用户名: 密码: 验证码:
氧燃烧系统的能源—经济—环境综合分析评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在全球减排CO:的大环境下,中国因为CO:排放量大且速率不断增加而面临着巨大的减排压力。氧燃烧技术在传统燃煤发电系统基础上添加了空分装置和尾气处理装置,用纯氧代替空气进行燃烧,并将70%左右的烟气进行循环,由此可以得到高浓度的CO2,因此被认为是一种有望从燃煤发电系统大规模减排CO2的新型燃烧方式。为了对氧燃烧技术的技术可行性、热力学特性、经济性、环境友好性等进行全面地评估,本文选取中国典型600MW超临界燃煤发电系统作为研究对象,从能源-经济-环境三个方面对其进行了详细的分析和评价。
     本文首先在Aspen Plus软件中对氧燃烧系统设计了一个灵活的仿真平台,在不同工况下研究系统关键运行参数(如烟气循环率、氧气浓度、氧气过量系数等)对系统热力性能的影响。结果显示:添加空分装置和尾气处理装置使氧燃烧系统热效率降低10.84%;氧燃烧系统可以高效地捕集到高浓度CO2(99%),且能够实现SOx和NOx的协同脱除;冷循环方式中烟气参考循环率为0.695~0.716,热循环方式中烟气参考循环率为0.613。本文得到的仿真结果可以指导氧燃烧系统设计和运行,并是后续分析和评价的基础。
     为了对氧燃烧技术在国内发展的经济可行性进行合理评估,本文选取国内典型的300MW亚临界、600MW超临界以及1000MW超超临界燃煤发电机组所对应的氧燃烧系统进行了技术经济学评价。采用2010年发布的权威国内火电工程限额设计的数据,建立了合理的技术经济评价模型和方法,计算了发电成本、CO2减排成本和CO2捕捉成本等经济性指标,并考虑碳税和CO:出售等对氧燃烧电站经济性的影响。结果表明:氧燃烧系统发电成本是传统燃烧系统的1.39~1.42倍,氧燃烧系统CO2减排成本和CO2捕捉成本的范围分别为160~184¥/t和115~128¥/t;考虑到氧燃烧技术在燃烧效率脱硫脱硝效率等方面的优势,如果对电厂排放的CO2征收碳税和找到高浓度CO2的销售出口,或对电厂建设的融资和原煤价格进行政策倾斜,或提高制氧系统和烟气处理系统的功耗价格比,氧燃烧电站可望达到或接近传统电站的经济性。
     在系统仿真结果的基础上,本文对600MW氧燃烧系统(划分为四个部分:锅炉模型、汽水循环模型、空分模型以及尾气处理模型)和传统燃烧系统(包括锅炉模型和汽水循环模型)进行了火用分析,对锅炉模型进行了详细地划分,对系统中物流的化学火用进行了精确计算,并进行了火用损分析、火用效率计算以及能量品位计算。结果显示:氧燃烧技术因为降低了燃烧过程火用损,能达到更高的火用效率,并实现了物理能和化学能的综合、梯级利用;水冷壁和空气预热器是锅炉模型中火用效率最低的部件,存在较大的优化可能;锅炉模型是整个系统火用损的主要来源,汽水循环模型的火用损仅占系统总燃料火用9%左右,空分模型以及尾气处理模型的火用损仅占氧燃烧系统总燃料火用的7.71%;氧燃烧系统火用效率比传统燃烧系统火用效率降低4.08%。
     在火用分析结果和成本分析结果的基础上,本文利用热经济学结构理论对600MW氧燃烧系统以及传统燃烧系统建立了热经济学成本模型,并建立了一种新的单位火用成本分解策略,将其分解为燃料、火用损以及负熵三个组成部分,并基于此分解方法对两个系统中各组件进行火用成本分析和热经济学成本分析。在热经济学成本模型的基础上,采用脱除成本、环境损害成本以及税收等三种模型来计量环境因素,引入环境成本,从而对两系统进行了环境热经济学成本分析。分析结果显示:氧燃烧系统中组件产品的单位火用成本约为传统燃烧系统中相应值的1.1倍,而单位热经济学成本是传统燃烧系统中对应值的1.22倍左右,文中也建立了这两数值之间的内在联系;单位火用成本中燃料部分所占比例最大,但是影响同一模型(如锅炉、汽水循环)中不同组件单位火用成本高低的是其火用损部分的大小;当考虑环境因素的影响时,在环境损害模型下求得的组件产品单位环境热经济学成本最大,这表明对污染物质进行脱除是必要且有利的,减排CO2的氧燃烧技术不仅对环境友好,且具有经济竞争力。税收是将环境损害的外部性内部化的有效措施,本文所得到的分析工况下的合理CO2排放税收额为140¥/t左右,而我国目前对SOx和NOx的排放税收额偏低。
