用户名: 密码: 验证码:
管桁结构搭接节点抗震性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
管桁结构也称为钢管桁架结构、管桁架或管结构。是由管状截面构件连接组成的钢结构形式。由于其构造简洁,造型优美,广泛用于大跨度钢结构建筑中。
     管桁结构的连接节点通常采用相贯节点型式,即支管直接焊接在主管的表面,不增加任何加劲单元,节点设计的独立性减小。所以从结构体系的整体性考虑,相贯节点是管桁结构的关键部位,也是罕遇地震下产生能量耗散的部位。要正确评价管桁结构抗震能力,必须了解其连接节点在低周往复荷载作用下的滞回性能,探究连接节点在地震作用下的破坏机理。
     本文以国家自然科学基金项目《圆钢管K型、KK型搭接节点滞回性能分析及试验研究》(50968014)课题为依托,主要从理论和试验两个方面,对圆钢管K型、KK型搭接节点,内隐藏焊缝在焊与不焊两种情况下的滞回耗能开展了较为系统的研究。研究的主要内容及结论如下:
     K型搭接节点滞回性能的试验研究:按照K型搭接节点内隐藏焊缝焊与不焊设计了2组试件,分别对各组试件进行了拟静力往复加载试验。通过对试验数据的分析,得到了不同焊接形式K节点的滞回曲线,并对节点承载力、刚度、延性和能量耗散等性能进行了量化评价。通过分析节点域应变强度分布规律探求了节点在往复荷载下的破坏机理。研究结果表明:搭接节点内隐藏焊缝焊接时的承载能力略有提高但延性和耗能能力降低;节点的破坏模式主要以主管管壁塑性屈服破坏模式起控制作用,但支管轴向承载力引起的节点破坏也不容忽视;节点的最大变形发生在鞍点处,且支管的变形大于主管变形,被搭接管受拉时的变形比受压时的变形小,隐藏焊缝焊接节点的变形小于隐藏焊缝不焊接的节点,即隐藏焊缝焊接降低了节点的柔度;主支管管径越接近,节点的变形会越小;隐藏焊缝焊与不焊对节点刚度的影响不是十分明显,隐藏焊缝不焊接的刚度稍低于隐藏焊缝焊接的节点;隐藏焊缝焊接节点的屈服位移及极限位移小于不焊接的节点,隐藏焊缝不焊接节点的抗震性能更好;在相同位移下,隐藏焊缝不焊接的节点耗能能力大于隐藏焊缝焊接的节点,随着β、τ、Οv的增大,节点的耗能能力也在增大。
     K型搭接节点滞回性能有限元数值模拟:在试验研究的基础上,采用有限元数值模拟方法对节点试验结果进行评价,并校验数值模型。在此基础上对影响K型搭接节点滞回性能的因素进行了深入研究。结果表明:隐藏焊缝不焊接节点的耗能性能优越于隐藏焊缝焊接的节点,利用非线性有限元法能够较好地预测节点的滞回性能;最大应力主要发生在两腹杆的搭接处,对于搭接节点的试件要尽量让搭接率小点;通过参数分析可以看出,τ、γ对节点滞回性能的影响比ββ的影响明显,但β、τ、γ参数变化对节点的承载力的影响不是十分显著。ββ、τ、γ参数变化下,隐藏焊缝不焊接(YN)节点的延性优越于隐藏焊缝焊接的节点(YH)。支管与主管直径比β越大,延性系数越大,表明节点延性越好;弦杆径厚比γ越大,延性系数越小,表明节点延性越差;支主管厚度比τ对节点的延性系数影响不是十分显著,表明τ对节点延性影响不大,尤其是τ对YN节点延性基本没有影响。
     KK型搭接节点滞回性能有限元数值模拟:对圆钢管KK型搭接节点按照隐藏焊缝焊与不焊设计了两种分析模型。模型1—在X向有间隙,Y向四支管各自两两搭接;模型2—在Y向有间隙,X向四支管各自两两搭接;对每种分析模型,按次管的搭接次序不同各设计了4种组合形式。利用非线性有限元法,对每种搭接形式的KK型节点进行了滞回耗能的数值模拟,对其承载能力、变形能力、耗能能力等进行了量化评价,揭示了KK型搭接节点内隐藏焊缝焊与不焊对节点抗震性能的影响规律。研究结果表明:内隐藏焊缝焊与不焊对KK型搭接节点的承载力影响不是很显著,内隐藏焊缝不焊接的节点的变形及耗能性能优越于隐藏焊缝焊接的节点;由于KK型搭接节点空间效应的影响,不同形式节点的刚度退化趋势基本一致;整体分析两种模型,模型2的变形能力更为优越,说明模型2的抗震性能优越于模型1.
