用户名: 密码: 验证码:
碳化硅基陶瓷纤维用有机硅高分子的合成与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究了在先驱体转化法制备高性能细直径SiC纤维的方法中,有机硅高分子先驱体合成的基础科学问题,包括如何从聚二甲基硅烷(PDMS)合成可控分子结构的聚碳硅烷(PCS)、开发了一种新的含铝元素聚碳硅烷(PACS)合成方法以及运用此方法合成了几种新型含杂元素的有机硅高分子。
     本论文共分为五章,第一章为绪论,阐述了高性能细直径SiC纤维的丰要应用背景及其主要的制备方法。本章重点介绍了先驱体法制备高性能细直径SiC纤维的研究历史与现状,并在此基础上提出本论文的研究设想与目的。
     本论文第二章为实验部分。
     第三章总结了本论文所掌握的PCS合成规律,提出了PCS分子结构可控合成的裁剪——重拼模型,并分别用反门控去偶~(29)Si NMR、UV以及GPC表征证实了模型的正确性,从而在理论上解释了如何调整PDMS的裂解重排工艺,进而达到合成可控PCS分子结构的目的。
     根据裁剪——重拼模型,PCS的分子结构与裂解重排工艺的升温速率快慢和保温温度高低有密切的关系。较慢的升温速率及较低的反应温度可以得到线形度较高的PCS;而较快的升温速率及较高的反应温度则得到线形度较差的PCS。因此,基于裁剪——重拼模型,本论文确定了直接从PDMS合成具有代表性可纺丝PCS的合成工艺条件。
     与此同时,本章运用裁剪——重拼模型解释了MarkⅡ和Ⅲ型PCS存在的优点,并借鉴管理学上的方法提出了PCS质量的过程控制原则。
     此外,本论文还发现不同分子量的PCS在某种溶剂中的溶解度是不同的,并研究和发现可以溶解PCS分子量从小到大顺序的溶剂分别为:甲醇<二甲基甲酰胺<乙二醇单甲醚<无水乙醇<乙二醇单乙醚<异丙醇<甲酸乙酯<乙酸甲酯<正丙醇;异丙醇<丙酮<正丁醇<二氧六环<丁酮<乙二醇二甲醚<乙醚。因此,这一套溶剂体系可以被用来调节PCS的分子量及分子量分布。最后,本章分析了PCS分子结构对不熔化过程可能造成的影响。
     本论文的第四章开发了一种全新的先驱体PACS合成方法,具体是由PDMS与乙酰丙酮铝于密闭反应釜中一步反应直接制得PACS。这一方法不仅解决了乙酰丙酮铝易升华的问题,而且还可以简单地通过投料量来准确控制PACS中的铝含量。采用此方法所制备的低铝含量(<2wt%)PACS比相同条件下制备出来的PCS表现出更好的纺丝性能。为此,本章探讨了PACS的合成机理。认为在没有乙酰丙酮铝存在时,由PDMS裂解重排形成PCS的过程中,Si自由基会形成具缠结点作用的SiC_4基团;而在乙酰丙酮铝存在时,部分Si自由基会先形成(Si—O)_nAl基团,这相当于替代了本应形成的SiC_4基团,从而相对改善了缠结作用,最终使PACS的纺丝性能比PCS提高。然而,当PACS的铝含量过高时,即乙酰丙酮铝投料量太多时,则PACS分子结构含有更多的(Si—O)_nAl基团,而过多的(Si—O)_nAl基团将使PACS的纺丝性能下降,甚至变成不熔。因此,PACS中的铝含量应控制在2wt%以内,即可以保证PACS具有良好的纺丝性能,也有利于高性能Sic纤维的制备。
     此外,由于PDMS与乙酰丙酮铝反应,断裂形成的小分子自由基碎片会与Si自由基继续反应形成含有Si—C的基团。此基团所起的作用也是缠结点的作用,不利于PACS纺丝性能的提高;而且小分子的存在会导致反应体系压力升高,对于PACS的大量生产是不利的,因此采用能承受一定的压力以使反应物为液态和避免乙酰丙酮铝升华,又能以适当的方式排出脱落的小分子碎片的反应釜是有必要的。
     本章研究发现了PACS的数均分子量随保温时间,保温温度以及乙酰丙酮铝投料量的增加而增大。而且不同分子量的PACS分子在特定溶剂中的溶解度不同,溶解能力从小到大顺序为:甲醇<95%乙醇<乙二醇单甲醚<二甲基甲酰胺<无水乙醇<丙酮<乙酸甲酯<异丙醇<甲酸乙酯,因此可以利用合适的溶剂体系来调节PACS的分子量及分子量分布。
     本论文第五章借鉴PACS的合成方法,开展了含钇元素聚碳硅烷(PYCS)和含锆元素聚碳硅烷(PZCS)的制备初探,并进行了FT-IR,~1H、~(13)C、~(29)Si NMR结构表征,推测其反应机理与PACS的合成机理类似。然而,采用此方法合成含铁元素聚碳硅烷(PFCS)时,发现PFCS的工艺稳定性很差。本章研究了PFCS作为先驱体,采用Nicalon纤维的制备工艺,将PFCS熔融纺丝,再经氧化交联,及惰性气氛烧成的方法初探SiC(Fe)纤维的制备,发现其具有较好的力学性能,并且可以耐较高的温度(1000℃)。然而,先驱体PFCS的合成工艺稳定性较差,因此该方法不适合于应用在吸波纤维的制备。
     本章还探索了采用PACS的合成方法将三聚氰胺与PDMS混合直接制备含氮元素聚碳硅烷(PNCS)的方法,并初步探讨了PNCS的合成机理。然而由于采用三聚氰胺的合成工艺太危险,而且原丝样品经空气氧化后,没有氮元素保留在纤维内,表明原来设计的将PNCS经熔融纺丝,空气氧化,制备Si-N-O透波纤维的方案不可行。
     此外,经初探发现,三苯基硼嗪及其衍生物可以作为催化剂,催化合成无氧MarkⅢ型的PCS;也可以作为原料合成含B及N的PCS。该工作值得进一步深化研究。
SiC fiber is one of the most promising candidates as the reinforcing fiber of ceramic matrix composites(CMCs) for high temperature applications,because of its high tensile strength,thermal and oxidation resistance.In this dissertation,different precursors for fine diameter continuous SiC-based fibers were prepared and studied.
     In chapter 3,the control of structure formation of polycarbosilane(PCS) synthesized from polydimethylsilane(PDMS) was studied.It was found that the molecular structure of PCS was strongly dependent on the reaction temperature and heating rate.Higher reaction temperature and fast heating rate tended to give PCS with highly cross-linked skeleton,while lower reaction temperature and slow heating rate tended to result in PCS with linear backbone.A scissor-couple rearrangement model was proposed for the formation of the PCS skeleton,which was confirmed by~(29)Si NMR,GPC and UV analysis.On the base of this model,PCS with controllable molecular structure and good spinnability can be obtained.
     Moreover,when vacuum heating is used to remove the low molecular weight fraction in the as-synthesized PCS to increase its softening point,the linearity,hence spinnability of the as-synthesized PCS is reduced,because of the continuing reaction during this process.This problem can be avoided by solvent extraction.The ability of solvents to exact low molecular weight fraction of PCS is in the ascending order of methanol,N,N-dimethylformamide,2-methoxyethanol,ethanol,2-ethoxyethanol, 2-propanol,ethyl formate,methyl acetate and n-propanol;iso-propanol,acetone, n-butanol,1,4-dioxane,butanone,1,2-dimethoxyethane and ether.Through solvent extraction of the as-synthesized PCS,PCS with optimal molecular weight can be obtained.
     The good spinnability of MarkⅡand MarkⅢPCS was also explained by scissor-couple rearrangement model in chapter 3.
     In chapter 4,a new method to prepare polyaluminocarbosilane(PACS) directly from the one-pot reaction of PDMS with Al(acac)_3 in autoclave was developed.In this closed system,the sublimation of Al(acac)_3 is prevented and all of Al in Al(acac)_3 are converted into PACS.Therefore,the content of Al can be readily controlled quantitatively.
     On the base of the FT-IR,~1H NMR,~(13)C NMR,~(29)Si NMR and ~(27)Al MAS NMR analysis,the reaction mechanism was proposed as follows:PDMS dissociated during pyrolysis to generate silicon free radicals,and then they reacted with Al(acac)_3 to give PACS containing(Si-O)_nAl groups(n=4,5,6).Meanwhile,these reactions resulted in the cleavage of O-C and/or O=C bonds in Al(acac)_3.Some of free radical fragments generated by this cleavage continued to react with the silicon free radicals and were incorporated into the structure units of PACS;the rest of them may convert into small oxygen-containing compounds,which were removed in the subsequent processing after the reactions.
     The low molecular weight fraction in the as-synthesized PACS can be also removed by solvent exaction.The ability of solvents to exact low molecular weight fraction of PACS was found in the ascending order of methanol,95%ethanol,2-methoxyethanol, N,N-dimethylformamide,ethanol,acetone,ethyl formate,2-propanol and methyl acetate.
     In chapter 5,polyyttrocarbosilane(PYCS),polyzirconocarbosilane(PZCS), polyferrocarbosilane(PFCS) and nitrogen-containing polycarbosilane(PNCS) were successfully prepared using the method similar to the synthesis of PACS.The reaction mechanism of PYCS and PZCS were supported to be similar to PACS.However,it was found that the reproducibility of preparation of PFCS was very poor.
     Meanwhile,the reaction mechanism of PNCS synthesized from melamine and PDMS was studied by FT-IR,~1H,~(13)C and ~(29)Si NMR analysis and described in chapter 5.
     Preparation of SiC(Fe) fiber had been attempt by using PFCS as polymer precursor, producing ceramic fibers with high tensile strength in this chapter.However,attempt to produce Si-N-O fiber was given up,because it failed to produce Si-N-O ceramic by oxidation of PNCS in air.Si-N-O ceramic was not obtained because of the loss of nitrogen during the oxidation curing of PNCS in air.
     Si-B-N-C polymer precursor was prepared by the the reaction of triphenylborazine with PDMS.It was found that triphenylborazine can serve as the catalyst to prepare MarkⅢPCS.No oxygen was incorporated into the resultant precursor.It can serve as the starting materials to prepare Si-B-N-C ceramics or fiber.
引文
[1]吴国庭.哥伦比亚号防热系统概貌[J].国际太空,2003,(6):26-28.
    [2]李成功,傅恒志,于翘等编著.航空航天材料[M].北京:国防工业出版社,2001.22-25.
    [3]Trabandt U.,Wulz H.G,Schmid T.CMC for hot structures and control surfaces of future launchers[J].Key Eng.Mater.,1999,164-165:445-450.
    [4]Christin F.A.A globel approach to fiber nD architectures and self-sealing matrices:from research to production[J].Int.J.Appl.Ceram.Technol.,2005,2(2):97-104.
    [5]邹青,侯帅.再入太空船的全陶瓷体:襟翼[J].飞航导弹,2004,(10):61-63.
    [6]李世波,徐永东,张立同.碳化硅纤维增强陶瓷基复合材料的研究进展[J].材料导报,2001,15(1):45-49.
    [7]Papakonstantinou C.G.,Balaguru P.,Lyon R.E.Comparative study of high temperature composites[J].Composites:Part B,2001,32:637-649.
    [8]邹世钦,张长瑞,周新贵,曹英斌.连续纤维增强SiC_f/SiC陶瓷复合材料的发展[J].材料导报,2003,17(8):61-64.
    [9]邹世钦,张长瑞,周新贵,曹英斌.SiC_f/SiC陶瓷复合材料的研究进展[J].高技术通讯,2003,(8):95-100.
    [10]Kohyama A.,Katoh Y.Overview of CREST-ACE program for SiC/SiC ceramic composites and their energy system applications[J].Ceram.Trans.,2002,144:3-18.