     综合以上结果,有如下基本结论:氧燃烧技术实现了能量的综合、梯级利用,所以提高了锅炉的热效率、火用效率;但是同时因为在空分装置和尾气处理装置中消耗了大量的电能,所以使系统热效率降低较明显,但是火用效率的降低有所缓和;能量的消耗以及投资成本添加提高了氧燃烧系统的发电成本,结合CO2减排成本和CO2捕捉成本的计算,更加明确地显示了氧燃烧技术的经济障碍,但是当考虑对CO:排放征税和CO:产品出售时,氧燃烧系统有望跨越其经济障碍,达到传统燃烧系统的经济性能并实现CO:的大规模减排;同时,环境热经济学成本分析的结果显示:考虑环境影响时,脱除CO:必要且有利,氧燃烧系统不仅对环境友好,且具有较高的经济竞争力。
Considering the situation that increasing attention has been paid on the CO2 emission control worldwide, China faces tremendous pressure because of the big CO2 emission amount and increasing CO2 emission rate. Oxy-combustion technology has been considered as a feasible choice to reduce the CO2 emission from the coal-fired power plants through adding a cryogenic air separation process (ASU) and a flue gas treatment process (FGU) to a conventional combustion process. High purity oxygen (greater than 95% by volume) from the ASU, instead of air, is used as the oxidizer in the oxy-combustion technology, and about 70~80% of the flue gas is recycled back to the furnace with the oxygen stream, then high purity CO2 could be obtained. In order to have a comprehensive understanding of the characteristics of the oxy-combustion technology, an analysis and evaluation work with consideration of thermodynamics, economics as well as environment was performed to a 600MWe supercritical oxy-combustion pulverized coal-fired power plant.
     A flexible oxy-combustion system simulation platform was firstly designed using the commercial flowsheet software Aspen Plus. And many important operation parameters (such as flue gas recycle ratio, oxygen concentration and oxygen excess factor, et al) in different cases were studied. The results show that the net efficiency of the oxy-combustion system is 10.84%(LHV) lower due to the ASU and FGU processes; however, high purity CO2 product can be obtained from the oxy-combustion system and the SOχand NOχcan be Co-captured. The preferred recycle ratios are 0.695-0.716 for the cold recycle cases, and the preferred recycle ratio for the hot recycle case is 0.613. All of these results will be helpful to the oxy-combustion system design and operation, and they are the basis for the following research works.
