用户名: 密码: 验证码:
微光瞄准镜多环境试验理论与检测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文的主要研究工作是完成了微光瞄准镜零位移走动量检测系统设计;对微光瞄准镜多环境试验理论分析,建立了不同环境试验下的数学模型;根据多环境试验微光图像特点,完成了零位移目标检测与图像处理;研究了瞄准镜振动与冲击试验模态识别方法。
     对微光瞄准镜进行多环境试验分析,研究其图像特征,设计系统成像光路,计算主要部件参数,采用轴向装载被测对象(微光瞄准镜)的方法,最后完成了环境试验检测系统的设计。
     应用振动理论对振动试验进行研究,根据自由和强迫条件得到振动系统可以等效为有阻尼和无阻尼的强迫振动系统模型;应用冲击理论对冲击试验进行研究,得到冲击系统可以等效为受瞬态半正弦脉沖冲击作用的系统模型;应用温度冲击理论建立了瞄准镜圆柱壳体热应力模型,在热冲击环境下径向、切向和轴向热应力根据圆筒厚度的变化而改变;应用热光学理论和有限元分析方法,结合物镜实际尺寸与设计参数建立了温度冲击主物镜模型,然后对其所得数据分析与仿真,得到了热致误差和光学性能MTF,对主物镜材料的选择具有指导意义。
     应用结构力学和振动理论对分划板连接转动螺杆振动受力分析,试验证明采用调节螺纹摩擦系数、当量摩擦角和附加约束阻尼条件的方法釆控制瞄准镜零位移的走动,为其它直视光学仪器的生产提供了理论分析依据。根据多环境试验微光图像噪声特点分别采用几何平均、中值滤波和直方图均衡化预处理方法;微光图像阈值分割采用了改进的Daubechies小波算法。微光图像目标检测应用SSDA序贯相似性改进型归一化算法,使匹配精度和匹配时间大大提高。
     应用最优控制理论把实验模型和理论模型进行曲线拟合,得到反应实际系统特性的最优误差数据和模态参数,根据振动频率响应函数对前7阶模态的模态识别,第5、6和7阶模念,频率在75Hz~95Hz之间振动载荷对结构的影响较大。冲击试验对前6阶模态识别,第2、3阶模态,频率是在5.3326Hz~39.8205Hz之间冲击载荷对结构的影响较大。
In this paper, the main research work is LLL(Low-Level-Light) aiming sight-glass zero displacement detection system design is done; Theoretical analysis on the testing of LLL aiming sight-glass in multiple circumstances is done and mathematical models under different tests are established; A zero displacement target detection and image processing method is achieved based on the characteristics of multi- environmental test circumstances dim light testing image; The vibration of aiming sight-glass and shock test modal identification method are studied.
     Analysis of multi-environmental testing on LLL aiming sight-glass is done. Its image features are studied. Optical imaging system is designed. Main component parameters are calculated. With the method that LLL aiming sight-glass axially loaded, the design of environmental testing detection system is finally completed.
     Using vibration theory to study the vibration test, it concludes that vibration system can be equivalent to a forced vibration system model with damping and without damping according to freedom and forced condition. Using shock theory to study the shock test, it concludes that shock system can be equivalent to a model that is shocked by transient half sine pulse. Using temperature impact theory, Aiming Sight Glass cylindrical shell thermal stress model is established. Under the thermal shock environment, radial, tangential, axial thermal stress varies with the thickness of the cylinder. Using thermal optical theory and finite elements analysis methods, Combined with the actual size of object lens and design parameters, a temperature impact main objective lens model is established. Then the obtained data is analyzed and simulated, the error caused thermally and optical properties MTF is achieved. That is meaningful to the guiding of the material choice of the main objective lens.