    [11]Naslain R.SiC-matrix composites:nonbrittle ceramics for thermo-structural application[J].Int.J.Appl.Ceram.Technol.,2005,2(2):75-84.
    [12]Christin F,Design,fabrication and application of thermostructural composites (TSC) like C/C,C/SiC and SiC/SiC composites[J].Adv.Eng.Mater.,2002,4(12):903-912.
    [13]Imuta M.,Gotoh J.Development of high temperature materials including CMCs for space application[J].Key.Eng.Mater.,1999,164-165:439-444.
    [14]Nishi K.,Gotoh J.,Aratama S.Development of a 3D-SiC/SiC component model for HOPE-X(H-2 Orbiting Plane Experimental)[C].High Temperature Ceramic Matrix Composites.Krenkel W.,Naslain R.and Schneider H.Eds.,Weinheim:Wiley-VCH,2001.754-759
    [15]Naslain R.Design,preparation and properties of non-oxide CMCs for application in engines and nuclear reactors:an overview[J].Compos.Sci.Technol.,2004,64:155-170.
    [16]Spitsberg I.,Steibel J.Thermal and environmental barrier coatings for SiC/SiC CMCs in aircraft engine applications[J].Int.J.Appl.Ceram.Technol.,2004,1(4):291-301.
    [17]Kaya H.The application of ceramic-matrix composites to the automotive ceramic gas turbine[J].Compos.Sci.Technol.,1999,59:861-872.
    [18]Ohnabe H.,Masaki S.,Onozuka M.,Miyahara K.,Sasa T.Potential application of ceramic matrix composites to aero-engine components[J].Composites:Part A,1999,30:489-496.
    [19]Christin F.Design,fabrication and application of C/C,C/SiC and SiC/SiC Composites[C].High Temperature Ceramic Matrix Composites.Krenkel W.,Naslain R.and Schneider H.Eds.,Weinheim:Wiley-VCH,2001.731-743.
    [20]Giancarli L.,Aiello G.,Caso A.,Gasse A.,Le-Marois G.,Poitevin Y.,Salavy J.F.,Szczepanski J.R&D issues for SiC_f/SiC composites structural material in fusion power reactor blankets[J].Fusion Eng.Des.,2000,48:509-520.
    [21]Jones R.H.,Lewinsohn C.A.,Youngblood G.E.,Kohyama A.Properties of advanced fibers for SiC/SiC composite applications in fusion energy systems[J].Key.Eng.Mater.,1999,164-165:405-408.
    [22]Nishio S.,Ueda S.,Kurihara R.,Kuroda T.,Miura H.,Sako K.,Takase H.,Seki Y.,Adachi J.,Yamazaki S.,Hashimoto T.,Mori S.,Shinya K.,Murakami Y.,Senda I.,Okano K.,Asaoka Y.,Yoshida T.Prototype tokamak fusion reactor based on SiC/SiC composite material focusing on easy maintenance[J].Fusion Eng.Des.,2000,48:271-279.
    [23]Ueda S.,Nishio S.,Yamada R.,Seki Y.,Kurihara R.,Adachi J.,Yamazaki S.,et al.Maintenance and material aspects of DREAM reactor[J].Fusion Eng.Des.,2000,48:521-526.
    [24]Senor D.J.,Youngblood G.E.,Greenwood L.R.,Archer D.V.,Alexander D.L.,Chen M.C.,Newsome G.A.Defect structure and evolution in silicon carbide irradiated to 1 dpa-SiC at 1100℃[J].J.Nucl.Mater.,2003,317:145-159.
    [25]杨一明,冯春祥.用聚碳硅烷作粘结剂制备碳化硅烧结体[J].炭素,1987,(4):42-46.
    [26]Stimson I.L.,Fisher R.Design and engineering of carbon brakes[J].Phil Trans.R.Soc.Lond.A,1980,294:583-590.
    [27]Krenkel W.,Henke T.Design of high performance CMC brake discs[J].Key Eng.Mater.,1999,164-165:421-424.
    [28]Krenkel W.,Heidenreich B.,Renz R.C/C-SiC Composites for advanced friction systems[J].Adv.Eng.Mater.,2002,4(7):427-436.
    [29]Kryachek V.M.Friction composites traditions and new solutions(Review).Part Ⅱ.composite materials[J].Powder Metallurgy & Metal Ceramics,2005,44(1-2):5-16.
    [30]郭景坤.关于陶瓷材料的脆性问题[J].复旦学报(自然科学版),2003,42(6):822-827.
    [31]何新波,杨辉,张长瑞,周新贵.连续纤维增强陶瓷基复合材料概述[J].材料 科学与工程,2002,20(2):273-278.
    [32]Naslain R.R.Ceramic matrix composites[J].Phil.Trans.R.Soc.Lond.A,1995,351:485-496.
    [33]周晓东,吉法祥,肖迎红.β-SiC高性能连续纤维的研制进展[J].材料导报,1995,(2):67-70.
    [34]冯春祥,范小林,宋永才.21世纪高性能纤维的发展应用前景及其挑战(I)硅化物陶瓷纤维[J].高科技纤维与应用,1999,24(4):1-8.
    [35]薛金根,龙剑峰,宋永才,冯春祥.碳化硅纤维制备技术研究进展[J].合成纤维工业,2001,24(3):41-44.
    [36]冯春祥,薛金根,宋永才.SiC纤维研究进展[J].高科技纤维与应用,2003,28(1):15-19.
    [37]Kalyvas V.,Kemp A.P.,Rand B.,East G.C.,Mclntyre J.E.,Riley EL.,Chen L.E,Ko J.C.Processing and properties of ceramic fibres,with emphasis on silicon carbide[A].New Materials and their Applications 1990,Proceedings of the 2nd International Symposium,Warwick,UK,April 10-12,1990;Holland D.,Ed.;IOP:Bristol,1990.143-156.
    [38]石南林.CVD法SiC(C芯)纤维的发展概况[J].材料导报,1994,8(1):69-71.
    [39]Hough R.L.,Schwartz R.T.Method of making metal or metalloid carbide yarn by decomposing the respective chloride in the presence of carbon yam[P].United States Patent No.3433725.Mar.18,1969.
    [40]Debolt H.E.,Henze T.W.Silicon carbide filaments and method[P].United States Patent No.4068037.Jan.10,1978
    [41]Debolt H.E.,Henze T.W.Silicon carbide filaments and method[P].United States Patent No.4127659.Nov.28,1978.
    [42]邹祖讳主编,吴人洁等译.复合材料的结构与性能[M].北京:科学出版社,1999.58-60.
    [43]石南林,常新春,夏非.连续碳化硅纤维的制备方法及装置[P].中国发明专 科,公开号:CN1062381A.1992年7月1日.
    [44]石南林.高性能CVD法SiC纤维的研制[J].材料导报,2000,14(7):53-54.
    [45]Franklin E.,Wanner J.R.Boron and silicon carbide fibers(CVD)[M].Comprehensive Composite Materials,Kelly A.,Zweben C.,Chou T.W.Eds.,Amsterdam:Elsevier,2000.Vol.1,85-105.
    [46]Okada K.,Kato H.,Nakajima K.Preparation of silicon carbide fiber from activated carbon fiber and gaseous silicon monoxide[J].J.Am.Ceram.Sot.,1994,77(6):1691-1693.
    [47]Okada K.Process for producing silicon,carbide fiber[P].United States Patent No.6316051B2.Nov.13,2001.
    [48]Kowbel W.,Withers J.C.,Loutfy R.O,Bruce C.,Kyriacou C.Silicon carbide fibers and composites from graphite precursors for fusion energy applications[J].J.Nuel.Mater.,1995,219:15-25.
    [49]Ryu Z.Y.,Zheng J.T.,Wang M.Z.,Zhang B.J.Preparation and characterization of silicon carbide fibers from activated carbon fibers[J].Carbon,2002,40:715-720.
    [50]郑经堂,刘振宇,王茂章,张碧江,刘平光,曹雅秀.一种制备碳化硅纤维或织物的方法[P].中国发明专利,么开号:CN1374416A.2002年10月16日.
    [51]Lee Y.J.Formation of silicon carbide fibers by carbothermal reduction of silica[J].Diamond & Related Materials,2004,13:383-388.
    [52]Kharlamov A.I.,Loytchenko S.V.,Kiriliova N.V.,Fomenko V.V.A heterogeneous process for the synthesis of silicon carbide fibers[J].Theoretical & Experimental Chemistry,2002,38(1):54-58.
    [53]Kharlamov A.I.,Loichenko S.V.,Kirillova N.V.,Fomenko V.V.,Bondarenko M.E.,Zaitseva Z.A.Silicon carbide polycrystalline fibers and single-crystal whiskers[J].Inorg.Mater.,2003,39(3):260-265.
    [54]Frechette F.J.,Dover B.S.,Venkateswaran V.,Kim J.J.High temperature continuous sintered SiC fiber for composite applications[J].Ceram.Eng.Sci. Proc,1991,12(7-8):992-1006.
    [55]Frechette F.J.,Storm R.S.,Venkatswaren V.,Andrejcak M.J.,Kim J.J.Process for making silicon carbide ceramic fibers[P].United States Patent No.5354527.Oct.11,1994.
    [56]DiCarlo J.A.Creep limitations of current polycrystalline ceramic fibers[J].Compos.Sci.Technol.,1994,51(2):213-222.
    [57]Srinivasan G.V.,Venkateswaran V.Tensile strength evaluation of polycrystalline SiC fibers[J].Ceram.Eng.Sci.Proc.,1993,14(7-8):563-572.
    [58]邹祖讳主编,吴人洁等译.复合材料的结构与性能[M].北京:科学出版社,1999.38-46.
    [59]Yajima S.,Hayashi J.,Omori M.Continuous silicon carbide fiber of high tensile strength[J].Chem.Left,1975,931-934.
    [60]Yajima S.,Okamura K.,Hayashi J.Structural analysis in continuous silicon carbide fiber of high tensile strength[J].Chem.Lett.1975,1209-1212.
    [61]冯春祥,宋永才.超耐热SiC纤维的研究[J].材料导报,1994,(3):67-70.
    [62]刘军,冯春祥,宋永才,薛金根.先驱体转化法制备碳化硅纤维[J].现代化工,2000,20(10):59-60.
    [63]楚增勇,冯春祥,宋永才,李效东,肖加余,王应德.先驱体转化法连续SiC 纤维国内外研究与开发现状[J].无机材料学报,2002,17(2):193-201.
    [64]Ichikawa H.,Ishikawa T.Silicon carbide fibers(organometallic pyrolysis)[M].Comprehensive Composite Materials,Kelly A.,Zweben C.,Chou T.W.Eds.,Amsterdam:Elsevier,2000.Vol.1,107-145.
    [65]Okamura K.Ceramic fibres from polymer precursors[J].Composites,1987,18(2):107-120.
    [66]Lipowitz J.Polymer-derived ceramic fibers[J].Ceram.BulL,1991,70(12):1888-1894.
    [67]Laine R.M.,Babonneau F.Preceramic polymer routes to silicon carbide[J].Chem. Mater.,1993,5:260-279.
    [68]Birot M.,Pillot J.P.,Dunogues J.Comprehensive chemistry of polycarbosilanes,polysilazanes,and polycarbosilazanes as precursors of ceramics[J].Chem.Rev.1995,95:1443-1477.
    [69]Baldus H.P.,Jansen M.Novel high-performance ceramics—amorphous inorganic networks from molecular precursors[J].Angew.Chem.Int.Ed.Engl.,1997,36:328-343.
    [70]Yajima S.,Hayashi J.,Omori M.,Okamura K.Development of a silicon carbide fibre with high tensile strength[J].Nature,1976,261:683-685.
    [71]Yajima S.,Hayashi J.,Omori M.Method for producing organosilicon high molecular weight compounds having silicon and carbon as main skeleton components and said organosilicon high molecular weight compounds[P].United States Patent No.4052430.Oct.4,1977.