     To understand the techno-economic feasibility of the oxy-combustion technology in China, a detailed techno-economic evaluation study was performed on three typical power plants (2×300MW subcritical,2×600MW supercritical,2×1000MW ultra super-critical), as conventional air fired and oxy-combustion options in China, by utilizing the authoritative data published in 2010 for the design of coal-fired power plants. Techno-economic evaluation models were set up and costs of electricity generation, CO2 avoidance costs as well as CO2 capture costs, were calculated. Moreover, the effects of CO2 tax and CO2 sale price on the economic characteristics of oxy-combustion power plants were also considered. The results show that the electricity costs of the oxy-combustion plants are 1.39~1.42 times that of the corresponding conventional plants; the CO2 avoidance costs and the CO2 capture costs of the oxy-combustion plants are 160~184(?)/t and 115~128(?)/t, respectively. Because the oxy-combustion technique has advantages in thermal efficiency, desulfurization efficiency and denitration efficiency, oxy-combustion power plants will reach the economic properties of conventional air fired power plants if, (1) the CO2 emission is taxed and the high purity CO2 product can be sold, or (2) there are some policy preferences in financing and coal price for oxy-combustion power plants, or (3) the power consumption and cost of air separation units and flue gas treatment units can be reduced.
     Based on the system simulation results, a detailed exergy analysis was conducted to the 600MWe oxy-combustion PC system (divided into four models:boiler, turbines and feed water heaters (FWHs), ASU, and FGU) and the corresponding conventional PC system (includes boiler, turbines & FWHs models). The boiler model was decomposed in detail. The exergy (including physical exergy and chemical exergy for different phases) of each model and the whole system was obtained, showing the oxy-combustion boiler could reach higher exergy efficiency than the conventional combustion boiler because the combustion exergy efficiency in the oxy-combustion furnace is about 4% higher than that in the conventional furnace. In addition, the exergy destruction/loss calculation, the exergy efficiency calculation and the analysis of the energy quality were also carried out. The exergy analysis results of the boiler models reveal that the synthetical and cascade utilization of physical energy and chemical energy could be realized in the oxy-combustion technology; in each boiler model, water wall and air heater have lowest exergy efficiencies; the boiler model contributes most exergy destruction/loss in the oxy-combustion system, the exergy destruction of the turbines & FWHs model is just 9.01% of the total fuel exergy, and the corresponding value of ASU and FGU systems is 7.71%; the exergy efficiency of the oxy-combustion system is 37.13%, which is 4.08% lower than that of the conventional system.
     Combining the exergy analysis and the cost accounting, thermoeconomic cost models of the 600MW oxy-combustion system and the 600MW conventional system were established based on the "structure theory of thermoeconomics". In addition, an exergy cost decomposition methodology was established in this thesis and the unit exergy cost is divided into three parts:fuel, exergy destruction and negentropy. Furthermore, exergoenvironmental cost models for the two systems were also established by introducing the environmental costs to the thermoeconomic cost models. There are three models used to price the environment factor:capture cost, environment damage cost and tax. In this work, the oxy-combustion technology was analyzed with comprehensive consideration of thermodynamics, economics as well as environment. The results show that the unit exergy costs of units in the oxy-combustion system increase about 10% in comparison to those in the conventional system and the corresponding increase rate of unit thermoeconomic costs are about 22%, moreover, the internal relation between these two values are found. For unit exergy costs, the fuel part contributes the most, but the exergy destruction part affects the unit exergy costs of devices in the same model most. However, the capture of pollutants is necessary and beneficial if the environment impact is considered, the oxy-combustion technology is not only environment friendly, but also competitive in economy. Taxation is an effective tool for internalizing the externality of environment damage, and a proper CO2 emission tax 140¥/t was also proposed. In addition, the SOx and NOx emission tax values are much low in China.
     All the results obtained indicate that the thermal efficiency and exergy efficiency of the oxy-combustion boiler increase because the synthetical and cascade utilization of physical energy and chemical energy is realized in the oxy-combustion technology. However, because the ASU and FGU systems consume much power, so the thermal efficiency of the oxy-combustion system decreases a lot but the reduction of its exergy efficiency mitigates. The power consumption and investment addition increase the electricity cost of the oxy-combustion system and the calculation of the CO2 avoidance cost as well as CO2 capture cost further clearly indicates the economic barriers of the oxy-combustion technology. But if considering the CO2 emission taxation and the CO2 product sale, the oxy-combustion system is expected to reach the economic properties of the conventional combustion system and realize the large-scale CO2 emission control; at the same time, the results from the exergoenvironmental cost analysis reveal that the CO2 capture and sequestration is not only necessary and also beneficial if the environmental impact is considered, the oxy-combustion technology is not only environment friendly, but also competitive in economy.
