韧性(CTOD)在温度降至-40℃以下后,有较大幅度的降低。各种板厚的Q500qE焊缝的断裂韧性(CTOD)都比母材低。③本文提出了结合BS7910:2005对桥梁钢断裂韧性(CTOD)值进行评判,这个评定方法为运用断裂韧性(CTOD)试验评定桥梁钢及其焊接接头的断裂韧性提供了依据。④铁路钢桥5种典型构造细节的疲劳试验表明,Q500qE高性能钢与目前普遍使用的Q370qE桥梁钢对比,其典型构造细节的疲劳强度都略有提高,Q500qE高性能钢的疲劳性能能够满足铁路钢桥的要求。⑤由于强度的提高和晶粒细化,Q500qE高性能钢母材的断裂韧性Kc普遍要好于Q370qE和Q345qD桥梁钢,也高于Q500qE高性能钢焊缝。低温下Q500qE焊缝的断裂韧性Kc下降明显,但总体上,Q500qE钢板焊缝的防断性能与Q370qE钢焊缝基本相当。⑥虽然Q500qE具有较高的屈强比,但在实际构件中与Q345qD一样,可以形成塑性铰,在同样的构件截面特性下,Q500qE比Q345qD有更好的挠度变形的恢复能力。Q500qE高性能钢按照500MPa屈服强度进行设计,其强度安全储备和变形储备能够达到铁路钢桥正常的使用要求。
     总之,屈强比0.86以下的Q500qE高性能钢在防断、疲劳和安全性方面基本满足铁路钢桥的要求,可以应用于铁路钢桥的建设。
     论文有以下创新点:①首次利用材料、全厚度板材和全尺寸模型梁对高性能钢材屈强比和塑性指标进行全面的试验研究,解决了Q500qE高性能钢在铁路钢桥上应用的安全性问题。②针对断裂韧性(CTOD)值的评定问题,本文提出将CTOD试样的单边疲劳预制裂纹作为缺陷,结合BS 7910:2005《金属结构缺陷可接受性评定方法指南》的失效评定曲线FAD和标准中的2B级评定方法,对桥梁钢的CTOD值进行评定。这个评定方法为运用断裂韧性(CTOD)试验评定桥梁钢及其焊接接头的断裂韧性提供了依据。③在宽板拉伸试验中,首次研制和开发了由EVA板、自动环境温度控制系统、自动液氮灌注系统和试样表面温度传感器相结合的低温环境箱。相比现有的同类宽板拉伸试验低温环境装置,试验温度控制更加精确,自动化程度更高。
High-performance steel is the higher cost-effective bridges steel with integrated optimization of the mechanical properties, easy processing, suitable for low temperature and corrosive environment. It not only maintained higher yield strength, but also increased and improved significantly in weathering resistance, weldability and resistance performance to brittle fracture than traditional bridges steel. High-performance steel represents the development trend of bridge steel in a considerable extent.
     The mechanical properties of a new 500MPa grade high-performance steel (Q500qE) made by China was researched systemic and tested comprehensive in this paper. It is try to solve the technical problems of high-performance steel using in large-span railway steel bridges.
     With the testing and research of Q500qE high-performance steel of the material and plate specimens tensile and low-cycles fatigue, low temperature impact ,fatigue crack growth, fracture toughness (CTOD), the typical construction details of railway steel bridge fatigue, wide plate tension and full-scale model beam static tests and Finite Element Analysis, etc., the main research results are as following:①Yield ratio has few relationship with the plasticity, fatigue crack growth rate, low-cycles performance and fracture toughness (CTOD). The percentage elongation of Q500qE base metal is more than 20% although the yield ratio of material is different. Q500qE has good plasticity, better ability to crack and the redistribution of stress concentration ability. Also, the brittle transition temperature of Q500qE base metal reduced greatly than the Q370qE and Q345qD bridge steel, with good low temperature impact toughness. The brittle transition temperature of Q500qE weld metal is equal to Q370qE bridge steel.②With decreasing temperature, the fracture toughness (CTOD) of 44mm thickness Q500qE base metal changed little, but the fracture toughness (CTOD) of 60mm thickness Q500qE base metal decreased obviously when temperatures down to -40℃. The fracture toughness (CTOD) of various thickness of Q500qE weld is lower than the base metal.③Combined with BS7910: 2005, the fracture toughness (CTOD) value of bridge steel and welded joints is evaluated in this paper. The evaluation method provides a basis for evaluation the fracture toughness of bridge steel and welded joints use the fracture toughness (CTOD).④The fatigue test of five typical structural details of railway steel bridge was carried out. The results indicated that Q500qE high-performance steel has slightly higher fatigue strength in the typical structural details than Q370qE bridge steel which is now used railway steel bridge widely. The fatigue properties of Q500qE high-performance steel meet the requirements of railway bridges.⑤As the strength increased and the grain refinement, the fracture toughness Kc of Q500qE high-performance steel base metal is generally better than Q370qE and Q345qD bridge steel, and is higher than Q500qE high-performance steel welded joints. At low temperatures, the fracture toughness Kc of Q500qE welded joints decreased significantly, but in general, the anti-fracture properties of Q500qE welded joints is equal to Q370qE welded joints roughly.⑥Although with high yield ratio, but in practice Q500qE can form a plastic hinge as the same component of Q345qD. And Q500qE is better than Q345qD in recovery capacity of displacement with the characteristics of components in the same section. The security test on the model beam and the material showed that: Q500qE high-performance steel meet the normal requirements of railway bridge in the strength of security reserves and deformation reserves in accordance with design by yield strength of 500MPa.