    [72]Yajima S.,Hayashi J.,Omori M.Silicon carbon fibers having a high strength and a method for producing said fibers[P].United States Patent No.4100233.Jul.11,1978.
    [73]Yajima S.,Hasegawa Y.,Okamura K.,Matsuzawa T.Development of high tensile strength silicon carbide fibre using an organosilicon polymer precursor[J].Nature,1978,273:525-527.
    [74]Yajima S.,Okamura K.,Hasegawa Y.Polycarbosilane,process for its production,and its use as material for producing silicon carbide fibers[P].United States Patent No.4220600.Sep.2,1980.
    [75]Yajima S.,Omori M.,Hayashi J.,Okamura K.,Matsuzawa T.,Liaw C.F.Simple synthesis of the continuous SiC fiber with high tensile strength[J].Chem.Lett.,1976,551-554.
    [76]Mah T.,Hecht N.L.,McCullum D.E.,Hoenigman J.R.,Kim H.M.,Katz A.P.,Lipsitt H.A.Thermal stability of SiC fibres(Nicalon~(?))[J].J.Mater.$ci.,1984,19: 1191-1201.
    [77]Bouillon E.,Mocaer D.,Villeneuve J.E,Pailler R.,Naslain R.,Monthioux M.,Oberlin A.,Guimon C.,Pfister G.Composition-microstructure-property relationships in ceramic monofilaments resulting from the pyrolysis of a polycarbosilane precursor at 800 to 1400℃[J].J.Mater.Sci.,1991,26:1517-1530.
    [78]Okamura K.,Sato M.,Seguchi T.,Kawanishi S.High-temperature strength improvement of Si-C-O fiber by the reduction of oxygen content[A].New Materials and Processer for the Future:Proceedings of 1st Japan International SAMPE Symposium and Exhibition,Nov.28-Dec.1,1989.929-934.
    [79]Takeda M.,Imai Y.,Ichikawa H.,Ishikawa T.,Seguchi T.,Okamura K.Properties of the low oxygen content SiC fiber on high temperature heat treatment[J].Ceram.Eng.Sci.Proc.,1991,12(7-8):1007-1018.
    [80]Takeda M.,Imai Y.,Ichikawa H.,Ishikawa T.,Kasai N.,Seguchi T.,Okamura K.Thermal stability of the low oxygen silicon carbide fibers derived from polycarbosilane[J].Ceram.Eng.Sci.Proc.,1992,13(7-8):209-217.
    [81]Takeda M.,Imai Y.,Ichikawa H.,Ishikawa T.,Kasai N.,Seguchi T.,Okamura K.Thermomechanical analysis of the low oxygen silicon carbide fibers derived from polycarbosilane[J].Ceram.Eng.Sci.Proc.,1993,14(9-10):540-547.
    [82]Okamura K.,Ichikawa H.,Takeda M.,Seguchi T.,Kasai N.,Nishii M.Super heat-resistant silicon carbide fibers from polycarbosilane[P].United States Patent No.5283044.Feb.1,1994.
    [83]Chollon G.,Pailler R.,Naslain R.,Laanani F.,Monthioux M.,Olry P.Thermal stability of a PCS-derived SiC fibre with a low oxygen content(Hi-Nicalon)[J].J.Mater.Sci.,1997,32:327-347.
    [84]Takeda M.,Sakamoto J.,Imai Y.,Ichikawa H.,Ishikawa T.Properties of stoichiometric silicon carbide fiber derived from polycarbosilane[J].Ceram.Eng. Sci.Proc.,1994,15(4):133-141.
    [85]Takeda M.,Sakamoto J.,Saeki A.,Imai Y.,Ichikawa H.High performance silicon carbide fiber Hi-Nicalon for ceramic matrix composites[J].Ceram.Eng.Sci.Proc.,1995,16(4-5):37-44.
    [86]Takeda M.,Saeki A.,Sakamoto J.,Imai Y.,Ichikawa H.Effect of hydrogen atmosphere on pyrolysis of cured polycarbosilane fibers[J].J.Am.Ceram.Soc.,2000,83(5):1063-1069.
    [87]Shimoo T.,Katase Y.,Okamura K.,Takano W.Carbon elimination by heat-treatment in hydrogen and its effect on thermal stability of polycarbosilane-derived silicon carbide fibers[J].J.Mater.Sci.,2004,39:6243-6251.
    [88]Ichikawa H.,Imai Y.,Takeda M.,Sakamoto J.Process for producing silicon carbide fibers[P].European Patent No.0653391,41.May 17,1995.
    [89]Ichikawa H.,Takeda M.,Sakamoto J.,Saeki A.Process for producing silicon carbide fibers[P].United States Patent No.5824281.Oct.20,1998.
    [90]Ichikawa H.Recent advances in Nicalon ceramic fibres including Hi-Nicalon Type S[J].Ann.Chim.Sci.Mat.,2000,25:523-528.
    [91]Ishikawa T.,Ichikawa H.Recent advances in continuous SiC fibers and their composites[J].Key Eng.Mater.,2003,247:203-208.
    [92]Yajima S.,Okamura K.,Hasegawa Y.,Yamamura T.Process for producing continuous inorganic fibers[P].United States Patent No.4342712.Aug.3,1982.
    [93]Yajima S.,Iwai T.,Yamamura T.,Okamura K.,Hasegawa Y.Synthesis of a polytitanocarbosilane and its conversion into inorganic compounds[J].J.Mater.Sci.,1981,16:1349-1355.
    [94]Yajima S.,Okamura K.,Hasegawa Y.,Yamamura T.Novel polymetallocarbosilane and process for its production[P].United States Patent No.4359559.Nov.16,1982.
    [95]Yamamura T.,Ishikawa T.,Shibuya M.,Hisayuki T.,Okamura K.Development of a new continuous Si-Ti-C-O fibre using an organometallic polymer precursor[J].J.Mater.Sci,,1988,23:2589-2594.
    [96]Shibuya M.,Yamamura T.Characteristics of a continuous Si-Ti-C-O fibre with low oxygen content using an organometallic polymer precursor[J].J.Mater.Sci.,1996,31:3231-3235.
    [97]Chollon G.,Aldacourrou B.,Capes L.,Pailler R.,Naslain R.Thermal behaviour of a polytitanocarbosilane-derived fibre with a low oxygen content:the Tyranno Lox-E fibre[J].J.Mater.Sci.,1998,33:901-911.
    [98]Yajima S.,Noda A.,Okamura K.,Hasegawa Y.,Yamamura T.Continuous inorganic fibers and process for production thereof[P].United States Patent Na.4663229.May 5,1987.
    [99]Yamamura T.,Masaki S.,Ishikawa T.,Sato M.,Shibuya M.,Kumagawa K.Improvement of Si-Ti(Zr)-C-O fiber and a precursor polymer for high temperature CMC[J].Ceram.Eng.Sci.Proc.,1996,17(4):184-191.
    [100]Kumagawa K.,Yamaoka H.,Shibuya M.,Yamamura T.Thermal stability and chemical corrosion resistance of newly developed continuous Si-Zr-C-O Tyranno fiber[J].Ceram.Eng.Sci.Proc.,1997,18(3):113-118.
    [101]Yamamura T.,Ishikawa T.,Shibuya M.Cross-linked polymer and its production process[P].Japan Patent No.128027(A),May 31,1988.
    [102]Yamaoka H.,Ishikawa T.,Kumagawa K.Excellent heat resistance of Si-Zr-C-O fiber[J].J.Mater.Sci.,1999,34:1333-1339.
    [103]Ishikawa T.,Kohtoku Y.,Kumagawa K.,Yamamura T.,Nagasawa T.High-strength alkali-resistant sintered SiC fibre stable to 2200"C[J].Nature,1998,391:773-775.
    [104]Ishikawa T.,Harada Y.,Inoue Y.,Yamaoka H.Silicon carbide fiber having excellent alkali durability[P].United States Patent No.5945362.Aug.31,1999.
    [105]Ishikawa T.,Harada Y.,Inoue Y.,Yamaoka H.,Sato M.,Shibuya M.Silicon-carbide-based inorganic fiber[P].United States Patent No.5948714.Sep.7,1998.
    [106]Ishikawa T.SiC polycrystalline fiber and its fiber-bonded ceramic[J].Ann.Chim.Sci.Mat.2000,25:517-522.
    [107]Ishikawa T.Advances in inorganic fibers[J].Adv.Polym.Sci.,2005,178:109-144.
    [108]Kumagawa K.,Yamaoka H.,Shibuya M.,Yamamura T.Fabrication and mechanical properties of new improved Si-M-C-(O) Tyranno Fiber[J].Ceram.Eng.Sci.Proc.,1998,19(3):65-72.
    [109]Deleeuw D.C.,Lipowitz J.,Lu P.P.Preparation of substantially crystalline silicon carbide fibers from polycarbosilane[P].United States Patent No.5071600.Dec.10,1991.
    [110]Lipowitz J.,Rabe J.A.,Nguyen K.T.,Orr L.D.,Androl R.R.Structure and properties of polymer-derived stoichiometric SiC fiber[J].Ceram.Eng.Sci.Proc.,1995,16(4):55-62.
    [111]Lipowitz J.,Rabe J.A.,Zangvil A.,Xu Y.Structure and properties of sylramic~(TM)silicon carbide fiber—a polycrystalline,stoichiometric β-SiC composition[J].Ceram.Eng.Sci.Proc.,1997,18(3):147-157.
    [112]Bamard T.D.,Lipowitz J.,Nguyen K.T.Process to produce silicon carbide fibers using a controlled concentration of boron oxide vapor[P].United States Patent No.6261509BI.Jul.17,2001.
    [113]DiCarlo J.A.,Yun H.M.New high-performance SiC fiber developed for ceramic composites[R].Research & Technology 2001,NASA/TM-2002-211333.
    [114]Yun H.M.,Wheeler D.,Chen Y.,DiCarlo J.A.Thermo-mechanical properties of super sylramic SiC fibers[J].Ceram.Eng.Sci.Proc.,2005,26(2):59-66.
    [115]Toreki W.,Batich C.D.,Choi G.J.High molecular weight polycarbosilane as a precursor to Oxygen-free SiC fibers[J].Polymer Preprints,1991,32:584-585.
    [116]Toreki W.,Choi G.J.,Batich C.D.,Sacks M.D.,Saleem M.Polymer-derived silicon carbide fibers with low oxygen content[J].Ceram.Eng.Sci.Proc.,1992,13(7-8):198-208.
    [117]Toreki W.,Batich C.D.,Sacks M.D.,Saleem M.,Choi G.J.Polymer-derived silicon carbide fibers with low oxygen content and improved thermomechanical stability[J].Compos.Sci.Teehnol.,1994,51(2):145-159.
    [118]Toreki W.,Batich C.D.SiC fibers having low oxygen content and methods of preparation[P].United States Patent No.5171722.Dec.15,1992.
    [119]Toreki W.,Batich C.D.SiC fibers having low oxygen content and methods of preparation[P].United States Patent No.52 78110.Jan.11,1994
    [120]Sacks M.D.,Scheiffele G.W.,Saleem M.,Staab G.A.,Morrone A.A.,Williams T.J.Polymer-derived Silicon carbide fibers with near-stoichiometric composition and low oxygen content[J].Mat.Res.Soc.Symp.Proc.,1995,365:3-10.
    [121]Sacks M.D.,Morrone A.A.,Scheiffele G.W.,Saleem M.Characterization of polymer-derived silicon carbide fibers with low oxygen content,near-stoichiometric composition,and improved thermomechanical stability[J].Ceram.Eng.Sci.Proc.,1995,16(4):25-35.