引文
[1]Ayres, R. U., Walter, J. The greenhouse effect:damages, costs and abatement. Environmental and Resource Economics.1991,1(3):237-270.
    [2]Alie, C. F. CO2 capture with MEA:integrating the absorption process and steam cycle of an existing coal-fired power plant:University of Waterloo, Canada,2004.
    [3]IEA. CO2 emissions from fuel combustion Highlights (2010 Edition).2010.
    [4]McKibbin, W. J., Wilcoxen, P. J. The role of economics in climate change policy. The journal of economic perspectives.2002,16(2):107-129.
    [5]Richard, S. J. T. The damage costs of climate change toward more comprehensive calculations. Environmental and Resource Economics.1995,5(4):353-374.
    [6]OECD/IEA. Cleaner Coal in China.2009.
    [7]DOE/EIA. International Energy Outlook.2010.
    [8]Broecker, W. Global warming:Take action or wait? Chinese Science Bulletin.2006, 51(9):1018-1029.
    [9]Singh, D., Croiset, E., Douglas, P. L., et al. Techno-economic study of CO2 capture from an existing coal-fired power plant:MEA scrubbing vs. O2/CO2 recycle combustion. Energy Conversion and Management.2003,44(19):3073-3091.
    [10]熊杰,赵海波,柳朝晖,郑楚光,陈猛.基于热经济学的O2/CO2循环燃烧系统和MEA吸附系统的技术-经济评价.工程热物理学报.2008,29(10):1625-1629.
    [11]Toftegaard, M. B., Brix, J., Jensen, P. A., et al. Oxy-fuel combustion of solid fuels. Progress in Energy and Combustion Science.2010,36(5):581-625.
    [12]Okawa, M., Kimura, N., Kiga, T., et al. Trial design for a CO2 recovery power plant by burning pulverized coal in O2/CO2. Energy Conversion and Management.1997, 38(Supplement 1):S123-S127.
    [13]Yamada, T., Tamura, M., Ffjimori, T., et al. Test results of oxy-fuel combustion and outline of demonstration project in Australia. Challenges of Power Engineering and Environment, Vols 1 and 2.2007:756-761.
    [14]Stromberg, L., Lindgrena, G., Jacoby, J., et al. Update on Vattenfall's 30 MWth Oxyfuel Pilot Plant in Schwarze Pumpe. Greenhouse Gas Control Technologies 9. 2009,1(1):581-589.
    [15]Ditaranto, M., Hals, J. Combustion instabilities in sudden expansion oxy-fuel flames. Combustion and Flame.2006,146(3):493-512.
    [16]Hjartstam, S., Andersson, K., Johnsson, F., et al. Combustion characteristics of lignite-fired oxy-fuel flames. Fuel.2009,88(11):2216-2224.
    [17]Kim, H. K., Kim, Y. Studies on combustion characteristics and flame length of turbulent oxy-fuel flames. Energy & Fuels.2007,21(3):1459-1467.
    [18]Kiga, T., Takano, S., Kimura, N., et al. Characteristics of pulverized-coal combustion in the system of oxygen/recycled flue gas combustion. Energy Conversion and Management.1997,38(Supplement 1):S129-S134.
    [19]Arias, B., Pevida, C., Rubiera, F., et al. Effect of biomass blending on coal ignition and burnout during oxy-fuel combustion. Fuel.2008,87(12):2753-2759.
    [20]Andersson, K., Johnsson, F. Flame and radiation characteristics of gas-fired O2/CO2 combustion. Fuel.2007,86(5-6):656-668.
    [21]Smart, J. P., O'Nions, P., Riley, G. S. Radiation and convective heat transfer, and burnout in oxy-coal combustion. Fuel.2010,89(9):2468-2476.