     Using structural mechanics and the theory of vibration, the vibration force of the division plate connections rotating screw is studied. The test shows that by the methods of adjusting thread friction coefficient, the equivalent friction angle and additional damper bound-by conditions to control zero displacement move of the sight glass. This provides a theoretical and analysis basis for the production of other straight sight optical devices. According to multi-environmental testing dim-light image noise characteristics, the calculation methods of geometric mean, median filtering and histogram equalization pretreatment are applied. Dim-light image threshold value segmentation uses the improved Daubechies wavelet algorithm. Low-light-level image target detection uses SSDA sequential similar algorithm and the improved one return algorithm that makes matching accuracy and matching time increase substantially.
     Combining the experimental model curve and theory model curve using optimal control theory, optimal error and modal parameters that show the actual system features are obtained. Based on frequency response functions modal identification to the first seven bands, it is found that at order 5, 6 and 7 modes, with frequency of between 75Hz to 95 Hz, the vibration load affects larger on the structure. During shock test modal identification to the first six orders, it is found that at 2 and 3-order mode, with frequency between 5.3326 Hz and 39.8205Hz, the shock load affects larger on the structure.
引文
[1]国家科委夜视技术专业组.夜视技术.西安:《夜视技术》编辑部发行组,1990,Vol.11
    [2]张鸣平,张敬贤,李玉丹.夜视系统.北京:北京理工大学出版社,1993
    [3]王永仲 著.现代军用光学技术.北京.科学出版社.2003
    [4]李士贤 郑乐年.光学设计手册.第1版.北京:北京理土大学出版,1990年8月
    [5]信息产业部电子第五研究所环境工程研究中心.环境试验研究.环境试验.2005年12月
    [6]刘晓民.兵器环境试验技术.兵器环境试验研究.1997,Vol.21(5):8-14
    [7]魏铭炎.国外环境试验设备制造业一瞥.环境技术.1999,Vol.33(2):130-133
    [8]魏铭炎.国外天然环境曝露试验概述.环境技术.1999,Vol.33(6):150-155
    [9]章新瑞.环境试验和可靠性试验的类型及其设计技术.环境技术.2004,NO(3):1-4
    [10]李占国等.光学瞄具冲击系统弹性阻尼设计仿真.长春理工大学学报.2006,VOL.29(1):95-97
    [11]范国滨等.机械振动对光学系统指向精度的影响.中国机械工程.2005,VOL.16(2):104-111
    [12]刘颖 徐荣莆.《CCD摄像器件原理、特性及应用》.光学技术出版社
    [13]湛廷政.CCD细分技术方法研究及应用.光学学报.2002,Vol.22(11):1396-1399
    [14]Mark R.Shortis Walter L.Snow.Calibration of CCD cameras for field and frame capture modes.SPIE.1995,Vol.2646:2-16
    [15]Chengye Mao,Keith Draper,John Grace.Design and implementation of a real-time digital airborne CCD camera system.SPIE.1994,Vol.2272:302-312
    [16]王庆有.CCD应用技术.天津:天津大学出版社,2001
    [17]周春燕.便携式电子产品的跌落冲击响应.力学进展.2006,VOL.36(2):329-346
    [18]刘战芳等.高速冲击下玻璃中破坏波的损伤累积模拟.应用数学和力学.2001,VOL.22(9):983-987
    [19]Mohammad S.Alam.Efficient multiple target recognition using a joint wavelet transform processor.Optical Engineering.2000,Vol.39(5):1203-1210
    [20]Erik Eustache,Denis Gingras Hybrid system for automatic target recognition.Vol.2269:280-292
    [21]S.Richard F.Sims.Performance evaluation of quadratic correlation filters for target detection and discrimination in infrared imagery.Opt.Eng..2004,Vol.43(8):1702-1711
    [22]Paul C.Miller,Michael Royce.Evaluation of an optical correlate automatic target recognition system for acquisition and tracking in densely cluttered natural scenes.Opt.Eng..1999,Vol.38(11):1841-1825
    [23]魏红芹等.坐标网格立体视觉测量中的图像匹配技术.上海交通大学学报.2003,Vol.23(7):1061-1062
    [24]He-Ping Pan.General Stereo Image Matching Using Symmetric Complex Wavelets.SPIE.1996,Vol.2825:694-721
    [25]F.A.Rosell,R.H.Willson.Basics of detection,recognition and identification in electro-optical formed imagery.SPIE.1972,Vol.33:107-119
    [26]李聪亮等.图像主轴角的旋转匹配技术方法.测控技术.2002,Vol.2(9):12-14
    [27]杨小冈等.基于相似度比较的图像灰度匹配算法研究.系统工程与电子技术.2005,Vol.27(5):918-921
    [28]蒋景英等.基于掌纹图像相关匹配的重复定位技术.天津大学学院学报.2003,Vol.36(3):300-303
    [29]Zeno Geradts.mage matching algorithms for breech face marks and firing pins in a database of spent cartridge cases of firearms.SPIE.2001,Vol.4323:545-553Church,E.L.et al.