    [122]Sacks M.D.,Scheiffele G.W.,Zhang L.,Yang Y.,Brennan J.J.Polymer-derived SiC-based fibers with high tensile strength and improved creep resistance[J].Ceram.Eng.Sci.Proe.,1998,19(3):73-86.
    [123]Sacks M.D.Creep-resistant,high-strength silicon carbide fibers[P].United States Patent No.6069102.May 30,2000.
    [124]Smith T.L.Jr.Process for the production of silicon carbide by the pyrolysis of a polycarbosilane polymer[P].United States Patent No.4631179.Dec.23,1986.
    [125]Whitmarsh C.K,Interrante L.V.Synthesis and structure of a highly branched polycarbosilane derived from(chloromethyl)trichlorosilane[J].Organometallics, 1991,10:1336-1344.
    [126]Zhang Z.F.,Babonneau F.,Laine R.M.,Mu Y.,Harrod J.F.,Rahn J.A.Poly(methylsilane)-A high ceramic yield precursor to silicon carbide[J].J.Am.Ceram.Soc.1991,74(3):670-673.
    [127]Seyferth D.,Wood T.G.,Tracy H.J.,Robison J.L.Near-stoichiometric silicon carbide from an economical polysilane precursor[J].J.Am.Ceram.Soc.,1992,75(5):1300-1302.
    [128]Zhang Z.F.,Scotto C.S.,Laine R.M.Processing of silicon carbide fiber with controlled stoichiometry using polymethylsilane,-[MeSiH]_x-[J].Mat.Res.Soc.Symp.Proc.,1994,327:207-213.
    [129]Zhang Z.F.,Scotto C.S.,Laine R.M.Pure silicon carbide fibers from polymethylsilane[J].Ceram.Eng.Sci.Proc.,1994,15(4):152-161.
    [130]Zhang Z.F.,Scotto C.S.,Laine R.M.Processing of stoichiometric silicon carbide fiber from polymethylsilane.Part 1 Precursor fiber processing[J].J.Mater.Chem.,1998,8:2715-2724.
    [131]Laine R.M.,Sellinger A.,Chew K.W.Highly processable hyperbranched polymer precursors to controlled chemical and phase purity fully dense SiC[P].United States Patent No.6133396.Oct.17,2000.
    [132]Jansen M.,Baldus H.P.,Wagner O.Silicon boron nitride ceramic and precursor compounds,a process for their preparation and their use[P].United States Patent No.5312942.May 17,1994.
    [133]Baldus H.P.Process for the production of preceramic polyborosilazanes and ceramic material derived thereform[P].United States Patent No.5543485.Aug.6,1996.
    [134]Baldus H.P.,Passing G.,Scholz H.,Sporn D.,Jansen M.,Goring J.Properties of amorphous SiBNC-ceramic fibres[J].Key Eng.Mater.,1997,127-131:177-184.
    [135]Baldus H.P.,Jansen M.,Sporn D.Ceramic fibers for matrix composites in high-temperature engine applications[J].Science,1999,285:699-703.
    [136]Weisbarth R.,Jansen M.Investigations on reactive coatings applied to Siboramic (SiBN_3C) fibers[J].J.Mater.Chem.,2003,13:1926-1929.
    [137]Baldus H.P.,Perchenck N.,Thierauf A.,Herbom R..,Sporn D.Ceramic fibers in the system silicon-boron-nitrogen-carbon[P].United States Patent No.5968859.Oct.19,1999.
    [138]Chollon G.,Czerniak M.,Pailler R.,Bourrat X.,Naslain R.,Pillot J.P.,Cannet R.A model SiC-based fibre with a low oxygen content prepared from a polycarbosilane precursor[J].J.Mater.Sci.,1997,32:893-911.
    [139]Tazi-Hemida A.,Pailler R.,Naslain R.Continuous SiC-based model monofilaments with a low free carbon content Part Ⅰ:From the pyrolysis of a polycarbosilane precursor under an atmosphere of hydrogen[J].J.Mater.Sci.,1997,32:2359-2366.
    [140]Tazi-Hemida A.,Birot M.,Pillot J.P.,Dunogues J.,Pailler R.,Naslain R.Synthesis and characterization of new precursors to nearly stoichiometric SiC ceramics Part Ⅱ:A homopolymer route[J].J.Mater.Sci.,1997,32:3485-3490.
    [141]Tazi-Hemida A.,Birot M.,Pillot J.P.,Dunogues J.,Pailler R.Synthesis and characterization of new precursors to nearly stoichiometric SiC ceramics Part Ⅰ:The copolymer route[J].J.Mater.Sci.,1997,32:3475-3483.
    [142]Tazi-Hemida A.,Pailler R.,Naslain R.,Pillot J.P.,Birot M.,Dunogues J.Continuous SiC-based model monofilaments with a low free carbon content Part Ⅱ:From the pyrolysis of a novel copolymer precursor[J].J.Mater.Sci.,1997,32:2367-2372.
    [143]Tazi-Hemida A.,Pailler R.,Birot M.,Pillot J.P.,Dunogues J.Modification of SiC precursors with an amine-borane complex[J].J.Mater.Sci.,1997,32:3237-3242.
    [144]Tazi-Hemida A.,Tenailleau H.,Bardeau L.,Pailler R.,Birot M.,Pillot J.P.,Dunogues J.A quasi-stoichiometric SiC-based experimental fibre obtained from a boron-doped polycarbosilane precursor[J].J.Mater.Sci.,1997,32:5791-5796.
    [145]五零五材料实验研究室.SiC纤维先驱丝——聚碳硅烷纤维的研制[J].国防科技大学学报,1985,7(1):71-85.
    [146]五零五材料实验研究室.Mark Ⅲ型碳化硅纤维的研制[J].无机材料学报,1986,1(4):329-335.
    [147]杨淑金,刘心慰,黄海珍,费逸伟,姜秀珍.聚碳硅烷的合成方法[P].中国发明专利,公开号:CN85108006A.1987年4月22日.
    [148]冯春祥,刘心慰,杨一明,陆逸,宋永才,雷绍增.连续碳化硅纤维的研制[J].国防科技大学学报,1993,15(1):66-72.
    [149]Peng P.,Yu L.,Liu X.Y.,Feng C.X.Study of preceramic polymers[J].Microchemical Journal,1996,53:273-281.
    [150]宋永才,王岭,冯春祥.聚碳硅烷的合成与特性研究[J].高分子材料科学与工程,1997,13(4):30-33.
    [151]薛金根,冯春祥,徐杰栋.聚二甲基硅烷合成聚碳硅烷的研究[J].有机硅材料,2001,15(4):5-7.
    [152]薛金根,楚增勇,冯春祥,徐杰栋.PDMS直接裂解重排合成PCS[J].国防科技大学学报,2001,23(5):36-39.
    [153]范小林,冯春祥,宋永才,李效东.高熔点聚碳硅烷的合成及其裂解机理的研究[J].宇航材料工艺,1999,(5):23-29.
    [154]薛金根,王应德,冯春祥,宋永才.先驱体聚碳硅烷的合成研究进展[J].有机硅材料,2004,18(2):25-28.
    [155]程祥珍,谢征芳,宋永才,肖加余.高温高压合成聚碳硅烷的方法[P].中国发明,专利公开号:CN1569926A.2005年1月26日.
    [156]程祥珍,谢征芳,宋永才,肖加余.反应温度对聚二甲硅烷高压合成聚碳硅烷性能的影响[J].高分子学报,2005,(6):851-855.
    [157]程祥珍,肖加余,谢征芳,宋永才.聚二甲硅烷高压合成聚碳硅烷的组成、结构及性能表征[J].宇航材料工艺,2004,(5):39-43.
    [158]程祥珍,宋永才,谢征芳,肖加余,王应德.聚二甲硅烷高温高压合成聚碳硅烷工艺研究[J].材料工程,2004,(8):39-43.
    [159]程祥珍,肖加余,谢征芳,宋永才,王应德.聚二甲硅烷高压合成聚碳硅烷的组成与结构分析[J].国防科技大学学报,2005,27(2):20-23.
    [160]程祥珍,谢征芳,宋永才,肖加余.高压合成聚碳硅烷的分子量分布与可纺性[J].高分子材料科学与工程,2005,21(5):59-62.
    [161]谢征芳,程祥珍,高庆福.聚二甲基硅烷的表征及其热裂解研究[J].材料工程,2006,(增刊1):370-373.
    [162]Cheng X.Z.,Xie Z.F.,Song Y.C.,Xiao J.Y.,Wang Y.D.Structure and properties of polycarbosilane synthesized from polydimethylsilane under high pressure[J].J.Appl.Polym.Sci.,2006,99:1188-1194.
    [163]程祥珍,谢征芳,宋永才,肖加余.聚碳硅烷的高温高压合成与减压蒸馏[J].国防科技大学学报,2006,28(2):39-43.
    [164]Cheng X.Z.,Xie Z.F.,Song Y.C.,Xiao J.Y.,Wang Y.D.Analysis and Characterization of Polycarbosilane[J].Int.J.Polym.Anal.Charact.,2006,11:287-298.
    [165]程祥珍,谢征芳,宋永才,肖加余.聚碳硅烷的高温高压生成机理研究[J].高分子学报,2007,(1):1-7.
    [166]程祥珍,谢征芳,宋永才,肖加余.聚碳硅烷的高温高压牛成机理研究Ⅱ蒸馏产物的结构分析[J].有机硅材料,2007,21(1):18-22.
    [167]程祥珍,宋永才,谢征芳,肖加余.聚碳硅烷先驱体的结构与性能表征[C].第十三届全国复合材料学术会议论文集:复合材料——成本、环境与产业化,陈祥宝主编,北京:航空工业出版社,2004年10月.290-295.
    [168]程祥珍,宋永才,谢征芳,肖加余.液态聚硅烷高温高压合成聚碳硅烷工艺研究[J].国防科技大学学报,2004,26(4):62-67.
    [169]程祥珍,宋永才,谢征芳,肖加余,王应德.液态聚硅烷高压合成聚碳硅烷先驱体的组成与结构表征[J].材料工程,2005,(1):58-64.
    [170]Cheng X.Z.,Xie Z.F.,Xiao J.Y.,Song Y.C.Influence of temperature on the properties of polycarbosilane[J].J.Inorg.Organomet.Polym.Mater.,2005,15(2):253-259.
    [171]程祥珍,宋永才,谢征芳,肖加余,王应德.高分子量聚碳硅烷的合成及其表征[J].高技术通讯,2005,15(3):60-63.
    [172]程祥珍,宋永才,谢征芳,肖加余,王应德.反应温度对液态聚硅烷高压合成聚碳硅烷性能的影响[J].高分子材料科学与工程,2005,21(4):142-145.
    [173]薛金根,王应德,宋永才,秦墨林.从LPS馏分出发合成先驱体聚碳硅烷[J].国防科技大学学报,2006,28(2):35-38.
    [174]Tan Z.L.,Lü J.K.,Feng C.X.,Song Y.C.,Lu Y.Studies on the reaction between titanium tetrabutoxide and polycarbosilane[A].New Materials and Processer for the Future:Proceedings of 1st Japan International SAMITE Symposium and Exhibition,Nov.28-Dec.1,1989.901-905.
    [175]宋永才.高含钛量碳化硅纤维的研制[J].国防科技大学学报,1989,11(2):101-106.
    [176]李爱平,宋永才.聚钛碳硅烷的结构与性能研究[J].国防科技大学学报,1991,13(1):25-30.
    [177]宋永才,冯春祥,陆逸,谭自烈.聚钛碳硅烷的新合成法及其研究[J].国防科技大学学报,1991,13(1):31-37.
    [178]王亦菲,冯春祥,宋永才.电阻率可调的含钛碳化硅纤维的制备与性能研究[J].宇航材料工艺,1999,(1):28-31.
    [179]王亦菲,赵鹏,宋永才,冯春祥.富碳的含钛碳化硅纤维先驱体的合成[J].宇航材料工艺,2001,(2):24-27.