    [22]Krishnamoorthy, G., Sami, M., Orsino, S., et al. Radiation modelling in oxy-fuel combustion scenarios. International Journal of Computational Fluid Dynamics. 2010,24(3-4):69-82.
    [23]Nozaki, T., Takano, S.-i., Kiga, T., et al. Analysis of the flame formed during oxidation of pulverized coal by an O2-CO2 mixture. Energy.22(2-3):199-205.
    [24]Andersson, K., Johnsson, F. Process evaluation of an 865 MWe lignite fired O2/CO2 power plant. Energy Conversion and Management.2006,47(18-19):3487-3498.
    [25]Wall, T., Liu, Y. H., Spero, C., et al. An overview on oxyfuel coal combustion-State of the art research and technology development. Chemical Engineering Research & Design.2009,87(8A):1003-1016.
    [26]Buhre, B. J. P., Elliott, L. K., Sheng, C. D., et al. Oxy-fuel combustion technology for coal-fired power generation. Progress in Energy and Combustion Science.2005, 31(4):283-307.
    [27]Chui, E. H., Majeski, A. J., Douglas, M. A., et al. Numerical investigation of oxy-coal combustion to evaluate burner and combustor design concepts. Energy.2004, 29(9-10):1285-1296.
    [28]Ahn, J., Kim, H. J., Choi, K. S. Oxy-fuel combustion boiler for CO2 capturing:50 kW-class model test and numerical simulation. Journal of Mechanical Science and Technology.2010,24(10):2135-2141.
    [29]Ahn, J., Kim, H. J., Choi, K. S. Combustion Characteristics of Oxy-fuel Burners for CO2 Capturing Boilers. Journal of Thermal Science and Technology.2009,4(3):408-413.
    [30]Toporov, D., Bocian, P., Heil, P., et al. Detailed investigation of a pulverized fuel swirl flame in CO2/O2 atmosphere. Combustion and Flame.2008,155(4):605-618.
    [31]Heil, P., Toporov, D., Stadler, H., et al. Development of an oxycoal swirl burner operating at low O-2 concentrations. Fuel.2009,88(7):1269-1274.
    [32]Liu, H., Shao, Y. J. Predictions of the impurities in the CO2 stream of an oxy-coal combustion plant. Applied Energy.2010,87(10):3162-3170.
    [33]Normann, F., Andersson, K., Leckner, B., et al. High-temperature reduction of nitrogen oxides in oxy-fuel combustion. Fuel.2008,87(17-18):3579-3585.
    [34]Andersson, K., Normann, F., Johnsson, F., et al. NO emission during oxy-fuel combustion of lignite. Industrial & Engineering Chemistry Research.2008,47(6): 1835-1845.
    [35]Croiset, E., Thambimuthu, K. V. NOx and SO2 emissions from O2/CO2 recycle coal combustion. Fuel.2001,80(14):2117-2121.
    [36]Hu, Y., Naito, S., Kobayashi, N., et al. CO2, NOX and SO2 emissions from the combustion of coal with high oxygen concentration gases. Fuel.2000,79(15): 1925-1932.
    [37]Fleig, D., Normann, F., Andersson, K., et al. The fate of sulphur during oxy-fuel combustion of lignite. Greenhouse Gas Control Technologies 9.2009,1(1):383-390.
    [38]Okazaki, K., Ando, T. NOx reduction mechanism in coal combustion with recycled CO2. Energy.1997,22(2-3):207-215.
    [39]Kimura, N., Omata, K., Kiga, T., et al. The characteristics of pulverized coal combustion in O2/CO2 mixtures for CO2 recovery. Energy Conversion and Management.1995,36(6-9):805-808.
    [40]Anthony, E., Preto, F. Pressurized Combustion in FBC Systems. Glasgow:Blackie Academic and Professional,1995.