     In conclusion, Q500qE high-performance steel with the yield ratio of 0.86 satisfy the basic requirements of railway steel bridges in the anti-fracture, fatigue and safety, and can be used in the construction of railway steel bridges.
     There are innovations in this paper:①For the first time, the yield ratio and plastic of high performance steel was researched and tested comprehensive use of materials, full-size thickness plates and the full-scale model beams. It is solved of safety problems of Q500qE high-performance steel using in railway steel bridges.②For fracture toughness (CTOD) values assessment, the paper suggests that taking the single edge fatigue precrack of CTOD specimen as a flaw, combined with the failure assessment curve of FAD and the 2B-level evaluation method in BS 7910:2005 " Guide on Methods for Assessing the Acceptability of Flaws in Metallic Structures ", the CTOD value of the bridge steel can be evaluated. The evaluation method provides a basis for evaluation the fracture toughness of bridge steel and welded joints use the fracture toughness (CTOD).③In the wide plate tensile test, the low-temperature environment box is researched and development firstly which combination of the EVA board, automatic temperature control system, automatic liquid nitrogen irrigation system and temperature measure sensor of the sample surface. It is more accurate of test temperature control and higher degree of automation compared to the existing similar low-temperature environment test equipment of wide plate tensile.
引文
[1] ASTM A709/A709 M-04 Standard Specification for Carbon and High-Strength Low-AlloyStructural Steel Shapes, Plates, and Bars and Quenched and -Tempered Alloy Structural Steel Plates for Bridges[S]. 2004.
    [2] AASHTO. Guide Specification for Highway Bridge Fabrication with HPS 70W (HPS 485W) Steel[S], 2nd Edition,2003
    [3] FHWA. High Performance Steel Designer Guide[S], Second Edition. 2002.
    [4] European structural steel standard EN 10025:2004:Explanation and comparison to previous standards[S].Corus Construction & Industrial,2004.
    [5] JIS G3106-1992, Hot-rolled atmospheric corrosion resisting steels for welded structure[S].
    [6] EN 1993-1-1-2003, Design of steel structure, General rules and rules for buildings[S].
    [7] EN 1993-1-10-2003, Design of steel structures, material toughness and through thicknessproperties[S]
    [8]中华人民共和国国家质量监督检验检疫总局. GB/T714-2008.桥梁用结构钢[S].北京:中国标准出版社,2009年3月.
    [9]陈伯蠡,中国焊接钢桥的发展[J],电焊机,2007.37(3).1-5.
    [10] Wilson A D. Current Status of High Performance Steel Program[J]. TRB 83rd Annual Meeting, 2004.
    [11]中铁大桥勘测设计院有限公司等.高强度Q420结构钢应用试验研究报告{R}:研究报告.武汉:中铁大桥勘测设计院有限公司等,2006.
    [12] International Association for Bridge and Structural Engineering (IABSE). Use and Application of High Performance Steels for Steel Structures[R]. Structural Engineering Documents 8, 2005
    [13] Sause, R. Barriers to the Use of High-Performance Steel in I-Girder Highway Bridges[C]. Proc.,ASCE Structures Congress XIV, ASCE, New York, 1996.108-115.
    [14] CSA 2000.Structural Quality Steel. CAN/CSA G40.21-98[S], rev. June 2000,Canadian Standards Association, Toronto, Canada.