    [180]楚增勇,冯春祥,宋永才.耐高温多晶碳化硅纤维的制备方法[P].中国发明专利,公开号:CN1410606A.2003年4月16日.
    [181]李效东,王应德,曹峰,王军,邹治春,张卫中,王海玉.含铝连续碳化硅纤维的制备方法[P].中国发明专利,公开号:CN1715466A.2006年1月4日.
    [182]卢玲,宋永才,冯春祥.含硼Si-N-C纤维的高温结构组成研究[J].高技术通讯,1997,(9):15-19.
    [183]Fan X.L.,Feng C.X.,Song Y.C.,Li X.D.Preparation of Si-C-O-N-B ceramic fibers from polycarbosilane[J].J.Mater.Sci.Lett.,1999,18:629-630.
    [184]Chu Z.Y.,Feng C.X.,Song Y.C.Development of a new Si-C-O-N-B ceramic fibers using a hybrid precursor of polycarbosilane and polyborosilazane[J].J.Mater.Sci.Lett.,2003,22:725-728.
    [185]曹峰.耐超高温碳化硅纤维新型先驱体研究及纤维制备[D].国防科学技术大学,博士论文,2002.
    [186]Cao F.,Kim D.P.,Li X.D.,Feng C.X.,Song Y.C.Synthesis of polyaluminocarbosilane and reaction mechanism study[J].J.Appl.Polym.Sci.,2002,85:2787-2792.
    [187]余煜玺,李效东,陈国明,曹峰,冯春祥.SiC(Al)陶瓷纤维先驱体聚铝碳硅烷的合成与表征[J].高分子材料科学与工程,2004,20(2):85-88.
    [188]余煜玺,李效东,曹峰,冯春祥.SiC陶瓷先驱体聚铝碳硅烷的合成及其陶瓷化[J].硅酸盐学报,2004,32(4):494-496.
    [189]Yu Y.X.,Li X.D.,Cao F.,Feng C.X.Synthesis and characterization of polyaluminocarbosilane as SiC ceramic precursor[J].Trans.Nonferrous Met.Soc.China,2004,14(4):641-644.
    [190]Yu Y.X.,Li X.D.,Cao F.Synthesis and characterization of polyaluminocarbosilane[J].J.Mater.Sci.,2005,40:2093-2095.
    [191]赵大方,李效东,郑春满,胡天娇.采用聚硅碳硅烷与乙酰丙酮铝合成聚铝碳硅烷的机理[J].北京科技大学学报,2007,29(2):130-134.
    [192]郑春满,李效东,余煜玺,王浩,曹峰,赵大方.耐超高温SiC(Al)纤维先驱体——聚铝碳硅烷纤维的研究[J].高分子学报,2006,(6):768-773.
    [193]郑春满,李效东,余煜玺,曹峰.先驱体转化法制备耐高温Si-Al-C-O纤维[J].材料工程,2004,(12):25-28.
    [194]郑春满,李效东,余煜玺,赵大方,曹峰.聚铝碳硅烷纤维预氧化过程组成结构演变的研究[J].化学学报,2006,64(15):1581-1586.
    [195]Zheng C.M.,Li X.D.,Yu Y.X.,Zhao D.F.Coversion of polyaluminocarbosilane (PACS) to Si-Al-C-(O) fibers:evolutions and effect of oxygen[J].Trans.Nonferrous Met.Soc.China,2006,16:254-258.
    [196]余煜玺,李效东,曹峰,郑春满,王应德,王军.先驱体法制备连续SiC(OAl)纤维[J].稀有金属与工程,2006,35(4):665-668.
    [197]Cao F.,Li X.D.,Peng P.,Feng C.X.,Wang J.,Kim D.P.Structural evolution and associated properties on conversion from Si-C-O-Al ceramic fibers to Si-C-Al fibers by sintering[J].J.Mater.Chem.2002,12:606-610.
    [198]Cao F.,Li X.D.,Wang W.Y.,Wang J.,Song Y.C.,Kim D.P.Preparation of high-temperature resistant SiC fibre with low content of oxygen and free carbon[J].Advanced Composites Letters,2002,11(2):61-65.
    [199]Yu Y.X.,Li X.D.,Cao F.A near-stoichiometric SiC-based fibre obtained from a polyaluminocarbosilane precursor[J].Advanced Composites Letters,2004,13(5):245-249.
    [200]余煜玺,曹峰,李效东.耐高温的SiC(Al)纤维[J].复合材料学报,2004,21(5):79-82.
    [201]余煜玺,李效东,曹峰,王应德,王军,郑春满,冯春祥.先驱体法制备的含铝SiC纤维的组成和结构研究[J].无机植被学报,2006,21(1):94-102.
    [202]余煜玺,李效东,陈国明,曹峰,冯春祥.含铝碳化硅纤维耐高温性能[J].硅酸墁学报,2004,32(7):812-815.
    [203]Yu Y.X.,Li X.D.,Cao F.,Wang Y.D.,Zou Z.C.,Wang J.,Zheng C.M.,Zhao D.F.Preparation and properties of continuous Al-containing silicon carbide fibers[J].Trans.Nonferrous Met.Soc.China,2005,15(3):510-514.
    [204]郑春满,李效东,余煜玺,赵大方,曹峰.高温烧结制备含铝碳化硅纤维[J].硅酸盐学报,2006,34(5):531-535.
    [205]Cao E,Kim D.P.,Ryu J.H.,Li X.D.Modification of polycarbosilane as a precursor with high ceramic yield for oxygen-free SiC fibers[J].Korean J.Chem.Eng.,2001,18(5):761-764.
    [206]Cao F.,Li X.D.,Ryu J.H.,Kim D.P.Modification of polycarbosilane by polyborazine as a precursor for oxygen-free SiC fibers[J].J.Mater.Chem.,2003,13:1914-1919.
    [207]Cao F.,Li X.D.,Kim D.P.Efficient curing of polymethylsilane by borazine and reaction mechanism study[J].J.Organomet.Chem.,2003,688:125-131.
    [208]Cao F.,Kim D.P.,Li X.D.Preparation of hybrid polymer as a near-stoichiometric SiC precursor by blending of polycarbosilane and polymethylsilane[J].J.Mater.Chem.2002,12:1213-1217.
    [209]Narisawa M.,Nishioka M.,Okamura K.,Oka K.,Dohmaru T.SiC ceramic fibers synthesized from polycarbosilane-polymethylsilane polymer blends[J].Ceram.Trans.2002,144:173-180.
    [210]Okamura K.,Narisawa M.,Nishioka M.,Dohmaru T.,Oka K.,Katoh Y.,Kohyama A.Process for producing reinforcing SiC fiber for SiC composite material[P].European Patent No.1435405A1.Jul.7,2004.
    [211]Riu D.H.,Kim Y.H.,Shin D.G.,Kim H.R.Characterization of SiC fiber derived from polycarbosilane[J].Ceram.Trans.,2003,154:77-86.
    [212]Shin D.G.,Riu D.H.,Kim H.R.,Kim Y.H.,Jeong Y.K.,Park H.S.,Kim H.E.Fabrication of silicon carbide fiber and non-woven fabric from the polycarbosilane produced using a catalytic process[J].Key Eng.Mater.,2005,287:91-95.
    [213]Kim Y.H.,Shin D.G.,Kim H.R.,Park H.S.,Riu D.H.,Preparation of polycarbosilane using a catalytic process and its practical uses[J].Key Eng.Mater.,2005,287:108-111.
    [214]Park H.S.,Lim D.W.,Lim K.S.,Kim Y.H.,Kim H.R.,Shin D.G.,Kim S.R.,et al. Method of producing polycarbosilane using zeolite as catalyst[P].United States Patent Application Publication No.2005/0014964A1.Jan.20,2005.
    [215]Kim Y.H.,Shin D.G.,Kim H.R.,Han D.Y.,Kang Y.U.,Riu D.H.Kumada rearrangement of polydimethylsilane using a catalytic process[J].Key Eng.Mater.,2006,317-318:85-88.
    [216]Tsirlin A.M.,Budnitskii G.A.,Egorushkina Z.F.Fibers based on ceramic-forming polymers(A Review)[J].Fibre Chem.,1993,24(3):163-173.
    [217]Tsirlin A.M.,Florina E.K.,Simonova A.A.,Popova N.A.,Egorushkina Z.F.et al.Basic characteristics of synthesis and technical requirements for fiber-forming polycarbosilane[J].Fibre Chem.,1993,24(4):261-264.
    [218]Tsirlin A.M.,Fedorova T.V.,Florina E.K.,Popova N.A.,Gerlivanov V.G.,Kirko M.V.Method for production of polycarbosilane[P].Russian Patent No.2108348.Apirl 10,1998.
    [219]Budnitskii G.A.,Egorushldna Z.F.,Borisenko L.A.,Skorobogatykh V.V.,Mikhailova T.K.,Tsirlin A.M.,Florina E.K.,Popova N.A.Heat-Resistant Coreless silicon carbide fibers for composite materials with ceramic and metallic matrices[J].Fibre Chem.,2000,32(4):235-242.
    [220]Aksenov A.A.,Egorushkina Z.F.,Medvedeva S.V.Structure of coreless long silicon carbide fibers and aluminum-SiC composites[J].Fibre Chem.,2001,33(3):163-171.
    [221]Popova N.A.,Molotkova N.N.,Kuznetsova M.G.,Kirillova T.V.,Tsirlin A.M.,Borisenko L.L.Synthesis of nitrogen-containing polycarbosilanes[J].Polym.Sci.Ser.A,2004,46(6):585-592.
    [222]Gubin S.P.,Kozinkin A.V.,Afanasov M.I.et al.Clusters in a polymer matrix:Ⅲ.Composition and structure of Fe-containing nanoparticles in preceramic organosilicon polymers[J].Inorg.Mater.,1999,35(2):180-185.
    [223]Gubin S.P.,Tsirlin A.M.,Popova N.A.,Florina E.K.,Moroz E.M.Clusters in a polymer matrix:Ⅳ.Zr-and Ti-containing nanoparticles formed during the transformation of oligosilacarbosilane into poly(carbosilane):ctructure and interaction with the matrix[J].Inorg.Mater.,2001,37(11):1121-1129.
    [224]Tsirlin A.M.,Shcherbakova G.I.,Florina E.K.,Popova N.A.,Gubin S.P.,et al.Nano-structured metal-containing polymer precursors for high temperature non-oxide ceramics and ceramic fibers—Syntheses,pyrolysis and properties[J].J.Eur.Ceram.Soc.,2002,22:2577-2585.
    [225]Tsirlin A.M.,Popova N.A.,Rodionov Ju.M.,Florina E.K.Method for producing polymetallic carbosilanes[P].Russian Patent No.1697403.Mar.27,1995.
    [226]王浩,李效东,彭平,冯春祥,王应德.影响SiC陶瓷纤维力学性能的因素评价[J].宇航材料工艺,2001,(3):4-9.
    [227]Bunsdl A.R.,Piant A.A review of the development of three generations of small diameter silicon carbide fibres[J].J.Mater.Sci.,2006,41:823-839.
    [228]李晓霞,宋永才,冯春祥,王应德.用先驱体法制备耐高温、抗氧化的SiC纤维[J].材料导报,1997,11(4):65-67.
    [229]陈江溪,何国梅,何旭敏,夏海平.SiC陶瓷纤维高聚物先驱体的研究进展[J].功能材料,2004,35(6):679-682.
    [230]朱冰.低预氧化PCS纤维热交联技术的研究[D].国防科学技术大学,硕士论文.2002.
    [231]Thome K.J.,Johnson S.E.,Zheng H.X.,Mackenzie J.D.,Hawthome M.F.Chemically designed,UV curable polycarbosilane polymer for the production of silicon carbide[J].Chem.Mater.,1994,6:110-115.