    [41]Kung, S. C., Tanzosh, J. M., McDonald, D. K. Fireside Corrosion Study Using B&W Clean Environment Development Facility for Oxy-Coal Combustion Systems. Advances in Materials Technology for Fossil Power Plants.2008:982-992.
    [42]Li, H., Yan, J., Yan, J., et al. Impurity impacts on the purification process in oxy-fuel combustion based CO2 capture and storage system. Applied Energy.2009,86(2): 202-213.
    [43]Sass, B. M., Farzan, H., Prabhakar, R., et al. Considerations for Treating Impurities in Oxy-Combustion Flue Gas Prior to Sequestration. Greenhouse Gas Control Technologies 9.2009,1(1):535-542.
    [44]Darde, A., Prabhakar, R., Tranier, J. P., et al. Air separation and flue gas compression and purification units for oxy-coal combustion systems. Greenhouse Gas Control Technologies 9.2009,1(1):527-534.
    [45]李文蛟,李琳琅,邱建荣,郑楚光.再燃与烟气再循环技术协同作用下NOx降解机理[J].锅炉制造.2003,(1):17-19.
    [46]王宏,董学文,王泉海,邱建荣,郑楚光.新型燃烧方式下SO2脱除机理[J].化工学报.2005,56(10):1948-1954.
    [47]黄晓宏,柳朝晖,刘敬樟,韩静怡,郑楚光.O2/CO2条件下煤粉燃烧火焰特性的实验研究.工程热物理学报.2009,30(7):1245-1248.
    [48]吴乐,徐明厚,王晟孚,姚洪,乔瑜,胡勇.O2/CO2气氛下不同密度煤粉燃烧特性研究.工程热物理学报.2010,31(10):1789-1792.
    [49]米翠丽,阎维平.增压富氧燃烧烟气辐射特性宽带关联k模型.中国电机工程学报.2010,30(29):62-68.
    [50]王小华,刘豪,邱建荣,盛昌栋.氧燃烧方式下煤粉锅炉辐射传热特性分析.热能动力工程.2009,24(1):85-88.
    [51]李英杰,赵长遂,段伦博.02/C02气氛下煤燃烧产物的热力学分析.热能动力工程.2007,22(3):332-335.
    [52]丘纪华,邹春,刘敬樟,李刚,李曼丽,郑楚光.旋流型02/C02煤粉燃烧器的流动及燃烧试验研究.中国电机工程学报.2010,30(17):1-5.
    [53]王泉海,邱建荣,温存,孔凡海,熊全军,吴辉,张小平,刘豪.氧燃烧方式下痕量元素形态转化的试验和模拟研究.工程热物理学报.2006,27(增刊2):199-202.
    [54]熊全军,邱建荣,徐朝芬,王海泉,刘豪,陈永利,徐志英.氧燃烧方式下重金属Se挥发行为的研究.工程热物理学报.2006,27(增刊2):195-198.
    [55]Anderssen, K., Johnsson F, Stromberg L. Large scale CO2 capture- applying the concept of O2/CO2 combustion to commercial process data. VGB Powertech.2003, 83(10):29-33.
    [56]Nsakala, N. Y., Marion,J., Bozzuto,C., Liljedahl,G. Engineering feasibility of CO2 capture on an existing us coal-fired power plant. in:First national conference on carbon sequestration. Washington DC:2001.
    [57]Molburg, J. C., Doctor,R.D., Brockmeier,N.F.S.P. CO2 capture from Pc boilers with 02-firing. in:Eighteenth annual international Pittsburgh coal conference. Newcastle, NSW, Australia:2001.
    [58]Kanniche, M., Gros-Bonnivard, R., Jaud, P., et al. Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture. Applied Thermal Engineering.2010,30:53-62.
    [59]王云,赵永椿,张军营,郑楚光.基于全生命周期的02/C02循环燃烧电厂的技术经济评价.中国科学E刊:技术科学.2011,41(1):119-128.