     隐藏焊缝焊与不焊对管桁结构极限承载力的影响分析:将K型搭接节点还原于管桁结构中,按隐藏焊缝焊与不焊两种焊接方式,分析带有K型搭接节点的管桁结构的极限承载力。探究节点隐藏焊缝焊接的管桁架(YHT)与隐藏焊缝不焊接的管桁架(YNT)的破坏机理。分析结果表明:在管桁结构塑性发展过程中,YHT的承载力比YNT稍高,差值约在20%范围内;随着管桁结构连接节点偏心距的增大,隐藏焊缝不焊接管桁结构的承载力下降相对较多,为此,规范给定的不考虑偏心影响的范围,应按隐藏焊缝焊与不焊予以区分,YNT的节点的偏心范围要求应更严格点;随着β、τ值的增大,整体桁架的承载力也在增强,隐藏焊缝焊与不焊遵循同一变化趋势;在管桁结构的破坏模式方面,主要存在节点局部破坏和构件的整体失稳两种破坏模式,支管的整体失稳具有“突然性”,对结构破坏带来的后果严重,实际结构中应控制支管的长细比,避免发生支管的整体失稳;管桁结构可以采用梁单元代替壳元进行分析模型的简化计算,计算精度满足工程需要。
     落地式管桁结构抗震性能分析及简化计算:拟定了一榀落地式钢管桁架结构作为基本计算模型,利用非线性有限元法,选取梁元及杆元建立了钢管桁架的刚接模型、半刚接模型及铰接模型。通过时程分析法,选取不同地震波,对不同分析模型进行了地震响应的比较分析。通过振型分解法,对落地式管桁结构抗震性能进行了变参数分析。分析结果表明:不同计算模型下的落地式管桁结构的扰度变化是不同的,半刚接模型的挠度反应最小,刚接模型次之,铰接模型的挠度反应最大。在管桁计算时,如果采用铰接模型则偏于保守,采用半刚接模型则存在不安全因素,刚接模型是管桁结构合理的分析模型;管桁结构节点域的刚度对桁架整体挠度的影响比较大,对杆件的轴力影响比较小;落地式管桁结构的弯矩主要由主管承受,弯矩较大处发生在下主管与地面接触处,且下弦杆的弯矩比上弦杆的弯矩大;影响钢管桁结构动力性能的关键参数是结构的高跨比(H/L)、截面宽高比(W/H)和榀间距(S),其中结构的高跨比(H/L)对落地式管桁结构动力性能的影响最为显著;在进行落地式钢管桁架结构设计时,将桁架结构的高跨比控制在1/32≤H/L≤1/8之间,截面的宽高比(W/H)控制在1/1.2以内,榀间距(S)控制在4mm≤S≤6.6mm以内,三个变参数在这一区间取值比较合理,在此合理取值范围内,引入了水平地震影响因子k,并对其进行了单一参数分析,结果表明:场地类别、设防烈度对k值的影响显著,地震分组对k值的影响较小。因此,将场地类别、设防烈度作为两个变参数,进行落地式管桁结构水平地震影响因子k的分析,得到了上弦杆、下弦杆、腹杆在不同场地、不同设防烈度下的k的取值,为管桁结构杆件的初选截面提供了设计依据,并为管桁结构的概念性设计提供了参考。
     最后,在以上研究的基础上,探讨了该领域存在的问题及需进一步研究的方向。
Truss structure of steel tubular, is also called steel truss structure, pipe truss orsteel tubular structure. It is a kind of steel structure form which consists of jointtubular section components. It is widely used in large span steel structure buildingsdue to its simple structure and beautiful modeling.
     Truss structure of steel tubular connected joints usually adopts unstiffenedtubular joint form.That is, we only weld the bracing member on the surface of thechord member without more stiffener unit needed. Besides, the independence of thejoints design decreases as well. So, in the perspective of the integrity of the structuresystem, unstiffened tubular joint is the key part of truss structure of steel tubular andthe part which can dissipate the energy that produced by the infrequent earthquakes.To appraise the seismic capacity of tube truss structure, we must know connectedjoints’ hysteretic behavior in the function of low cycle reciprocating load and exploreits damage mechanism under the effects of earthquakes.
     This paper systematically studied on hidden welds welded and non-weldedhysteretic behavior of unstiffened overlapped CHS(circular hollow sections)K-jointsand KK-joints. It is based on the Project of the National Nature Science Foundation ofChina-“Experimental research and numerical analysis on hysteretic behavior ofunstiffened overlapped CHS K-joints and KK-joints”(50968014).The main contentsand conclusions are as follows:
     Experimental research on hysteretic behavior of Unstiffened Overlapped CHSK-joints:Two specimen groups were designed according to Unstiffened OverlappedCHS K-joints hidden welds welded and non-welded. The groups are tested by thepseudo-static reciprocating loading test respectively. Through the analysis of the testdata, hysteretic curve of different welding forms of K-joints was acquired. What’smore,about bearing capacity, stiffness, ductility and energy dissipation of joints wasquantitative evaluated. By analyzing strain intensity distribution of joints domains, thejoint’s failure mechanism was revealed in reciprocating loads. The research resultshows:the bearing capacity slightly increased but ductility and energy dissipationreduced for hidden welds welded joint. The wall plastic yield failure mode of chordmember play the main control function in the failure modes of joints. However, thedamage of the joints caused by the bracing member’s axial bearing capacity is also notallowed to ignore. The maximum deformation of the joints happens in the saddlepoints and the deformation of bracing member is greater than that of chord member;The overlapped bracing member j tensile deformation is less than pressure. Thedeformation of the hidden welds welded joints is less than that of hidden weldsnon-welded. That is to say, hidden welds welded reduces the joint’s flexibility; Themore close the chord and bracing member diameter is,the smaller deformation of thejoint is.hidden welds welded and non-welded has no obvious effect on the stiffness ofjoints. Hidden welds non-welded is slightly lower than hidden welds welded on stiffness of joints; The yield displacement and limit displacement of hidden weldswelded joints is less than that of non-welded; The seismic performance of hiddenwelds non-welded joints is better; In the same displacement, hidden welds non-weldedjoints is better than hidden welds welded for energy dissipation capacity. With theincrease ofβ,τand ov%,the joint's energy dissipation capacity increase as well.