    [232]郑春满,李效东,楚增勇,冯春祥.张力对聚碳硅烷纤维热解过程和SiC纤维性能的影响[J].硅酸盐学报,2005,33(6):688-692.
    [233]Johnson D.W.,Evans A.G.,Goettler R.W.,Harmer M.P.,Lipowitz J.,Luthra K.L.,Palmer P.D.,Prewo K.M.,Tressler R.E.,Wilson D.Ceramic fibers and coatings:advanced materials for the twenty-first century[R].National Academy Press: Washington D.C.,1998.1-49.
    [234]Taki T.,Okamura K.,Sato M.,Seguchi T.,Kawanishi S.A study on the electron irradiation curing mechanism of polycarbosilane fibres by solid-state ~(29)Si high-resolution nuclear magnetic resonance spectroscopy[J].J.Mater.Sci.Lett.,1988,7:209-211.
    [235]余煜玺,李效东,曹峰,邢欣,冯春祥.先驱体法制备SiC陶瓷纤维过程中聚碳硅烷纤维的交联方式[J].宇航材料工艺,2002,(6):10-13.
    [236]Hasegawa Y.Si-C fiber prepared from polycarbosilane cured without oxygen[J].J.Inorg.Organomet.Polym.,1992,2(1):161-169.
    [237]Hasegawa Y.New curing method for polycarbosilane with unsaturated hydrocarbons and application to thermally stable SiC fiber[J].Compos.Sci.Technol.,1994,51:161-166.
    [238]吴义伯,张国建,罗学涛.聚碳硅烷制备SiC纤维的热化学交联研究[J].材料工程,2006,(增刊1):317-325.
    [239]毛仙鹤,宋永才,李伟.由聚碳硅烷纤维通过化学气相交联法制备低氧含量碳化硅纤维[J].硅酸盐学报,2006,34(1):16-20.
    [240]毛仙鹤,宋永才,李伟.聚碳硅烷纤维化学气相交联研究[J].国防科技大学学报,2006,28(1):17-22.
    [241]Li W.,Song Y.C.,Mao X.H.Mechanism of cyclohexene vapor curing polycarbosilane fibers[J].J.Mater.Sci.,2006,41:7011-7018.
    [242]Bolt J.D.,Dinh S.M.,Silverman L.A.Process for preparing silicon carbide fibers[P].United States Patent No.4942011.Jul.17,1990.
    [243]陈立富,罗学涛,张立同.皮芯双组分纤维法制备连续碳化硅纤维的生产工艺[P].中国发明专利,公开号:CN1465549A.2004年1月7日.
    [244]Ishikawa T.,Kajii S.,Matsunaga K.,Hogami T.,Kohtoku Y.,Nagasawa T.A tough,thermally conductive silicon carbide composite with high strength up to 1600℃ in air[J].Science,1998,282:1295-1297.
    [245]余煜玺,李效东,曹峰,邢欣,冯春祥.先驱体法制备含异质元素SiC陶瓷纤维的现状与进展[J].硅酸盐学报,2003,31(4):371-375.
    [246]Ishikawa T.,Yamaoka H.,Harada Y.,Fujii T.,Nagasawa T.A general process for in situ formation of functional surface layers on ceramics[J].Nature,2002,416:64-67.
    [247]Shibata K.,Oi T.,Otsuka A.,Sumitomo H.,Oshihara K.,Teraoka Y.,Ueda W.Properties of DPF system using perovskite catalysts supported on ZrO_2/SiC fibers[J].J.Ceram.Soc.Jpn.,2003,111(11):852-856.
    [248]Ishikawa T.Photocatalytic fiber with gradient surface structure produced from a polycarbosilane and its applications[J].Int.J.Appl.Ceram.Technol.,2004,1(1):49-55.
    [249]王军.含过渡金属的碳化硅纤维的制备及其电磁性能[D].国防科学技术大学,博士论文,1997.
    [250]陈志彦,王军,李效东,王应德,王亦菲,胡天娇.连续Si-Fe-C-O功能陶瓷纤维的制备[J].硅酸盐学报,2005,33(6):703-706.
    [251]陈志彦,王军,李效东.聚铁碳硅烷先驱体的合成工艺研究[J].化工新型材料,2005,33(4):40-43.
    [252]陈志彦,李效东,王军,王戈.磁性碳化硅陶瓷先驱体聚铁碳硅烷的研究[J].高分子学报,2005,(4):535-539.
    [253]陈志彦,王军,李效东.磁性碳化硅功能陶瓷的制备[J].功能材料,2005,36(6):846-848.
    [254]陈志彦,王军,李效东,胡天娇.功能性碳化硅先驱体聚铁碳硅烷的合成及熔融纺丝[J].浙江理工大学学报,2005,22(1):13-17.
    [255]陈志彦,王军,李效东,王应德,胡天娇.Si-C-Fe-O功能陶瓷纤维的制备[J].材料科学与工程学报,2005,23(4):487-490.
    [256]陈志彦,李效东,王军.连续Si-Fe-C-O功能陶瓷纤维的制备及其表面分析[J].无机材料学报,2006,21(1):103-108.
    [257]陈志彦,王军,李效东,王应德.先驱体法制备连续Si-Fe-C-O吸波纤维的研究[J].航空材料学报,2006,26(2):33-36.
    [258]陈志彦,王军,李效东,李文芳.Si-Fe-C-O纤维电磁性能的研究[J].化工新型材料,2007,35(1):38-40.
    [259]Raman V.,Bhatia G.,Bhardwaj S.,Srivastva A.,Sood K.N.Synthesis of silicon carbide nanofibcrs by sol-gel and polymer blend techniques[J].J.Mater.Sci.,2005,40:1521-1527.
    [260]Ye H.,Titchenal N.,Gogotsi Y.,Ko F.SiC Nanowires synthesized from electrospun nanofibcr templates[J].Adv.Mater.,2005,17:1531-1535.
    [261]曾敬,陈学思,景遐斌.电纺丝与聚合物超细纤维[J].高分子通报,2003,(6):44-47.
    [1]Wu H.J.,Interrante L.V.Preparation of a polymeric precursor to silicon carbide via ring-opening polymerization:synthesis of poly[(methylchlorosilylene)methylene]and poly(silapropylene)[J].Chem.Mater.,1989,1:564-568.
    [2]Yajima S.,Hasegawa Y.,Hayashi J.,Iimura M.Synthesis of continuous silicon carbide fibre with high tensile strength and high Young's modulus.Part 1 Synthesis of polycarbosilane as precursor[J].J.Mater.Sci.,1978,13:2569-2576.
    [3]蔡智慧.近化学计量SiC纤维形成机理的研究[D].厦门大学,硕士学位论文,2006.
    [4]洛阳耐火材料研究所.耐火材料化学分析[M].北京:冶金工业出版社,1984.
    [5]中国金属学会推荐技术和方法.CSM 11 01 26 03-2004,硅质耐火材料——三氧化二铁含量的测定——邻二氮杂菲光度法[S].耐火材料分析(上册),王海舟主编,北京:科学出版社,2005,102-105.
    [1]Hlavacek V.,Puszynski J.A.Chemical engineering aspects of advanced ceramic materials[J].Ind.Eng.Chem.Res.,1996,35:349-377.
    [2]Watt W.Production and properties of high modulus carbon fibers[J],Proc.Roy.Soc.Lond.A.,1970,319:5-15.
    [3]Shindo A.Polyacrylonitrile(PAN)-based carbon fibers[M].Comprehensive Composite Materials,Kelly A.,Zweben C.,Chou T.W.Eds.,Amsterdam:Elsevier,2000.Vol.1,1-33.
    [4]Ichikawa H.,Ishikawa T.Silicon carbide fibers(organometallic pyrolysis)[M].Comprehensive Composite Materials,Kelly A.,Zweben C.,Chou T.W.Eds.,Amsterdam:Elsevier,2000.Vol.1,107-145.
    [5]Yajima S.Development of ceramics,especially silicon carbide fibres,from organosilicon polymers by heat treatment[J].Phil Trans.R.Sac.Land.A.,1980,294:419-426.
    [6]Okamura K.Ceramic fibres from polymer precursors[J].Composites,1987,18(2):107-120.
    [7]Yajima S.,Hayashi J.,Omori M.Continuous silicon carbide fiber of high tensile strength[J].Chem.Lett,1975,931-934.
    [8]Yajima S.,Okamura K.,Hayashi J.,Omori M.Synthesis of continuous SiC fibers with high tensile strength[J].J.Am.Ceram.Sac.,1976,59:324-327.
    [9]Yajima S.,Omori M.,Hayashi J.,Okamura K.,Matsuzawa T.,Liaw C.F.Simple synthesis of the continuous SiC fiber with high tensile strength[J].Chem.Lett.,1976,551-554.
    [10]Yajima S.,Hayashi J.,Omori M.,Okamura K.Development of a silicon carbide fibre with high tensile strength[J].Nature,1976,261:683-685.
    [11]Yajima S.,Hasegawa Y.,Hayashi J.,Iimura M.Synthesis of continuous silicon carbide fibre with high tensile strength and high Young's modulus.Part 1 Synthesis of polycarbosilane as precursor[J].J.Mater.Sci.,1978,13:2569-2576.
    [12]Yajima S.,Hasegawa Y.,Okamura K.,Matsuzawa T.Development of high tensile strength silicon carbide fibre using an organosilicon polymer precursor[J].Nature,1978,273:525-527.
    [13]Hasegawa Y.,Okamura K.Synthesis of continuous silicon carbide fibre.Part 3Pyrolysis process of polycarbosilane and structure of the products[J].J.Mater.Sci.,1983,18:3633-3648.
    [14]Ishikawa T.,Shibuya M.,Yamamura T.The conversion process from polydimethylsilane to polycarbosilane in the presence of polyborodiphenylsiloxane[J].J.Mater.Sci.,1990,25:2809-2814.
    [15]Emsley R.J.P.Precursor routes to ceramic fibers[M].Fine Ceramic Fibers,Bunsell A.R.,Berger M.H.Eds.,New York:Marcel Dekker Inc.,1999.165-206.
    [16]Takeda M.,Sakamoto J.,Imai Y.,Ichikawa H.,Ishikawa T.Properties of stoichiometric silicon carbide fiber derived from polycarbosilane[J].Cerum.Eng.Sci.Proc.,1994,15(4):133-141.
    [17]Okamura K.,Sato M.,Seguchi T.,Kawanishi S.High-temperature strength improvement of Si-C-O fiber by the reduction of oxygen content[A].New Materials and Processer for the Future:Proceedings of 1st Japan International SAMPE Symposium and Exhibition,Nov.28-Dec.1,1989.929-934.
    [18]Takeda M.,Imai Y.,Ichikawa H.,Ishikawa T.,Seguchi T.,Okamura K.Properties of the low oxygen content SiC fiber on high temperature heat treatment[J].Ceram.Eng.Sci.Proc.,1991,12(7-8):1007-1018.
    [19]刘军,宋永才,冯春祥.低电阻率Si-C-O纤维制备[J].宇航材料工艺,2001,(2):33-35.
    [20]王娟,宋永才.PDMS/PVC制备低电阻率碳化硅纤维先驱体聚碳硅烷[J].国防科技大学学报,2002,24(6):19-22.
    [21]王娟,宋永才.低电阻率碳化硅纤维先驱体的熔融纺丝与不熔化处理[J].硅酸盐学报,2003,31(5):445-449.
    [22]杨一明,杨淑金,陆逸,刘心慰,谭自烈,冯春祥.用聚碳硅烷与端羟基聚丁二烯共混制备碳化硅纤维[J].宇航学报,1989,(3):86-90.
    [23]Yang Y.M.,Liu X.W.,Tan Z.L.,Yang S.J.,Lu Y.,Feng C.X.Synthesis of SiC fibre with low oxygen content and high tensile strength using a polyblend precursor[J].J.Mater.Sci.,1991,26:5167-5170.