    [30]刘道海等.图像匹配问题的新算法.武汉理工大学学报.2002,Vol.24(1):25-27
    [31]Munho Ryu.Nonlinear matching measure for the analysis of on-off type DNA microarray images.Journal of Biomedical Optics.2004,Vol.9(3):432-439
    [32]杨怿.空间望远镜主镜的热光学特性分析.光学技术.2006,VOL.32(1):144-147
    [33]王济 等.MATLAB在振动信号处理中的应用.北京:中国水利水电出版社,2006
    [34]唐照千.振动与冲击手册(1、2、3)卷.北京:国防工业出版社,1992 杨必武等
    [35]王中民等.瞄准仪器原理与设计.第1版.北京:北京理工大学出版社.2004:108-135
    [36]周召发等.基于线阵CCD的三自由度定位测量.计量技术.2001,Vol.17(3):6-8
    [37]基于A字型分华板的经纬仪综合检定装置.宇航计量技术.2004,Vol.24(2):1-3
    [38]欧同庚 傅辉清.光电自准仪中分划丝的分析与比较.光学与光电技术.2004, Vol.5(2):50-53
    [39]陈世哲.二维自跟踪视觉准直测量系统.光电工程.2005,Vol.32(5):55-68
    [40]李勇量.基于尺度相关性的微光图像降噪算法及硬件实现 光子学报 2003,Vol.32(6):749-752
    [41]曾志革.能动薄主镜受均匀冲击载荷的计算模拟.光电工程.1996,VOL.23(6):11-17
    [42]Basdogan,I.et al.Analysis of high-precision optical positioning systems for vibration stability at the Advanced Photon Source.SPIE.1997,Vol.3132:47-55
    [43]郑敏.利用互相关函数进行环境激励下的模态分析.航空学报.2000,Vol.21(6):535-537
    [44]Ewins DJ.模态试验与理论实践[M].赵传生 译.第1版,南京:东南大学出版社,1991,189-195
    [45]Scott W,Farrar C R..A statistical comparison of impact and ambient testing results from the Alamosa canyon bridge Proc.of 15th IMAC.1997,Vol.3017:264-270
    [46]普洛特尼科夫 等.光学机械仪器设计和计算.北京:机械工业出版社,1991
    [47]侯飞.轴向载荷作用下圆柱壳的屈曲仿真.微计算机信息(测控自动化).2007,Vol.23(11):16-119
    [48]祝耀昌.产品环境工程概论[M].第1版.北京:航空工业出版社,2003:65-69
    [49]王永仲.简支圆板在冲击荷载作用下的塑性动力响应.振动工程学报.2003,VOL.1(4):435-441
    [50]杨近松.基于子结构的航天相机冲击力学仿真.计算机仿真.2003,VOL.28(8):33-35
    [51]曲仕茹等.基于飞行器图像的目标跟踪方法研究.飞行力学.2001,Vol.19(4):81-84.
    [52]Lori M.Bruce.Centurion sensitivity of wavelet-based shape features.SPIE.2001,Vol.3391:358-361
    [53]高峻等.军品质量检验技术[M].第1版.北京:国防工业出版社,2004:108-135.