     Numerical analysis on hysteretic behavior of unstiffened overlapped CHSK-joints by finite element method: Based on the experimental study, the test resultsand numerical mode of joints was evaluated and verified by finite element method.And then,influencing factors that was hysteretic behavior of unstiffened overlappedCHS K-joints to be studied systematically.The results show: joint’s energy dissipationperformance,hidden welds non-welded is superior to the welded. By using nonlinearfinite element method, the hysteretic behavior of joints can be predicted better. Thegreatest street mainly happens in the two bracing members overlap. So it is better totry to let the overlap smaller. Through the parameter analysis,we can see that theinfluence of τandγis more obvious thanβon the hysteretic behavior ofjoints,however,β,τandγhave not very significant influence on the bearingcapacity of the joints. With the change ofβ,τ,γ.YN is superior to the YH. Thegreater the value ofβ, the greater the ductility factor, and the better ductility jointsis. The bigger the thick chord diameter γ is,the smaller the ductility factor is,and thepoor joint ductility is;The thickness ratioτof bracing and chord member has notvery significant influence on the ductility coefficient.It shows thatτhas little influenceon the ductility of joints, and has no influence on the ductility of the joints especially.
     Numerical analysis on hysteretic behavior of unstiffened overlapped CHSKK-joints by finite element method: According to the KK-joints hidden welds weldedand non-welded.design two analysis models. Model1-there is clearance in the Xdirection, and in the Y direction, two bracing members overlap.Model2-there isclearance in the Y direction. In the X direction, two bracing members overlap. designfour kinds of combined forms specimen according to the orders of different bracingmember overlap for each model.For each CHS KK-joint,using nonlinear finite elementmethod,Hysteretic energy numerical models were created.bearingcapacity,deformation ability and energy dissipation capacity etc was evaluated. hiddenwelds welded and non-welded to influence discipline of the KK-joints’ seismicperformance was revealed.The results prove that influence to the bearing capacity ofKK-joints is not very significant on hidden welds welded and non-welded. Thedeformation and the energy dissipation performance of hidden welds non-welded issuperior to hidden welds welded. Because of three dimensional effect of unstiffenedoverlapped CHS KK-joints, the stiffness degradation trend of different forms of modetends to be the same.analysis the two models, find the deformation ability of model2is superior to model1,and this explain the seismic performance of model2is superiorto model1.
     The analysis of the influence of hidden welds welded and non-welded on theultimate bearing capacity of steel tubular truss structure: In two cases of hidden weldswelded and non-welded,the ultimate bearing capacity of the truss structure of steel tubular with K-joints was analyzed.explore the failure mechanism of the YHT andYNT.The analysis results show that,in the tubular truss plastic development process,the bearing capacity of the YHT is slightly higher than YNT and the gap is aboutwithin20%. Along with the joints eccentric distance increases, the bearing capacity ofYNT relatively decline more.To China's steel structures design codes,it isn'tconsidered the scope of the eccentric impact,should be distinguished according tohidden welds welded and non-welded of joints.That is,the YNT scope of the eccentricimpact shall be more strict. With the increase of βandτvalues,the bearing capacityof the whole truss is enhanced and hidden welds welded and non-welded follow thesame change trend. In the aspect of tubular truss structure damage model, mainlyexists joints local damage and overall instability destruction two failure models. Thetruss bracing member instability has “surprise”, which brings about serious damage toa structure. So, the actual structure should be controlled in the bracing memberslenderness ratios so as to avoid the whole bracing member instability.Tubular trussstructure beam element can be used instead of shell element to simplify calculation ofanalysis model and satisfy the need of project precision.
     Analysis of seismic behavior and simplified calculation on steel tubular trussstructure felling to the ground: define a steel tubular truss structure felling to theground as a basic example, use nonlinear finite element method,select beam elementand bar element and establish steel truss rigid model, semi-rigid model and hingedmodel. Through the time history analysis method, select different seismic waves andconduct comparative analysis of the seismic response with different analysis models.Moreover, through the vibration mode decomposition method, some variableparameter was analyzed about the seismic behavior of the truss structure felling to theground. The analysis results show that the deflection change of floor truss structure isdifferent, to different calculation models. semi-rigid model has the smallest deflectionreaction and rigid model is the second and the maximum deflection reaction is hingedmodel. In the tubular truss calculation, if hinged model is adopted, the results tend tobe conservative. What’s more,there is unsafe factors if semi-rigid model is used.However, rigid model is reasonable analysis models. Tubular truss structure stiffnessof the joint domains has important influence on the whole deflection of the truss buthas a little influence on the axial force of components. The big bending momenthappens in under-chord member which contacts with the ground. Furthermore, thebending moment of under-chord member is bigger than that of up-chord member. Thekey parameters that influence the dynamic characteristic of steel tubular truss structureis the depth-span ratio(H/L) and section wide high ratio(W/H) and hinged spacing(S).Of all the key parameters, the depth-span ratio has the most significant influence onthe steel tubular truss arch dynamic response. Therefore, design the floor steel tubulartruss structure.the depth-span ratio in the range of1/32to1/8,the wide high ratio inthe range of within1/1.2and hinged space beyond4meters, but hinged spacingshouldn’t be too big. Within this reasonable range, the introduction of horizontalseismic impact factor k, and the analysis of a single parameter.the results show:siteclassification and seismic fortification intensity significant impact on k,the earthquake grouping is impact smaller.Therefore, site classification, seismicfortification intensity as the two variable parameters,the floor-truss structure ofseismic analysis,the values of k was get on the top chord member, bottom chordmember and bracing member in different site classification and seismic fortificationintensity.It is reasonable to choose the values in those scale and these provideconceptual design for truss structure with references.