    [60]陈春香,马晓茜.燃煤机组富氧燃烧发电的生命周期评价.中国电机工程学报.2009,29(增刊):82-87.
    [61]Krishnamoorthy, G., Sami, M., Orsino, S., et al. Radiation Modeling in Oxy-Fuel Combustion Scenarios. Asme Power Conference 2009.2009:615-621,686.
    [62]Cao, H. L., Sun, S. Z., Liu, Y. H., et al. Computational Fluid Dynamics Modeling of NOx Reduction Mechanism in Oxy-Fuel Combustion. Energy & Fuels.2010,24: 131-135.
    [63]Zhou, W., Moyeda, D. Process Evaluation of Oxy-fuel Combustion with Flue Gas Recycle in a Conventional Utility Boiler. Energy & Fuels.2010,24:2162-2169.
    [64]Chui, E. H., Douglas, M. A., Tan, Y. W. Modeling of oxy-fuel combustion for a western Canadian sub-bituminous coal. Fuel.2003,82(10):1201-1210.
    [65]Edge, P., Gubba, S. R., Ma, L., et al. LES modelling of air and oxy-fuel pulverised coal combustion-Impact on flame properties. Proceedings of the Combustion Institute. 2011,33(2):2709-2716.
    [66]Nord, L. O., Kothandaraman, A., Herzog, H., et al. A modeling software linking approach for the analysis of an integrated reforming combined cycle with hot potassium carbonate CO2 capture. Greenhouse Gas Control Technologies 9.2009, 1(1):741-748.
    [67]Edris, M. Comparison between single-shaft and mutli-shaft gas fired 800 MWel combined cycle power plant. Applied Thermal Engineering.2010,30(16): 2339-2346.
    [68]Najmi, B., Soltanieh, M. Process Integration of Membrane Reactor for Steam Methane Reforming for Hydrogen Separation with CO2 Capture in Power Production by Natural Gas Combined Cycle. Greenhouse Gas Control Technologies 9.2009,1(1):279-286.
    [69]West, A. H., Posarac, D., Ellis, N. Assessment of four biodiesel production processes using HYSYS. Plant. Bioresource Technology.2008,99(14):6587-6601.
    [70]Garcia, J., Giraldo, J., Bula, A., et al. Simulation of a biodiesel continuous production process using HYSYS (R). Proceedings of the Asme International Mechanical Engineering Congress and Exposition 2007, Vol 15.2008:255-260.
    [71]Inverno, J. E. F., Correia, E., Jimenez-Asenjo, P., et al. Two examples of steady state simulation with HYSYS at GALPenergia sines refinery. European Symposium on Computer-Aided Process Engineering-14.2004,18:211-216.
    [72]Bejan, A., Tsatsaronis, G., Moran, M. J. Thermal design and optimization. New York: Wiley,1996.
    [73]Linnhoff, B. Pinch analysis-a state-of-the-art overview. Chemical Engineering Research & Design.1993,71(A5):503-522.
    [74]Smith, R., Linnhoff, B. Design of separators in the context of overall processes. Chemical Engineering Research & Design.1988,66(3):195-228.
    [75]Munoz, J. R. Optimization strategies for the synthesis/design of highly coupled, highly dynamic energy systems:[Ph.D. thesis]. Virginia Polytechnic Institute and State University,2000.
    [76]Sama, D. A. Differences between second law analysis and pinch technology. Journal of Energy Resources Technology, Transactions of the ASME.1995,117(3):186-191.
    [77]Wall, G., Gong, M. Exergy analysis versus pinch technology, in:Alvfors, P., editor. ECOS'96 International Symposium. Stockholm, Sweden:1996.451-455.
    [78]Rosen, M. A., Dincer, I. Exergy analysis of waste emissions. International Journal of Energy Research.1999,23(13):1153-1163.