    [54]孙晓梅.振动模型的建立及研究.郑州经济管理干部学院学报.2002,Vol.17(4):88-89
    [55]Emmett J.lentilucci.Multispectral simulation environment for modeling low-light-level sensor systems.SPIE.1998,Vol.3434:250-256
    [56]Kirk,Chris P.et al.Modelling Optical Linewidth Measurement Techniques in Order to Improve Precision and Accuracy.SPIE.1985,Vol.565:62-70
    [57]周立伟.夜视技术述评-纪念夜视诞生60周年.光学技术.1995年增刊:1-18
    [58]Dipl.-Ing.,LuRaTech GmbH.Suitability of Wavelet-Image-Data-Compression for the Derivation of Digital Elevation Models.SPIE.1993,Vol.2672:587-610
    [59]Wan Peng,Wang Jianguo.Edge Extraction of Small Reflection Target in SAR Image.SPIE.2000,Vol.4029:587-610
    [60]王宝贵.温度冲击试验设备实现途径及热负荷分析.环境技术.2004,Vol.22(3):177-181
    [61]梅现均,田应斌 温度冲击试验箱的参数测量.测量与检修.2000,Vol.20(2):298-232
    [62]王红,韩昌元.温度对航天相机光学系统影响的研究.光学技术.2003,Vol.29(4):452-457
    [63]杨康.基于有限元法的镜筒热应力分析.佳木斯大学学报 2005,Vol.23(2):36-41
    [64]Young P..Alignment design for a cryogenic telescope.SPIE.1980,Vol.251:171-178
    [65]Lightsey P A.System performance analysis for COSTAR design.SPIE.1993,Vol.1945:25-35
    [66]Bely Y.Space ten-meter telescope structural and thermal feasibility study of the primary.SPIE.1987,Vol.751:29-36
    [67]常本康.多碱光阴电极机理、特性与应用.北京:机械工业出版社,1995
    [68]常本康 等.多碱光电阴极光电信息测试结果与分析.南京理工大学学报.1997,Vol.21(5):461-466
    [69]常本康 等.多碱光电阴极光谱响应峰值位置移动技术研究.光学学报.1998,Vol.18(2):233-238
    [70]常本康,李蔚.S25光电阴极与景物反射光谱的光谱匹配系数.兵工学报.1999,Vol.20(4):387-390
    [71]常本康,杜晓晴.NEA光电阴极的性能参数评估.光电工程.2002,Vol.29(4):55-59
    [72]薛增泉 吴全德.电子发射与能谱.北京:北京大学出版社,1993
    [73]陈庆佐.夜视系统参数及其通过大气时的性能.半导体光电.1999,Vol.1(1):1-8
    [74]Department Of Defense.MIL-STD-810F.Consideration of Environmental Engineering and Laboratory Test[S].U.S.A.2000
    [75]Dick de Ridder.Vehicle recognition in infrared images using shared weight neural networks.Opt.Eng..1998,Vol.37(3):847-857
    [76]高强,常本康,钱芸生.基于单PC机的光电瞄具模拟训练系统设计与实现.计算机仿真.1996,Vol.21(6):43-46
    [77]常本康,宗志园.NEA光电阴极电子表面逸出几率的计算和应用.南京理工大学学报.2002,Vol.26(6):641-646
    [78]T.Bui-Dinh and T.S.Choi.Bubble velocity measurements using binary image processing techniques.SPIE.2002,Vol.4115:623-629
    [79]E.Renier,F.Meriaudeau.CCD Temperature Imaging:Applications in steel industry.IEEE.1996.0-7803-2775-6:1295-1301
    [80]H.shigeyukiochi,M.seisukuke et al.A Device Structure and Spatial Spectrum for Checker-Pattern CCD Color Camera.IEEE.1978,Vol.13(1):187-203
    [81]Jovan Bojkovski,et al.Using a CCD Camera for the Determination of the Target Size in Radiation Thermometry.IEEE.2004,Vol.53(3):661-665
    [82]Arie N.de Jong.Alternative measurement techniques for infrared sensor performance.Opt.Eng..2003,Vol.42(3):712-714
    [83]Takuma Funahashi.Face and Facial Parts Tracking for Acquiring Nonverbal Information.SPIE.2005,Vol.6051:136-146
    [84]陈沈轶,钱微.模板图像匹配中互相关的一种快速算法.传感技术学报.2007,Vol.20(6):1325-1329
    [85]Takuma Funahashi.Face Tracking System for Facial Image Capturing.SPIE.2003,Vol.5264:96-104