     Finally, on the basis of the studies above, the paper discusses the problems thatexist in the field and required further research.
引文
[1]董石麟,罗尧治,赵阳,等.新型空间结构分析、设计与施工[M].北京:人民交通出版社,2006.
    [2]王伟.圆钢管相贯节点非刚性能及对结构整体行为的影响效应[D].上海:同济大学土木工程学院,2005.
    [3] J.Wardenier. Hollow Sections In Structural Applicaions. Comité International pour leDéveloppement et l'Etude de la Construction Tubulaire,2002.
    [4] J.沃登尼尔著,张其林,刘大康译.钢管截面的结构应用[M].上海:同济大学出版社,2004.
    [5] Packer, J.A., Henderson, J.E.(1997) Hollow Structural Section Connections andTrusses,second edition, Design Guide, Canadian Institute of Steel Construction, Willowdale,Ontario,Canada.
    [6] Packer, J.A., Henderson, J.E(曹俊杰译).空心管结构连接设计指南[M].北京:科学出版社,1997.
    [7]李斌.节点焊缝缺陷引起的空间圆管桁架的失效模式分析[J].钢结构,2010,25(2).
    [8]陈以一,沈祖炎等.圆钢管相贯节点滞回特性的实验研究[J].建筑结构学报,2003,12(6).
    [9]中华人民共和国建设部.GB50017-2003钢结构设计规范[S].北京:中国计划出版社,2003.
    [10]徐亮.钢管相贯全焊结构中贯口的制备[J].钢结构,2009,24(04):62-63.
    [11]戴为志,刘景风.建筑钢结构焊接技术-“鸟巢”焊接工程实践[M].北京:化学工业出版社,2008.
    [12]陈伯蠡.焊接工程缺欠分析与对策[M].北京:机械工业出版社,2006.
    [13]顾秋兵,倪毓民,张小达等.T、K、Y管节点焊缝超声波检测缺陷的简易判断方法[J].中外船舶科技,2009,(02):33-35.
    [14]杨文伟,邹磊,郗文科.宁夏大学体育馆屋盖钢管桁架安装技术[J].工业建筑,2011,41(8):74-78.
    [15]陈誉.平面K型圆钢管搭接节点静力性能研究[D].上海:同济大学土木工程学院,2006.
    [16] X.L.Zhao.New Development in The Research and Application of Steel Tubular Joints:The3rdInternational on Advances in Structural Engineering-Advances in Research and Practiceof Steel Structures,Tongji University,2009[C].ShangHai:Tongji UniversitrPress,2009:159-182.
    [17] X. L. Zhao, S. Herion, J. A. Packer.Design Guide-For Circular and Rectangular HollowSection Weided Joints Under Fatigue Loading. Comité International pour le Développementet l'Etude de la Construction Tubulaire,2001.
    [18]祝磊.空间管节点承载力的非线性分析与试验研究[D].北京:清华大学土木水利学院,2004.
    [19] Jaap Wardenier, Yoshiaki Kurobane, Jeffrey A. Packer, et al. Design Guide-For CircularHollow Section(CHS) Joints Under Predominantly Static Loading (Second Edition).Comité International pour le Développement et l'Etude de la Construction Tubulaire,2008.
    [20] D.Dutta,J.Wardenier,N.Yeomans, et al. Design Guide-For Fabrication, Assembly andErection of Hollow Section Structures. Comité International pour le Développement etl'Etude de la Construction Tubulaire,1998.
    [21] G.J. Van Der Vegte. The Static Strength of Uniplanar and Multiplanar Tubular T-andX-Joints. Netherlands: Delft University Press,1995.
    [22] Vegte.,Makino.Y,Wardenier J. The Influence of Boundary Conditions on The Chord LoadEffect for CHS Gap K-joints.Connections in steel structure.PP.433-443.
    [23] J.C.Paul, C.A.C.Van Der Valk, J.Wardenier. The static strength of circular multiplanarX-joints. In: Niemi E, Makelainen P, eds. Tubular Structures, The Third InternationalSymposium. Finland:1990.73~80.
    [24] J.C.Paul,Yuji Makino,Yoshiaki Kurobane. Ultimate resistance and unstiffenedmultiplanartubular TT-and KK-joints.Journal of Structural Engineering,ASCE,1994,120(10):2853-2870.