    [15] Miki C, Homma K,Tominaga T. High strength and high performance steels and their use in bridge structures[J]. Journal of Constructional Steel Research, 2002,58.3-20.
    [16]段兰,王春生.高性能钢桥在北美的研究及应用简介[J],建筑钢结构进展,2008.10(2).50-56.
    [17]姚昌荣,李亚东,强士中.美国桥梁高性能钢的发展与应用[J],世界桥梁,2005,1.57-61.
    [18]盛尔迈,李思明.美日用于桥梁结构的高性能钢材[J],上海建材,2004,4.19-21.
    [19]赵秋,吴冲.桥梁高性能钢发展与展望[J],桥梁论文集,北京:中国市政工程,2007.64-67.
    [20]王春生,段兰,袁卓亚.高性能钢在日本及欧洲的研发与应用[J],世界桥梁,2008,1.68-72.
    [21]侯文葳,李伏欣.日本用于桥梁的高性能钢[J],国外桥梁,2000,2.65-71.
    [22]侯文葳.拓宽钢材应用领域,研究发展高性能钢[J].钢结构. 2002.17(2).31-33.
    [23]肖英龙.桥梁结构用高性能钢材[J],宽厚板,2002,3.43-46.
    [24]杨万忠.新型高性能钢的应用[J],国外桥梁,l999,3.68-70.
    [25]龚根生.日本NKK近年开发的桥梁用高功能钢板[J],世界钢铁,2000,1.79-80.
    [26]屈朝霞,马朝晖.宝钢桥梁用钢及其焊接技术[J],钢结构. 2008.23(3).22-25.
    [27]刘斌.高性能钢及其在桥梁工程中的应用[J],山西建筑. 2007.33(23).144-145.
    [28]李志明.钢结构发展对高性能钢材的需求[J],新材料产业. 2004,10.45-52.
    [29]翁宇庆.钢铁结构材料的高性能化[J],中国工程科学. 2002.4(3).48-53.
    [30]张朝生.开发高性能厚钢板以提高钢结构的可靠性及经济性[J],宽厚板,2001,2.41-44.
    [31]王春生,段兰.高性能钢桥设计指南[J],世界桥梁,2007,1.60-67.
    [32]黄丽琴.先进钢铁材料的技术进展[J],上海电机学院学报,2005.8(3).76-78.
    [33]高宗余,方秦汉,卫军.中国铁路桥梁技术发展与展望[J],铁道工程学报,2007,1.55-59.
    [34]杨卫平.高性能钢在美国的开发及应用[J],钢结构,2005.20(4).80-83.
    [35]梁福康.现代钢材及其工程应用(12)[J],建筑技术,2001.32(4).268-269.
    [36]李静,尚成嘉,贺信莱等.碳含量对高性能桥梁钢组织结构和性能的影响[J],钢铁2006. 41(12).64-69.
    [37]胡晓萍,温东辉,李自刚.高性能桥梁用钢的发展[J].热加工工艺2008.37(22).91-94.
    [38]中华人民共和国建设部. JGJ81-2002.建筑钢结构焊接技术规程[S].北京:中国建筑工业出版社,2002年9月.
    [39] Kolstein, M.H., Bijlaard, F.S.K., and Dijkstra, O.D. Integrity of Welded Joints Made of Steel Grades S690 and S1100[J]. Proceedings Conference on“Steel—A New and Traditional Material for Building,”Poiana Brasov, Romania, September 20 22, 2006. D. Dubina and V. Ungureanu, Editors, Taylor & Francis Group, London, pp. 183 191.
    [40] Barsom,J.M.,Rolfe, S.T.,Fracture and Fatigue Control in Strucyures(Applications of Fracture Mechanics)[M],Third Edition.ASTM,1999.
    [41]周惠久,黄明志.金属材料强度学[M].北京:石油工业出版社, 1989年.
    [42]朱维斗,李年,冯耀荣等.金属材料的均匀变性容量与变形硬化指数和屈强比的关系[J].石油管工程应用基础研究论文集.北京:石油工业出版社,,2001: 161-166.
    [43]于庆波,孙莹,黄传辉等.屈强比对塑性影响的研究[J].塑性工程学报. 2009. 16(1): 153-155.