    [86]Min-soo Kima.Two-Dimensional Wavelet Packet Based Feature Selection Method for Image Recognition.SPIE.2001,Vol.4307:132-156
    [87]Kazimierz Fedak,IdziMertaLeszek R.Jaroszewicz.Fundamental properties of the selected joint transform corrugators or practical application in automatic images recognition.SPIE.2004,Vol.5484:452-460
    [88]李国宽等.从图像序列中检测定位小目标的一种方法.华中理工大学学报.1999,Vol.27(8):63-67
    [89]D.F.霍恩著.光学生产工艺(英),西北光学仪器厂情报室译.第1版,北京:科学出版社,1984
    [90]罗锦卫等.带分划板的连续变倍双筒望远镜设计.光电工程.1998,Vol.25(6):96-99
    [91]成政等.应用冲击试验实现光电瞄具强度仿真技术研究.国防技术基础.2006,Vol.13(4):134-138
    [92]冯睿.冲击试验的等效试验.试验技术与试验机.2007,Vol.12(3):111-114
    [93]郭勤涛.以冲击响应谱为响应特征的有限元模型确认.振动与冲击.2005,Vol.24(6):32-36
    [94]陈小慧.冲击响应谱时域合成算法研究.环境技术.2007,Vol.2(1):10-13
    [95]华师韩等.冲击相应谱计算相关参数选择的研究.遥测遥感.2005,Vol.26(6):103-109
    [96]Nickolay N.Evtikhiev.New Wavelet Basis Kernel Filters(WBKF)Based Image Recognition.SPIE.2003,Vol.5106:160-167
    [97]顾培夫 等.波分复用薄膜带通滤光片的中心波长温度稳定性.光学学报.2004,VOL.22(1):33-16
    [98]朱辉 等.光纤环的应力测试分析.光学仪器.2004,VOL.26(4):3-9
    [99]E.Abdelkawy,D.McGaughy.Wavelet-Based Image Target Detection Methods.SPIE.2000,Vol.5094:337-349
    [100]曾吉勇.浓密视差图的快速提取.光学技术.2004,Vol.30(1):40-43
    [101]Barraza,Juan et al.Vibratory response modeling and verification of a high-precision optical positioning system.Opt.Eng.2000,Vol.3786:023402-1-023402-13
    [102]Artoni,M.et al.Light-force-induced fluorescence line-center shifts in high-precision optical spectroscopy:simple model and experiment.Optical Physics.2003,Vol.62:402-413
    [103]方如章,刘玉凤.光电器件.北京:国防工业出版社,1988
    [104]Glenn W.Goodman,Jr..Night-fighting advantage-US army fields next-generation night-vision devices.Armed forces journal international.2000:40-46
    [105]李忠杰.我国光电夜视仪器及其发展.云光技术.1990(2):1-7
    [106]X.L.Yang.Advances in optoelectronics in China.Int.J.Optoelectron.1992,Vol.7(1):3-10
    [107]向世明,倪国强.光电子成像器件原理.北京:国防工业出版社,1999
    [108]Chang Benkang.Study of control principles photocathode composition of the "super second generation "image intensifier.Acta Optica Sinica.1994,Vol.14(2):193-197
    [109]Jacques Dupuy,Joost Schrijvers,Gerard Wolzak.XX1610-The "super second generation" image intensifier.SPIE.1989,Vol.1072:13-18
    [110]Hudson Jr.R.D.,Hueson J.W..The military applications of remote sensing by infrared.IEEE.1975,Vol.63:104
    [111]Maines J.D..Surveillance and night vision.Electron Power.1984,Vol.30(9):679-683
    [112]W.E.Spicer,A.Herrera-Gomez.Modern theory and applications of photocathodes.SPIE.1993,Vol.2022:18-33
    [113]Bruno Theresa L.,Wirth Allan.Advanced image intensifier systems for low light high speed imaging.SPIE.1991,Vol.1358:109-116
    [114]吴晗平.军用微光夜视系统的现状与研究.应用光学.1994,Vol.15(1):15-19
    [115]R.J.Thompson.New developments in night-vision equiprnent and techniques.IEEE 29th Annual 1995 International Carnahan Conference on Security Technology.1995:144-146