    [25] Davies G, Roodbaraky K. Use of finite elements as a tool in evaluating the strength ofjoints inrectangular hollow sections. In: Niemi E, Makelainen P, eds. Tubular Structures,The Third International Symposium. Finland:1990.214~223.
    [26] Koskimaki M, Niemi E. Finite element studies on the behaviour of rectangular hollowsection K-joints.In: Niemi E, Makelainen P, eds. Tubular Structures, The ThirdInternational Symposium. Finland:1990.28~37
    [27] Kosteski N, Packer J A. Experimental examination of branch plate-to-RHS memberconnection types. In: Puthli R,Herion S, eds. Proceedings of the Ninth InternationalSymposium on Tubular Structures. Dusseldorf:2001.135-144.
    [28] Kosteski N, Packer J A. FEM evaluation of stiffened longitudinal branch plate-to-RHSmember connections. In:Puthli R, Herion S, eds. Proceedings of the Ninth InternationalSymposium on Tubular Structures. Dusseldorf:2001.145-154.
    [29] Kosteski N,Packer J A, Puthli R S. A finite element method based yield load determinationprocedure for hollow structural section connections[J].Journal of Constructional SteelResearch,2003,59.453-471
    [30]刘建平.钢管相贯节点承载性能研究[D].北京:清华大学,2000.
    [31]刘建平,郭彦林,陈国栋.圆管相贯节点极限承载力有限元分析[J].建筑结构,2002,32(7):56-59.
    [32]刘建平,郭彦林.管节点弹塑性大挠度有限元分析[J].青海大学学报(自然科学版),2001(1):38-42.
    [33]刘建平,郭彦林,陈国栋.方圆管相贯节点极限承载力研究[J].建筑结构,2001,31(8):21-24.
    [34]刘建平,郭彦林,陈国栋.K型方圆管相贯节点的极限承载力非线性有限元分析[J].建筑科学,2001,17(2):50~53.
    [35]李华静,沈祖炎.多平面KK形和TT形圆管节点强度公式的建议[J].结构工程师,1998(04):16-20.
    [36]詹琛,陈以一,沈祖炎.圆钢管节点的强度计算公式[J].钢结构,1999(1):53-56.
    [37]詹琛.空间直接焊接圆钢管节点足尺试验研究[D].上海:同济大学建筑工程系,2000.
    [38]翟红,赵宪忠,陈以一等.大直径圆钢管空间KK型相贯节点试验研究[J].工程力学增刊,2002(10):481-484.
    [39]陈以一,陈扬骥,詹琛等.圆钢管空间相贯节点的实验研究[J].土木工程学报,2003,36(8):24-30.
    [40]袁益宏.K型圆钢管相贯节点分析[D].上海:同济大学建筑工程系.2004.
    [41]陈誉,赵宪忠,陈以一.平面K型圆钢管搭接节点有限元参数分析与极限承载力计算公式[J].建筑结构学报,2006,27(4):30~36
    [42]赵宪忠,陈誉,陈以一等.平面K型圆钢管搭接节点静力性能的试验研究[J].建筑结构学报,2006,27(4):23-29
    [43]童乐为,陈茁,陈以一等.不同焊接方式下圆钢管节点力学性能的试验比较[J].结构工程师,2006,22(2):58-62.
    [44] Wei Wang, Yi-Yi Chen. Hysteretic behaviour of tubular joints under cyclic loading[J].Journal of Constructional Steel Research63(2007)1384–1395.
    [45]童乐为,王斌,陈茁,陈以一,陈扬骥等.弯曲弦杆的圆钢管节点静力性能研究[J].建筑结构学报,2007,28(1):28-34.
    [46]王伟,陈以一,赵宪忠.钢管节点性能化设计的研究现状与关键问题[J].土木工程学报,2007,40(11).
    [47]陈以一,王伟,赵宪忠.钢结构体系中节点耗能能力研究进展与关键技术[J].建筑结构学报,2010,31(6):61-88.
    [48]孙建东.K型系列圆钢管节点静力性能和设计方法研究[D].上海:同济大学土木工程学院,2009.
    [49]童乐为,顾敏,陈以一,等.具有内加劲肋的空间多支管的圆管节点性能研究[J].建筑结构,2009,39(1):69-72.
    [50]赵宪忠,陈誉,陈以一,等.平面KT型圆钢管搭接节点静力性能的试验研究[J].工业建筑,2010,40(4):107-111.
    [51]陈誉.圆钢管搭接节点极限承载力计算公式的改进[J].郑州轻工业学院学报(自然科学版),2009,24(2):95-97.
    [52]陈誉.搭接节点圆钢管桁架结构轴力计算模型[J].华侨大学学报(自然科学版),2009,30(2):211-214.
    [53]陈誉.焊缝模型对圆钢管节点极限承载力影响有限元分析[J].郑州轻工业学院学报(自然科学版),2008,23(5):57-61.
    [54]王秀丽,李强,殷占忠.圆管相贯节点的承载力性能研究[J].甘肃科学学报,2006,18(2):87-90.
    [55]王秀丽,李强,殷占忠.薄壁圆管相贯加强环节点承载力性能研究[J].建筑科学,2006,22(2):1-7.
    [56]杨文伟.空间钢管桁架KK型相贯节点不同焊接方式下的力学性能研究[D].兰州:兰州理工大学土木工程学院,2007.