    [44]李晓红,辛希贤,樊玉光.高强度管线钢屈强比参数的一些探讨[J].石油机械. 2006.34(9): 105-107
    [45]辛希贤,姚婷珍,张刊林等.高屈强比管线钢的安全性分析[J].焊管. 2006. 29(4):36-39.
    [1]张玉玲,田越. 500MPa级高强度钢在铁路钢桥中的应用前期试验研究分报告之二[R].中国铁道科学研究院等,2010年7月.
    [2]中华人民共和国国家质量技术监督局. GB/T2975-1998.钢及钢产品力学性能试验取样位置及试样制备[S].北京:中国标准出版社,1998年10月.
    [3]中华人民共和国国家质量监督检验检疫总局. GB/T228-2002.金属材料室温拉伸试验方法[S].北京:中国标准出版社,2002年3月.
    [4]中华人民共和国国家质量监督检验检疫总局. GB/T15248-2008.金属材料轴向等幅低循环疲劳试验方法[S].北京:中国标准出版社,2008年10月.
    [5]中华人民共和国国家质量监督检验检疫总局. GB/T229-2007.金属材料夏比摆锤冲击试验方法[S].北京:中国标准出版社,2007年11月.
    [6]中华人民共和国国家质量技术监督局. GB 11345-1989.钢焊缝手工超声波探伤方法和探伤结果分级[S].北京:中国标准出版社,1989年5月.
    [7]中华人民共和国铁道部. TB 10212-2009.铁路钢桥制造规范[S].北京:中国铁道出版社,2009年10月.
    [8]中华人民共和国铁道部. TB 10002.2-2005.铁路桥梁钢结构设计规范[S].北京:中国铁道出版社,2005年7月.
    [9]中华人民共和国国家质量技术监督局. GB/T6398-2000.金属材料疲劳裂纹扩展速率试验方法[S].北京:中国标准出版社,2001年5月.
    [10]张玉玲.大型铁路焊接钢桥疲劳断裂性能与安全设计[D].北京:清华大学, 2004: 108-112.
    [1]中华人民共和国国家质量监督检验检疫总局. GB/T21143-2007.金属材料准静态断裂韧度的统一试验方法[S].北京:中国标准出版社,2008年3月.
    [2]中华人民共和国国家质量技术监督局. GB/T2358-1994.金属材料裂纹尖端张开位移试验方法[S].北京:中国标准出版社,1995年8月.
    [3]中华人民共和国国家机械工业局. JB/T4291-1999.焊接接头裂纹尖端张开位移(COD)试验方法[S].北京:中国标准出版社,2001年1月.
    [4] British Standards Institution. BS7448:Part1.Method for Determination of KIc, Critical CTOD and Critical J Values of Metallic Materials[S]. London:British Standards Institution, 1991.
    [5] British Standards Institution. BS 7910 Guide on Methods for Assessing the Acceptability of Flaws in Metallic Structures[S]. London:British Standards Institution, 2005.
    [6]肖纪美.金属的韧性与韧化[M].上海:上海科学技术出版社,1980.
    [7]苗张木,陶德馨,杨荣英.焊接接头韧度CTOD评定的适用性与允许值研究[J].机械强度, 2006, 28(1):150-155.
    [8]杨新歧,王东坡,李小巍,等.海洋石油平台焊接接头大型CTOD试验[J].焊接学报, 2002,4: 48-52.
    [9] Wells AA. Application of fracture mechanics at/and beyond general yielding[J]. British Welding Journal. 1963.10: 563~570.
    [10] Det Norske Veritas.Offshore standard DNV-OS-C401:2001 Fabrication and testing of offshore structures[S].
    [11] Det Norske Veritas. Offshore standard DNV-OS-F101:2000 Submarine pipeline systems[S].
    [12] American Petroleum Institute.Recommended practice 2Z:1998.Recommended practice for preproduction qualification for steel plates for offshore structures[S].
    [13]田越. CTOD与BS7910结合的桥梁钢断裂韧度评定方法. [J]中国铁道科学,2010,31(2):40-44.
    [14]张玉玲.大型铁路焊接钢桥疲劳断裂性能与安全设计[D].北京:清华大学, 2004: 82-115.
    [1]费希尔J W.钢桥的疲劳和断裂——实例研究[M].北京:中国铁道出版社, 1989.
    [2]钱冬生.钢桥疲劳设计[M].成都:西南交通大学出版社, 1986.
    [3]格尔内TR.焊接结构的疲劳[M].周殿群,译.北京:机械工业出版社, 1988.