    [24]欧阳国恩,刘心慰,岳曼君.聚碳硅烷——沥青共混体流变性与纺丝研究[J].国防科技大学学报,1993,16(3):104-109.
    [25]欧阳国恩,刘心慰,岳曼君.SiC-C纤维有机先驱体流变可纺性研究[J].复全材料学报,1995,12(3):46-52.
    [26]Idesaki A.,Narisawa M.,Okamura K.,Sugimoto M.,Tanaka S.,Morita Y.,Seguchi T.,Itoh M.Fine SiC fiber synthesized from organosilicon polymers:relationship between spinning temperature and melt viscosity of precursor polymers[J].J.Mater.Sci.,2001,36:5565-5569.
    [27]Narisawa M.,Nishioka M.,Okamura K.,Oka K.,Dohmaru T.SiC ceramic fibers synthesized from polycarbosilane-polymethylsilane polymer blends[J].Ceram.Trans.,2002,144:173-180.
    [28]陈江溪,何国梅,何旭敏,夏海平.SiC陶瓷纤维高聚物先驱体的研究进展[J].功能材料,2004,35(6):679-682.
    [29]Wu H.J.,Interrante L.V.Preparation of a polymeric precursor to silicon carbide via ring-opening polymerization:synthesis of poly[(methylchlorosilylene)methylene]and poly(silapropylene)[J].Chem.Mater.,1989,1:564-568.
    [30]Boury B.,Corriu R.J.P.,Leclercq D.,Mutin P.H.,Planeix J.M.,Vioux A.Poly(vinylsilane):a precursor to silicon carbide.1.preparation and characterization[J].Organometallics,1991,10:1457-1461.
    [31]Zhang Z.F.,Scotto C.S.,Laine R.M.Processing of stoichiometric silicon carbide fiber from polymethylsilane.Part 1 Precursor fiber processing[J].J.Mater.Chem.,1998,8:2715-2724.
    [32]Wang Y.,Song Y.,Feng C.,Zou Z.,Zhao Y.,Long J.Studies on the spinnability of polycarbosilane and spinning technology of its continuous fibers[J].Key Eng.Mater.,1999,164-165:35-38.
    [33]宋永才,王岭,冯春祥.聚碳硅烷的分子量分布与可纺性研究[J].高技术通讯,1996,(1):6-8.
    [34]王应德,宋永才,邹治春,赵彦晖,何迎春,冯春祥,雷绍增.聚碳硅烷可纺性与纺丝工艺探讨[J].合成纤维,1997,(6):11-14.
    [35]楚增勇,刘辉,冯春祥,王应德,薛金根,宋永才,邹治春.沉淀分级法调制纺丝级高熔点聚碳硅烷[J].国防科技大学学报,2002,24(1):39-43.
    [36]蓝新艳,王应德,薛金根,王鲁.熔融纺丝态下聚碳硅烷的流变特性[J].宇航 材料工艺,2005,(1):35-38.
    [37]宋永才,商瑶,冯春祥,陆逸.聚二甲基硅烷的热分解研究[J].高分子学报,1995,(6):753-757.
    [38]董占能,李春华,郭玉忠.聚硅烷Wurtz合成及β-SiC纤维制备的机理[J].昆明理工大学学报(理工版),2003,28(2):123-126.
    [39]谢征芳,程祥珍,高庆福.聚二甲基硅烷的表征及其热裂解研究[J].材料工程,2006,(增刊1):370-373.
    [40]Radhakrishnan T.S.Thermal degradation of poly(dimethylsilylene) and poly(tetramethyldisilylene-co-styrene)[J].J.Appl.Polym.Sci.,2006,99:2679-2686.
    [41]Shiina K.,Kumada M.Thermal rearrangement of hexamethyldisilane to trimethyl(dimethylsilylmethyl)silane[J].J.Org.Chem.,1958,23:139.
    [42]Hasegawa Y.,Okamura K.Synthesis of continuous silicon carbide fibre Part 4.The structure of polycarbosilane as the precursor[J].J.Mater.Sci.,1986,21:321-328.
    [43]胡祖明.超高分子量聚乙烯纤维[M].先进高分子材料,沈新元主编,北京:中国纺织出版社,2006.15-57.
    [44]Burkhard C.A.Polydimethylsilanes[J].J.Am.Chem.Soc.,1949,71:963-964.
    [45]Luo Y.R.Handbook of Bond Dissociation Energies in Organic Compounds[M].New York:CRC Press,2003.
    [46]Walsh R.Bond Dissociation Energy values in silicon-containing compounds and some of their implications[J].Ace.Chem.Res.,1981,14:246-252.
    [47]李光亮编著.有机硅高分子化学[M].北京:科学出版社,1998.272.
    [48]Lovinger A.J.,Davis D.D.,Schilling F.C.,Padden F.J.Jr.,Bovey F.A.Solid-state structure and phase transitions of poly(dimethylsilylene)[J].Macromolecules,1991,24:132-139.
    [49]Gerardin C.,Taulelle F.,Livage J.,Birot M.,Dunogues J.Strategy to characterize precursors for SiC ceramics by liquid and solid-state NMR[J].Bulletin of Magnetic Resonance,1990,12(1/2):84-88.
    [50]Ly H.Q.,Taylor R.,Day R.J.,Heatley F.Conversion of polycarbosilane(PCS) to SiC-based ceramic Part 1.Characterization of PCS and curing products[J].J.Mater.Sci.,2001,36:4037-4043.
    [51]Wu J.H.The preparation of poly(silapropylene) and poly(silaethylene) via ring-opening polymerization and the study of pyrolysis of poly(silacthylcnc) to silicon carbide[D].Rensselaer Polytechnic Institute,Ph.D.Thesis.1993.
    [52]Williams E.A.The Chemistry of Organic Silicon Compounds[M].Patai S.,Rappoport Z.Eds.,New York:John Wiley & Sons,1989.Chapter 8,511-554.
    [53]Kim Y.H.,Shin D.G.,Kim H.R.,Han D.Y.,Kang Y.U.,Riu D.H.Kumada rearrangement of polydimethylsilane using a catalytic process[J].Key Eng.Mater.,2006,317-318:85-88.
    [54]West R.,Trefonas P.Organosilane high polymers:Poly(methylphenylsilylene)[A].Inorg.Synth.,1989,25:56-60.
    [55]刘心慰,陈来,黄海珍,谭自烈.用IR-NMR表征聚碳硅烷的结构和支化程度[J].宇航材料工艺,1989,(6):63-70.
    [56]West R.The polysilane high polymers[J].J.Organomet.Chem.,1986,300:327-346.
    [57]范小林,冯春祥,宋永才,李效东.高熔点聚碳硅烷的合成及其裂解机理的研究[J].宇航材料工艺,1999,(5):23-29.
    [58]程祥珍,谢征芳,宋永才,肖加余.反应温度对聚二甲硅烷高压合成聚碳硅烷性能的影响[J].高分子学报,2005,(6):851-855.
    [59]Yajima S.,Hayashi J.,Omori M.Silicon carbon fibers having a high strength and a method for producing said fibers[P].United States Patent No.4100233.Jul.11,1978.
    [60]刘辉,王应德,冯春祥,吴文华,朱美芳,陈彦模.聚碳硅烷流变性能的研究[J].合成纤维工业,2001,24(5):23-25.
    [61]Hasegawa Y.,Iimura M.,Yajima S.Synthesis of continuous silicon carbide fibre Part 2 Conversion of polycarbosilane fibre into silicon carbide fibres[J].J.Mater.Sci.,1980,15:720-728.
    [62]Hasegawa Y.Si-C fiber prepared from polycarbosilane cured without oxygen[J].J.Inorg.Organomet.Polym.,1992,2(1):161-169.
    [63]Hasegawa Y.New curing method for polycarbosilane with unsaturated hydrocarbons and application to thermally stable SiC fiber[J].Compos.Sci.Technol.,1994,51:161-166.
    [64]毛仙鹤,宋永才,李伟.由聚碳硅烷纤维通过化学气相交联法制备低氧含量碳化硅纤维[J].硅酸盐学报,2006,34(1):16-20.
    [65]毛仙鹤,宋永才,李伟.聚碳硅烷纤维化学气相交联研究[J].国防科技大学学报,2006,28(1):17-22.
    [66]Li W.,Song Y.C.,Mao X.H.Mechanism of cyclohexene vapor curing polycarbosilane fibers[J].J.Mater.Sci.,2006,41:7011-7018.
    [67]吴义伯,张国建,罗学涛.聚碳硅烷制备SiC纤维的热化学交联研究[J].材料工程,2006,(增刊1):317-325.
    [68]Sugimoto M.,Shimoo T.,Okamura K.,Seguchi T.Reaction mechanisms of silicon carbide fiber synthesis by heat treatment of polycarbosilane fibers cured by radiation:I,Evolved gas analysis[J].J.Am.Ceram.Soc.,1995,78:1013-1017.
    [69]Thorne K.J.,Johnson S.E.,Zheng H.X.,Mackenzie J.D.,Hawthorne M.F.Chemically designed,UV curable polycarbosilane polymer for the production of silicon carbide[J].Chem.Mater.,1994,6:110-115.
    [1]Ishikawa T.,Kohtoku Y.,Kumagawa K.,Yamamura T.,Nagasawa T.High-strength alkali-resistant sintered SiC fibre stable to 2200℃[J].Nature,1998,391:773-775.
    [2]Kumagawa K.,Yamaoka H.,Shibuya M.,Yamamura T.Fabrication and mechanical properties of new improved Si-M-C-(O) Tyranno Fiber[J].Ceram.Eng.Sci.Proc.,1998,19(3):65-72.
    [3]Ishikawa T.,Harada Y.,Inoue Y.,Yamaoka H.Silicon carbide fiber having excellent alkali durability[P].United States Patent No.5945362.Aug.31,1999.
    [4]曹峰.耐超高温碳化硅纤维新型先驱体研究及纤维制备[D].国防科学技术大学,博士论文,2002.
    [5]Cao F.,Kim D.P.,Li X.D.,Feng C.X.,Song Y.C.Synthesis of polyaluminocarbosilane and reaction mechanism study[J].J.Appl.Polym.Sci.,2002,85:2787-2792.
    [6]Cao F.,Li X.D.,Peng P.,Feng C.X.,Wang J.,Kim D.P.Structural evolution and associated properties on conversion from Si-C-O-Al ceramic fibers to Si-C-Al fibers by sintering[J].J.Mater.Chem.2002,12:606-610.
    [7]Cao F.,Li X.D.,Wang W.Y.,Wang J.,Song Y.C.,Kim D.P.Preparation of high-temperature resistant SiC fibre with low content of oxygen and free carbon[J].Advanced Composites Letters,2002,11(2):61-65.
    [8]李佑稷,曹峰,田宏现,李效东,余煜玺.耐高温碳化硅纤维的制备与性能[J].物理化学学报,2003,19(11):1039-1043.
    [9]余煜玺.含铝碳化硅纤维的连续化制备与研究[D].国防科学技术大学,博士论文,2005.
    [10]余煜玺,李效东,陈国明,曹峰,冯春祥.SiC(Al)陶瓷纤维先驱体聚铝碳硅烷的合成与表征[J].高分子材料科学与工程,2004,20(2):85-88.
    [11]余煜玺,李效东,曹峰,冯春祥.SiC陶瓷先驱体聚铝碳硅烷的合成及其陶瓷化[J].硅酸盐学报,2004,32(4):494-496.
    [12]Yu Y.X.,Li X.D.,Cao F.,Feng C.X.Synthesis and characterization of polyaluminocarbosilane as SiC ceramic precursor[J].Trans.Nonferrous Met.Soc.China,2004,14(4):641-644.