    [57]杨文伟,王秀丽.不同焊接方式下钢管桁架KK型搭接节点有限元分析[J].建筑科学,2008,24(9):1-5.
    [58]杨文伟,王秀丽,庹磊峰.圆钢管KK型搭接节点内隐藏焊缝焊接与否有限元分析[J].宁夏大学学报(自然科学版),2010,31(1):61-65.
    [59] Xiu-li Wang, Wen-wei Yang, Lei Zou. Finite Element Analysis for Unstiffened OverlappedCHS KK-joints Welded in Different ways[J]. Advanced Materials Research,2011,Vols.163-167.
    [60]武振宇,张耀春.直接焊接钢管节点静力工作性能的研究现状[J].哈尔滨建筑大学学报.1996(06):102-109.
    [61]武振宇,张壮南,丁玉坤等.K型、KK型间隙方钢管节点静力工作性能的试验研究[J].建筑结构学报,2004,25(2):32-38.
    [62]丁玉坤.直接焊接K型、KK型搭接方管节点静力性能的研究[D].哈尔滨:哈尔滨工业大学建筑工程系,2003.
    [63]武振宇,武胜,张耀春.不等宽K型间隙方管节点承载力计算的塑性铰线法[J].土木工程学报,2004,37(5):1-6.
    [64]武振宇,丁玉坤,赵靖伟.K型、KK型部分搭接方管节点极限承载力的对比分析[J].沈阳建筑大学学报(自然科学版),2008,24(5).
    [65]武振宇,张扬.直接焊接KT型搭接方管节点破坏类型的有限元分析[J].建筑科学与工程学报,2008,25(3).
    [66]舒兴平.高等钢结构分析与设计[M].北京:科学出版社,2006.
    [67]舒兴平,朱邵宁,朱正荣.圆型钢管搭接节点极限承载力研究[J].建筑结构报,2004,25(5):71-77.
    [68]舒兴平,朱劭宁,夏心红等.长沙贺龙体育场钢屋盖圆管相贯节点足尺试验研究[J].建筑结构学报.2004,25(3):8-13.
    [69]舒宣武,朱庆科.空间KK型钢管相贯节点极限承载力有限元分析[J].华南理工大学学报(自然科学版),2002,30(10):102-106.
    [70]朱庆科,舒宣武.平面K型钢管相贯节点极限承载力有限元分析[J].华南理工大学学报(自然科学版),2002(12):62-66.
    [71]祝磊,石永久,王元清.TX型圆管相贯节点空间作用下的极限承载力分析[J].钢结构,2004(02):20-24.
    [72]贺东哲,王元清,李少甫.管节点承载力的非线性有限元分析[J]工程力学,2000(04):50-55.
    [73]吴捷.圆钢管结构K形搭接节点受力性能及设计方法研究[D].南京:东南大学,2006.
    [74]蒋剑峰,吴捷,冯健.并联K形相贯搭接节点的试验研究和有限元分析[J].工业建筑,2006,36(8):64-67.
    [75]吴捷,蒋剑峰,戴雅萍.K形圆钢管搭接节点受力特点及极限承载力分析研究[J].工业建筑,2009,39(1).
    [76]吴捷,戴雅萍,赵宏康.内隐藏焊缝不焊的K形搭接节点承载力[J].天津大学学报,2008,41(2):226-232.
    [77] Dipak. Dutta.Structures with hollow sections. Berlin: Ernst&Sohn,2002.
    [78]陈继祖,陆化谱.焊接管节点设计承载力公式研究[J].大连工学院学报,1986,24(2):15-24.
    [79]丁芸孙.圆管结构相贯节点几个设计问题的探讨[J].空间结构,2002,8(2):56-64.
    [80]丁芸孙,刘罗静.钢结构设计误区与释义[M].北京:人民交通出版社,2008:166-173.
    [81]王迎春,郝际平.空间圆钢管相贯节点极限承载力分析[J].空间结构,2007,13(4).
    [82]吴卫华.K型钢管搭接节点极限承载力的非线性分析[D].西安:西安建筑科技大学,2005.
    [83]喻岩,武秀丽,张君.空间XK型钢管相贯节点极限承载力分析[J].空间结构,2009,15(4).
    [84] EUROPEAN STANDARD NORME EUROPéENNE EUROP ISCHE NORM. Eurocode3: Design of steel structures-Part1-8: Design of joints.2003.
    [85] International Institute of Welding(IIW).Design recommendations for hollow sectionjoints-predominantly statically loaded.2ndEdition,International Institute of Welding,Subcommission XV-E,Annual Assembly,Helsinki,Finland,IIW Doc.XV-701-89,1989.
    [86] AWS D1.1/D1.1M:2010An American National Standard-Structural Welding Code—steel:Approved by the American National Standards Institute.
    [87] American Institute of Steel Construction, Inc.Seismic Provisions for Structural SteelBuildings. Chicago,1997.
    [88]中华人民共和国行业标准.JGJ101-96建筑抗震试验方法规程[S].北京:中国计划出版社,1997.
    [89] F. Qin, T.C. Fung, C.K. Soh. Hysteretic behavior of completely overlap tubular joints.Journal of Constructional Steel Research57(2001)811–829
    [90] C. K. Soh,T. C. Fung, F. Qin, et al. Behavior of Completely Overlapped Tubular JointsUnder Cyclic Loading. Journal of Constructional Engineering/February2001,122-128.