    [4] EN1993-2:2006. Design of Steel Structures Part2: Steel bridges[S]. 2006.
    [5] AASHTO. AASTO LRFD Bridge Design Specifications[S]. 2003.
    [6]日本道路協會.道路橋示方書同解說[S].日本东京:丸善株式会社. 2002.
    [7]日本钢结构协会.钢构造物疲劳设计指针及解说[S]. 1993.
    [8]李小珍,任伟平.现代钢桥新型结构型式及其疲劳问题分析[J].钢结构, 2006, 21(5): 50-55.
    [9]陈惟珍, Kosteas D.钢桥疲劳设计方法研究[J].桥梁建设, 2000(2): 1-3.
    [10]陈传尧.疲劳与断裂[M],武汉:华中科技大学出版社, 2002年01月.
    [11]荣振环. Fatigue Test Report for Stonecutters Bridge[R].北京:中国铁道科学研究院. 2007年9月.
    [12]张玉玲,荣振环.郑州黄河公铁两用大桥新焊接构造细节疲劳性能试验研究[R].中国铁道科学研究院,2009年7月.
    [13]中华人民共和国铁道部. TB 10002.2-2005.铁路桥梁钢结构设计规范[S].北京:中国铁道出版社,2005年7月.
    [14]刘晓光,张玉玲.武汉天兴洲公铁两用大桥结构构造疲劳性能试验研究[R].中国铁道科学研究院,2007年5月.
    [15]易伦雄.大跨度铁路桥梁桥型方案构思与设计[J].桥梁建设,2005, (2): 33-36.
    [16]张晔芝.高速铁路下承式钢桁结合桥研究[ J].铁道学报,2004 (6): 71-74.
    [17]袭伯求,盛兴旺,乔建东等.桥梁工程[M].北京:中国铁道出版社,2002.
    [18]方秦汉.长江上的四座公路铁路两用桥[J].铁道科学与工程学报,2004(1): 10-13.
    [19]张强.京沪高速铁路济南黄河大桥主桥设计[ J].桥梁建设, 2006(S2): 94-96.
    [1]中华人民共和国国家质量技术监督局. GB/T13450-1992.对接焊接头宽板拉伸试验方法[S].北京:中国标准出版社,1992年12月.
    [2]中国航空研究院.应力强度因子手册[M].北京:科学出版社,1993年12月.
    [3]刘家驹,蒋和岁,严明君,等. 16Mnq钢用于焊接桥梁的适用性研究总结报告(报告号:JS-142-9101)[R].中船总公司七院第七二五研究所,铁道部大桥工程局勘测设计院,铁道部宝鸡桥梁工厂,1992年.
    [4]钱维平,刘家驹,蒋和岁,等. 14MnNbq钢用于焊接桥梁的防断选用规则研究总结报告.铁道部科技发展计划项目芜湖长江大桥关键技术研究(报告号:96G35-F-05-01)[R].中国船舶工业总公司第七研究院第七二五研究所,1999.
    [5]潘际炎,余振生,等.桥梁钢母材及其焊接接头的宽板试验研究总结(报告号:(92)铁字第0208号)[R].铁道部科学研究院铁道建筑研究所,1992年.
    [6]苏本伟,郑佳,李旭光.用宽板试验研究铁路钢桥的抗断裂性能[J],铁道学报,1995年(1):85-91.
    [7]钱维平,李钢,马建坡. 14MnNbq钢及其焊缝的断裂抗力表述[J],材料开发与应用,2000年(3):33-36.
    [8]曲占元,马建坡,徐科. Q420桥梁钢及其焊接接头的断裂抗力分析[J],机械强度,2008年(4):669-672.
    [9]严明君,刘家驹,蒋和岁,等. 14MnNbq钢断裂试验数据的统计分析及其应用[J].材料开发与应用, 1994, 9(1): 1-7.
    [10]张玉玲.大型铁路焊接钢桥疲劳断裂性能与安全设计[D].北京:清华大学, 2004: 117-122.
    [1]中华人民共和国铁道部. TB 10212-2009.铁路钢桥制造规范[S].北京:中国铁道出版社,2009年10月.
    [2]中华人民共和国铁道部. TB 10002.2-2005.铁路桥梁钢结构设计规范[S].北京:中国铁道出版社,2005年7月.
    [3]张玉玲,田越. 500MPa级高强度钢在铁路钢桥中的应用前期试验研究分报告之四[R].中国铁道科学研究院等,2010年7月.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700