    [116]A.Rose.The relative sensitivities of television pickup tubes,photographic film,and the human eye.Proc.IRE.1942,Vol.30:293-300
    [117]A.Rose.A unified approach to the performance of photographic film,television pickup tubes and the human eye.JSMPTE.1946,Vol.47:273-295
    [118]A.Rose.The sensitivity performance of the human eye on an absolute scale.JOSA.1948,Vol.38:196-208
    [119]E.A.Richards.Fundamental limitations in the low light level performance of direct-view image intensifier systems.Infrared Physics.1968,Vol.8(1):101-115
    [120]E.A.Richards.Limitations in optical imaging devices at low light levels.Applied Optics.1969,Vol.8(10):1999-2005
    [121]E.A.Richards.Contrast-enhancement in imaging devices by selection of input photosurface spectral response.AEEP.vol.28B:661-675
    [122]P.Schagen.Electronic Aided to Night Vision.London:Philip Trans.Royal Soc..1971,Vol.269:323
    [123]P.Schagen.Advances in Image Pickup and Display.1974,Vol.1
    [124]P.Schagen.Electronic Devices to Night Vision and Electronic Image.Review Lecture in Beijing Institute of Technology,1979
    [125]H.R.Blackwell.Contrast threshold of the human eye.JOSA.1946,Vol.36:624-643
    [126]H.R.Blackwell.Development and use of a quantitative method for specification of interior illumination levels.Illuminating Engineering.1959,Vol.54:317-353
    [127]F.A.Rosell.The limiting resolution of low light level imaging sensors.Photoelectron Imaging Devices.1971:308-329
    [128]Models for the finish of precision machined optical surfaces.SPIE.1987,Vol.676:142-152
    [129]A.D.Schnitzler.Low light level performance of visual system.AD.725831.1971:55
    [130]F.G.Blackler.Image intensifiers and night viewing system performance.Electron-Optics/Laser International '82UK Conference Proceedings.London:Butterworth Scientific Press,1982,130-139
    [131]F.G.Blackler.像增强器和夜视系统的性能.红外技术.1983(3):8
    [132]H.L.Devries.The quantum character of light and its bearing upon the threshold of vision,the differential sensitivity,and visual acuity of the eye.Physica.1954,Vol.10:553-564
    [133]J.W.Coltman.Scintillation limitations to resolving power in imaging devices.JOSA.1954,Vol.44:234-237
    [134]J.W.Coltman,A.E.Anderson.Noise limitations to resolving power in electronic imaging.Proc.IRE.1960,Vol.48:858-865
    [135]J.C.Richard,D.L.Lamport,E.Roaux,C.Vanneste.Performances des system,de vision nocturne passive utilisant des tubes intensificateurs d'images influence de la response spectrale de la photocathode.Acta Electronica.1977,Vol.20(4):353-368
    [136]G.C.Higgins.Methods for Engineering Photographic Systems.Applied Optics.1964,Vol.3(1)
    [137]Johannes J.Vos,Aart van Meeteren.PHIND:an analytic model to predict target acquisitonn distance with image intensifiers.Applied Optics.1991,Vol.30(8):958-966