    [91]翟红.大直径圆钢管空间KK型节点滞回性能研究[D].上海:同济大学建筑工程系,2003.
    [92]陈鹏.轴力作用下T型方管节点滞回性能的试验研究[D].哈尔滨:哈尔滨工业大学,2007.
    [93]武振宇,张扬,何小辉等. Y形直接焊接矩形钢管节点滞回性能试验研究[J].建筑结构学报,2010,31(8):63-70.
    [94]武振宇,陈鹏,王渊阳. T型方管节点滞回性能的试验研究[J].土木工程学报,2008,41(12):8-13.
    [95]高洋.K型间隙方管节点滞回性能的试验研究[D].哈尔滨:哈尔滨工业大学土木工程学院,2008.
    [96]聂桂波,支旭东,范峰.圆钢管空间滞回性能试验[J].哈尔滨工业大学学报,2010,42(2):169-174.
    [97]李自林,朱斌,吴亮秦等.N型圆钢管相贯节点滞回性能的试验研究[J].建筑结构学报,2008,29(6):69-73.
    [98]白林佳.圆钢管N型相贯节点滞回性能研究[D].天津:天津大学土木工程学院,2007.
    [99]尹越,白林佳,韩庆华.N型圆钢管相贯节点滞回性能有限元数值分析[J].天津大学学报,2009,42(5):413-418.
    [100]吴亮秦,李自林,韩庆华.垫板加强N形圆钢管相贯节点静力性能试验研究[J].建筑结构学报,2010,31(10):83-88.
    [101]何远宾,郝际平,曾珂.T型、N型圆管相贯节点滞回性能实验[J].重庆大学学报,2008,31(7):730-734.
    [102]胡维东,邵永波,杜之富.承受平衡轴力的空间KK管节点应力集中系数研究[J].工程力学,2007,24(9).
    [103]邵永波,杜之富,胡维东.海洋平台中KK管节点表面裂纹应力强度因子的有限元计算方法[J].船舶力学,2008,12(1):80-88.
    [104]秦飞,GHO W M, FUNG T C.完全叠接管节点在低周循环载荷下的破坏模式研究[J].海洋工程,2002,20(1):29-35.
    [105]杨群,谭庆辉,刘小兵.空间管节点应力集中分析[J].湖南工程学院学报,2009,19(1):83-86.
    [106]罗学富,刘玉岚,余寿文.管节点表面裂纹疲劳扩展的数值模拟[J].工程力学,1994,11(1):1-8.
    [107] Zhao X.L.Deformation limit and ultimate strength of welded T-joints in cold-formed RHSsections[J].Journal ofConstructional Steel Research,Vol.53,2000:149—65.
    [108] Yura,J.A.,Zettlemoyer,N.,Edwards,I.F.Ultimate Capacity of Circular Tubular Joints[J].Journal of the Structural Division, ASCE,Vol.107,No.ST10,Proc. Paper16600,Oct.,1981,PP.1965—1983.
    [109] Mouty,J.Theoretical prediction of welded joint strength.Proc. of the InternationalSymposium on Hollow Structural Sections,Toronto,Canada,1977.
    [110] Korol,R M,Mirza,F A.Finite element analysis of RHS T-joints[J].Journal of theStructural Division.ASCE1982;108(9):2081-98.
    [111] Lu,L.H.,de Winkel,GD.,Yu,Y.,Wardenier, J.Deformation limit for the ultimatestrength of hollow section joints.Proc.Sixth International Symposium on TubularStructures,Melbourne,Australia,1994:341-347.
    [112] Yoshiaki Kurobane.Connections in tubular structures.Progress in Structural Engineeringand Materials,2002,4:35-45.
    [113]顾强.钢结构滞回性能及抗震设计[M].北京:中国建筑工业出版社,2009:1-4.
    [114]中国工程院土木、水利与建筑工程学部,国家自然基金委工程材料学部.汶川地震建筑震害调查与灾后重建分析报告[M].北京:中国建筑工业出版社,2008.
    [115]刘西拉.结构工程学科的进展与前景[M].北京:中国建筑工业出版社,2007.
    [116][日]秋山宏著,叶列平,裴星洙译.基于能量平衡的建筑结构抗震设计[M].北京:清华大学出版社,2010.
    [117]小谷俊介.日本基于性能结构抗震设计方法的发展.建筑结构[J].2000,30(6):3-9.
    [118]童根树.钢结构设计方法[M].北京:中国建筑工业出版社,2007.
    [119]薛大为.搭接焊缝内的准确应力分布[J].应用数学和力学[J],1997,18(6):495-498.
    [120]陈铁云,王德禹.近海平台管状接头强度分析[M].上海:上海交通大学出版社,2005.
    [121]严宗达.塑性力学[M].天津大学出版社,1988.
    [122]徐秉业,王建学.弹性力学[M].北京:清华大学出版社,and Springer.2007.
    [123]徐秉业,刘信声,陈森灿.塑性力学中的本构关系及其内在联系-讲授塑性本构关系的一些体会[J].清华大学教育研究,1982,(2):59-66.