    [13]Yu Y.X.,Li X.D.,Cao F.A near-stoichiometric SiC-based fibre obtained from a polyaluminocarbosilane precursor[J].Advanced Composites Letters,2004,13(5):245-249.
    [14]余煜玺,曹峰,李效东.耐高温的SiC(Al)纤维[J].复合材料学报,2004,21(5):79-82.
    [15]余煜玺,李效东,陈国明,曹峰,冯春祥.含铝碳化硅纤维耐高温性能[J].硅酸盐学报,2004,32(7):812-815.
    [16]Yu Y.X.,Li X.D.,Cao F.,Wang Y.D.,Zou Z.C.,Wang J.,Zheng C.M.,Zhao D.F.Preparation and properties of continuous Al-containing silicon carbide fibers[J].Trans.Nonferrous Met.Soc.China,2005,15(3):510-514.
    [17]Yu Y.X.,Li X.D.,Cao F.Synthesis and characterization of polyaluminocarbosilane[J].J.Mater.Sci.,2005,40:2093-2095.
    [18]余煜玺,李效东,曹峰,郑春满,王应德,王军.先驱体法制备连续SiC(OAl)纤维[J].稀有金属材料与工程,2006,35(4):665-668.
    [19]余煜玺,李效东,曹峰,王应德,王军,郑春满,冯春祥.先驱体法制备的含铝SiC纤维的组成和结构研究[J].无机材料学报,2006,21(1):94-102.
    [20]郑春满,李效东,余煜玺,曹峰.先驱体转化法制备耐高温Si-Al-C-O纤维[J].材料工程,2004,(12):25-28.
    [21]郑春满,李效东,余煜玺,赵大方,曹峰.高温烧结制备含铝碳化硅纤维[J].硅酸盐学报,2006,34(5):531-535.
    [22]郑春满,李效东,余煜玺,王浩,曹峰,赵大方.耐超高温SiC(Al)纤维先驱体——聚铝碳硅烷纤维的研究[J].高分子学报,2006,(6):768-773.
    [23]郑春满,李效东,余煜玺,赵大方,曹峰.聚铝碳硅烷纤维预氧化过程组成结构演变的研究[J].化学学报,2006,64(15):1581-1586.
    [24]Zheng C.M.,Li X.D.,Yu Y.X.,Zhao D.F.Coversion of polyaluminocarbosilane (PACS) to Si-Al-C-(O) fibers:evolutions and effect of oxygen[J].Trans.Nonferrous Met.Soc.China,2006,16:254-258.
    [25]赵大方,李效东,郑春满,胡天娇.采用聚硅碳硅烷与乙酰丙酮铝合成聚铝碳硅烷的机理[J].北京科技大学学报,2007,29(2):130-134.
    [26]Ishikawa T.,Kohtoku Y.,Kumagawa K.Production mechanism of polyzirconocarbosilane using zirconium(Ⅳ) acetylacetonate and its conversion of the polymer into inorganic materials[J].J.Mater.Sci.,1998,33:161-166.
    [27]刘心慰,陈来,黄海珍,谭自烈.用IR-NMR表征聚碳硅烷的结构和支化程度[J].宇航材料工艺,1989,(6):63-70.
    [28]Li X.D.,Edirisinghe M.J.Evolution of the ceramic structure during thermal degrade of a Si-Al-C-O precursor[J].Chem.Mater.,2004,16:1111-1119.
    [29]Williams E.A.The Chemistry of Organic Silicon Compounds[M].Patai S.,Rappoport Z.Eds,New York:John Wiley & Sons,1989.Chapter 8,511-554.
    [1]李黎明,徐政.陶瓷纤维吸波材料的吸波机理及其结构设计[J].江苏陶瓷,2004,37(1):6-10.
    [2]谢根生,姜勇刚,刘旭光,王应德.具备雷达吸波功能的碳化硅纤维的研究进展[J].有机硅材料,2006,20(3):144-148.
    [3]Yamamura T.,Ishikawa T.,Shibuya M.Electromagnetic wave absorbing material[P].United States Patent No.5094907.Mar.10,1992.
    [4]王军.含过渡金属的碳化硅纤维的制备及其电磁性能[D].国防科学技术大学,博士论文,1997.
    [5]陈志彦,王军,李效东,王应德,王亦菲,胡天娇.连续Si-Fe-C-O功能陶瓷纤维的制备[J].硅酸盐学报,2005,33(6):703-706.
    [6]陈志彦,王军,李效东.聚铁碳硅烷先驱体的合成工艺研究[J].化工新型材料,2005,33(4):40-43.
    [7]陈志彦,李效东,王军,王戈.磁性碳化硅陶瓷先驱体聚铁碳硅烷的研究[J].高分子学报,2005,(4):535-539.
    [8]陈志彦,王军,李效东.磁性碳化硅功能陶瓷的制备[J].功能材料,2005,36(6):846-848.
    [9]陈志彦,王军,李效东,胡天娇.功能性碳化硅先驱体聚铁碳硅烷的合成及熔融纺丝[J].浙江理工大学学报,2005,22(1):13-17.
    [10]陈志彦,王军,李效东,王应德,胡天娇.Si-C-Fe-O功能陶瓷纤维的制备[J].材料科学与工程学报,2005,23(4):487-490.
    [11]陈志彦,李效东,王军.连续Si-Fe-C-O功能陶瓷纤维的制备及其表面分析[J].无机材料学报,2006,21(1):103-108.
    [12]陈志彦,王军,李效东,王应德.先驱体法制备连续Si-Fe-C-O吸波纤维的研究[J].航空材料学报,2006,26(2):33-36.
    [13]陈志彦,王军,李效东,李文芳.Si-Fe-C-O纤维电磁性能的研究[J].化工新型材料,2007,35(1):38-40.
    [14]韩桂芳,陈照峰,张立同,成来飞,徐永东.高温透波材料研究进展[J].航空材料学报,2003,23(1):57-62.
    [15]闫联生,李贺军,崔红.高温陶瓷透波材料研究进展[J].宇航材料工艺,2004,(2):14-16.
    [16]齐共金,张长瑞,王思青,胡海峰,曹峰.高超音速导弹天线罩关键技术[J].导弹与航天运载技术,2005,(1):30-34.
    [17]LeGrow G.E.,Lim T.F.,Lipowitz J.,Reaoch R.S.Ceramics form hydropolysilazane[J].Am.Ceram.Soc.Bull.,1987,66(2):363-367.
    [18]Cannady J.P.Silicon nitride-containing ceramic material prepared by pyrolysis of hydrosilazane polymers from(R_3Si)_2NH and HSiCl_3[P].United States Patent No.4543344.Sep.24,1985.
    [19]Isoda T.,Kaya H.,Arai M.,Nishii H.,Funayama O.,et al.High purity continuous silicon nitride fiber[A].New Materials and Processer for the Future:Proceedings of 1st Japan International SAMPE Symposium and Exhibition,Nov.28-Dec.1,1989.912-917.
    [20]Arai M.,Funayama O.,Nishii H.,Isoda T.High-purity silicon nitride fibers[P].United States Patent No.4818611.Apr.4,1989.
    [21]Mocaer D.,Pailler R.,Naslain R.,Richard C.,Pillot J.P.,Dunogues J.,Gerardin C.,Taulelle F.Si-C-N ceramics with a high microstructual stability elaborated from the pyrolysis of new polycarbosilazane precursors Part Ⅰ.The organic/inorganic transition[J].J.Mater.Sci.,1993,28:2615-2631.
    [22]Mocaer D.,Pailler R.,Naslain R.,Richard C.,Pillot J.P.,Dunogues J.Si-C-N ceramics with a high microstructual stability elaborated from the pyrolysis of new polycarbosilazane precursors Part Ⅱ.Effect of oxygen-curing on properties of ex-PCSZ monofilaments[J].J.Mater.Sci.,1993,28:2632-2638.
    [23]Mocaer D.,Pailler R.,Naslain R.,Richard C.,Pillot J.P.,Dunogues J.,Delverdier O.,Monthioux M.Si-C-N ceramics with a high microstructual stability elaborated from the pyrolysis of new polycarbosilazane precursors Part Ⅲ.Effect of pyrolysis conditions on the nature and properties of oxygen-cured derived monofilaments[J].J.Mater.Sci.,1993,28:2639-2653.
    [24]Mocaer D.,Pailler R.,Naslain R.,Richard C.,Pillot J.P.,Dunogues J.,Darnez C.,Chambon M.,Lahaye M.Si-C-N ceramics with a high microstructual stability elaborated from the pyrolysis of new polycarbosilazane precursors Part Ⅳ.Oxygen-free model monofilaments[J].J.Mater.Sci.,1993,28:3049-3058.
    [25]Kroke E.,Li Y.L.,Konetschny C.,Lecomte E.,Fasel C.,Riedel R.Silazane derived ceramics and related materials[J].Mater.Sci.Eng.R.,2000,26:97-199.
    [26]Baldus H.P.,Passing G.,Scholz H.,Sporn D.,Jansen M.,Goring J.Properties of amorphous SiBNC-ceramic fibres[J].Key Eng.Mater.,1997,127-131:177-184.
    [27]Okamura K.,Sato M.,Hasegawa Y.,Amano T.The synthesis of silicon oxynitride fibers by nitridation of polycarbosilane[J].Chem.Lett.,1984,2059-2060.
    [28]Okamura K.,Sato M.,Hasegawa Y.Silicon nitride fibers and silicon oxynitride fibers obtained by the nitridation of polycarbosilane[J].Ceram.Int.,1987,13:55-61.
    [29]Sato M.,Okamura K.Manufacturing and high temperature mechanical properties of Si-N-O ceramic fibers[J].J.Ceram.Soc.Jpn.,1998,106(3):248-255.
    [30]Kamimura S.,Seguchi T.,Okamura K.Development of silicon nitride fiber from Si-containing polymer by radiation curing and its application[J].Radiation Physics and Chemistry,1999,54:575-581.
    [31]Okamura K.,Sato M.,Hasegawa Y.,Seguchi T.,Kawanishi S.High purity and high strength inorganic silicon nitride continuous fiber and a method of producing the same[P].United States Patent No.5093096.Mar.3,1992.
    [32]Okamura K.,Sato M.,Hasegawa Y.Method of producing continuous inorganic fiber consisting of Si,N and O[P].United States Patent No.4916093.Apr.10,1990.
    [33]Vogt U.,Hofmann H.,Kramer V.Synthesis of Si3N4 fibers by gas-phase process[J].Key Eng.Mater.,1994,89-91:29-34.
    [34]Chollon G.,Vogt U.,Berroth K.Processing and characterization of an amorphous Si-N-(O) fibre[J].J.Mater.Sci.,1998,33:1529-1540.
    [35]Vital A.,Vogt U.,Graule T.,Graehlert W.,Leparoux M.,Hopfe V.,Ewing H.C.Prototype reactor for scale-up of Si-N-O tiber production[J].Ceram.Eng.Sci.Proc.,2001,21(4):299-306.
    [36]Soraru G.D.,Mercadini M.,Maschio R.D.,Taulelle F.,Babonneau F.Si-Al-O-N fibers from polymeric precursor:synthesis,structural and mechanical characterization[J].J.Am.Ceram.Soc.,1993,76(10):2595-2600.
    [37]沈春英,丘泰,荣华,李志顺,李晓云.BN纤维先驱体的合成[J].磋酸盐学报,2004,32(9):1068-1072.
    [38]Weinmann M.,Hang R.,Bill J.,Guire M.D.,Aldinger F.Boron-modified polysilylcarbodi-imides as precursors for Si-B-C-N Ceramics:synthesis,plastic-forming and high-temperature behavior[J].Appl.Organometal.Chem.,1998,12:725-734.
    [39]Takamizawa M.,Kobayashi T.,Hayashida A.,Takeda Y.Method for the preparation of an inorganic fiber containing silicon,carbon,boron and nitrogen[P].United States Patent No.4604367.Aug.5,1986.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700