    [138]A.van Meeteren.Prediction of realistic visual tasks from image quality data.SPIE.1977,Vol.98:58-64
    [139]Marinica Mirzu,Liviu Cosereanu,Mihai Jurba,George Copot,Daniel Ralea,Raluca Marginean.About the real performance of image intensifier systems for night vision.SPIE.Vol.3405:926-929
    [140]George Copot,Rodica Copot.Studies on the observation range of the night vision devices.SPIE.Vol.2461:491-493
    [141]J.C.Monga,B.D.Bhawe.Performance of active and passive night viewing systems under low ambient illumination levels.Optics And Laser Technology.1983,Vol.15(5):259-262
    [142]蒋先进等.微光电视.北京:国防工业出版社,1984
    [143]CIE Colorimetry Committee-Working Progrom on Color differenees,J.Opt.Soc.Am.,No.64,P896,1974
    [144]曹恒裕.微光夜视观察系统参数优化设计.舰船光学.1990(1):19-22
    [145]张保贵.微光夜视仪视见性能的分析.应用光学.1990,Vol.11(5):29-31
    [146]方如章,刘玉风.《光电器件》.南京理工大学出版
    [147]杜丹.基于图像的目标动态检测研究[M].长春理工大学位论文.2004
    [148]莫保民.夜视技术讲座(第四、五讲).云光技术.1985(1/2):23-35,92
    [149]张保贵.微光夜视仪光电主要参数的设计与分析.应用光学.1994,Vol.15(2):24-25
    [150]I.P.Csorbae.Modulation transfer function(MTF)of image intensifier tubes.SPIE.1981,Vol.274:42-50
    [151]Rebuffie,Jean Claude.Study of the modulation transfer function and spatial resolution of double proximity focused image intensifier tubes.Acta Electron.1987,Vol.,27(3/4):165-174
    [152]陈庆佑.夜视成像器件的性能评价.红外技术.1988,Vol.10(1):35-38
    [153]Qingyou Chen.Infrared response of multialkali photocathode.SPIE.Vol.1952:281-284
    [154]Chang Benkang.Study on spectral response characterization on S_(25)and New S_(25)photocathodes.Acta Optica Sinica.1992,Vol.12(3):279-283
    [155]Chang Benkang.Study on spectral response characterization on New S_(25)and LEP photocathodes.Acta Optica Sinica.1994,Vol.14(5):465-468
    [156]H.K.Pollehn.Evaluation of image intensifiers.Optical Engineering.1982,Vol.21(1):34-37
    [157]Qiu YaFeng.Gao YouTang.Qian YunSheng.Fu RongGuo.Chang BenKang.Model For the Brightness Uniformity of Fluorescence Screen of Image Intensifier.2006,SPIE.Vol.6279:465-468
    [158]Qiu YaFeng.CHANG BenKang.Sun LianJun.GAO Youtang.TIANG Si.QIAN YunSheng.The relationship of Image quality of Image intensifier and the luminance of its background.2007,SPIE.Vol.6621:6621-36
    [159]Qiu YaFeng.Chang BenKang.Sun Lianjun.Zhang Junju.Gao YouTang.Area source electron gun uniformity analysis.2007,SPIE.Vol.6621:6621-23
    [160]QIU YaFeng.CHANG BenKang.SUN LianJun.ZHANG JunJu.GAO YouTang.FU RongGuo.Ambient light effect on the uniformity of Image intensifier fluorescence screen brightness.2007,SPIE.Vol.6621:6621-37
    [161]李景生.关于微光夜视系统工作分辨力的探讨.光学技术.1995年增刊,93-94
    [162]Jagdish C.Monga,Bhalchandra D.Bhawe.Spectral matching considerations in estimating the field performance of low light level imaging systems.Applied Optics.1984,Vol.23(10):1628-1631

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700