    [124] C.K.Soh, Fung, F.Qin, W.M. Gho. Behavior of Completely Overlapped under CyclicLoading. J. Struct. Engrg, ASCE.2001,127(2):122~128
    [125] Goto, Y., Wang, Q., and Obata, M. FEM Analysis for Hysteretic Behavior of Thin-walledSteel Columns. J.Struct.Engrg,ASCE.1998,124(11):1290~1301.
    [126]丁丽娟,程杞元.数值计算方法[M].北京:北京理工大学出版社,2005.
    [127]殷有泉.非线性有限元基础[M].北京:北京大学出版社,2007.
    [128]卓家寿,邵国建,武清玺等.力学建模导论[M].北京:科学出版社,2007.
    [129]龙驭球.有限元法概论[M].北京:人民教育出版社,1978.
    [130]商跃进.有限元原理与ANSYS应用指南[M].北京:清华大学出版社,2005.
    [131]尚晓江,邱峰,赵海峰,等.ANSYS结构有限元高等分析方法与范例应用[M].北京:中国水利水电出版社,2006.
    [132]郝文华. ANSYS土木工程应用实例[M].北京:中国水利水电出版社,2005.
    [133]郑伯兴,黄长华.钢管相贯节点疑难问题分析及对策探讨[J].钢结构,2007,22(8):91-94.
    [134]王勖成.有限单元法[M].北京:清华大学出版社,2003.
    [135]江见鲸,何放龙,何益斌,等.有限元法及其应用[M].北京:机械工业出版社,2006.
    [136] Makino Y, Kurobane Y, Ochi K, et al.Database of test and numerical analysis results forunstiffened tubular Joints [R].ⅡW Doc XV-E-96-220,1996.
    [137]王秀丽.多层钢框架梁柱连接节点抗震性能研究[D].哈尔滨:哈尔滨工业大学,2004.
    [138]陈铁云,陈巍昊.近海平台K型搭接管状接头的应力分析与实验研究[J].上海交通大学学报,1987,21(1):1-11.
    [139]崔鸿超、王桂云、王伟等.钢框架梁柱节点在反复循环荷载作用下的试验研究[J].建筑结构学报,1990,11(1):52-60.
    [140]陈荣毅.空间KK形相贯节点的试验研究[J].四川建筑科学研究,2008,24(5).
    [141]中华人民共和国国家标准.GB/T228-2002金属材料室温拉伸试验方法[S]//中华人民共和国质量监督检验检疫总局.北京:中国计划出版社,2006:2-7.
    [142]中华人民共和国国家标准.GB2975-1998钢及钢产品力学性能试验取样位置及试样制备[S].国家质量技术监督局.北京:中国标准出版社,2009:12-13.
    [143] Kurobane,Y,Makino,Y and Ochi,K.,ultimate resistance of unstiffened tubularjoints.Journal of structural Engineering,110(2),February,1984,pp385-400
    [144] van der Vegte G J. The Static Strength of Uniplanar and Multiplanar Tubular T-andX-Joints. Netherlands: Delft University Press,1995
    [145] Kang C T, Moffat D G, Mistry J. Strength of DT tubular joints with brace and chordcompression. Journal of Structural Engineering.1998,124:775-783
    [146]宋振森,顾强.焊缝金属损伤演化规律的试验测定.西安建筑科技大学学报(自然科学版)[J],2004,36(2):145-159.
    [147]陆新征,叶列平,缪志伟.建筑抗震弹塑性分析:原理、模型与在ABAQUS,MSC.MARC和SAP2000上的实践[M].北京:中国建筑工业出版社,2009.
    [148]庄茁,由小川,廖剑晖,等.基于ABAQUS的有限元分析和应用[M].北京清华大学出版社,2009.
    [149]王文达.钢管混凝土柱-钢梁平面框架的力学性能研究[D].福州:福州大学,2006.
    [150]娄俊杰.钢管桁架压杆稳定性分析及节点偏心性能研究[D].北京:清华大学,2004.
    [151]郭安薪.结构抗震分析方法.哈尔滨工业大学土木工程学院研究生讲义,2009.
    [152](美)Anil K.Chopra.结构动力学-理论及其在地震工程中的应用[M].北京:清华大学出版社,2005.
    [153]曹资,薛素铎,王雪生,等.空间结构抗震分析中的地震波的选取与阻尼比的取值[J].空间结构,2008,14(3):3-8.
    [154]沈冲.节点刚度对方管Warren桁架静动力性能的影响[D].哈尔滨工业大学,2007.
    [155]王秀丽.大跨度空间钢结构分析与概念设计[M].北京:机械工业出版社,2008.
    [156]王丽娜.空间钢管桁架结构动力性能及抗震设计方法研究[D].北京交通大学,2008.
    [157]赵晓林,Tim Wilkinson, Gregory Hancock.冷弯钢管计算与设计[M].北京:中国建筑工业出版社,2007.
    [158]李兆霞.损伤力学及其应用[M].北京:科学出版社,2002.
    [159]范天佑.断裂理论基础[M].北京:科学出版社,2006.
    [160]李旭东.大型挠性空间桁架结构动力分析与模糊振动控制[M].北京:科学出版社,2008
    [161]罗永赤.钢管相贯K型节点焊接残余应力的数值模拟与试验分析[J].钢结构,2006,21(6):21-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700