    [79]Srinophakun, T., Laowithayangkul, S., Ishida, M. Simulation of power cycle with energy utilization diagram. Energy Conversion and Management.2001,42(12): 1437-1456.
    [80]Ruchira, T., Masaru, I. Graphic exergy analysis of processes in distillation column by energy-utilization diagrams. AlChE Journal.1996,42(6):1633-1641.
    [81]Jin, H. G., Zhao, H. B., Liu, Z. L., et al. Novel EFHAT system and exergy analysis with energy utilization diagram. Energy.2004,29(12-15):1983-1991.
    [82]Bejan, A. Entropy generation minimization:The new thermodynamics of finite-size devices and finite-time processes. APPLIED PHYSICS REVIEWS.1996,73(3): 1191-1218.
    [83]Bejan, A. Entropy Generation Minimization. Boca Raton, FL:CRC,1996.
    [84]Bejan, A. Method of entropy generation minimization, or modeling and optimization based on combined heat transfer and thermodynamics. Revue Generale de Thermique.1996,35(418-419):637-646.
    [85]Azoumah, Y., Neveu, P., Mazet, N. Constructal design combined with entropy generation minimization for solid-gas reactors. International Journal of Thermal Sciences.2006,45(7):716-728.
    [86]Bi, Y, Guo, T., Zhang, L., et al. Entropy generation minimization for charging and discharging processes in a gas-hydrate cool storage system. Applied Energy.2010, 87(4):1149-1157.
    [87]Bidi, M., Nobari, M. R. H., Avval, M. S. A numerical evaluation of combustion in porous media by EGM (Entropy Generation Minimization). Energy.2010,35(8): 3483-3500.
    [88]Ibanez, G., Cuevas, S., Lopez de Haro, M. Optimization of a magnetohydrodynamic flow based on the entropy generation minimization method. International Communications in Heat and Mass Transfer.2006,33(3):295-301.
    [89]Ko, T. H. Analysis of optimal Reynolds number for developing laminar forced convection in double sine ducts based on entropy generation minimization principle. Energy Conversion and Management.2006,47(6):655-670.
    [90]Prakash Narayan, G., Lienhard V, J. H., Zubair, S. M. Entropy generation minimization of combined heat and mass transfer devices. International Journal of Thermal Sciences.2010,49(10):2057-2066.
    [91]Sahiti, N., Krasniqi, F., Fejzullahu, X., et al. Entropy generation minimization of a double-pipe pin fin heat exchanger. Applied Thermal Engineering.2008,28(17-18): 2337-2344.
    [92]陈林根,孙丰瑞,韩仁余,龚建政.联合热泵循环的有限时间热力学分析.工程热物理学报.1996,17(增刊):13-15.
    [93]陈林根,吴晏,孙丰瑞.燃气轮机循环有限时间热力学分析:理论和应用.燃气轮机技术.2001,14(1):46-53.
    [94]孙丰瑞,郭立峰,王子义,陈林根,陈文振.核动力蒸汽装置性能分析和优化的三种有限时间热力学方法.核动力工程.1996,17(5):420-424.
    [95]陈林根,孙丰瑞.有限时间热力学研究的一些进展.海军工程大学学报.2001,13(6):41-46.
    [96]陈林根,孙丰瑞.有限时间热力学理论和应用的发展现状.物理学进展.1998,18(4):404-422.
    [97]戈延林,陈林根,孙丰瑞.多孔介质发动机再热循环有限时间热力学分析.热科学与技术.2007,6(3):193-197.
    [98]Chen, L., Sun, F. Advances in finite time thermodynamics:analysis and optimization. Nova Science Pub Inc,2004.
    [99]过增元,梁新刚,朱宏晔.火积--描述物体传递热量能力的物理量.自然科学进展.2006,16(10):1288-1296.
    [100]肖庆华,陈林根,孙丰瑞.基于火积耗散率最小的“盘点”导热构形优化.科学通报.2010,55(24):2427-2437.
    [101]魏曙寰,陈林根,孙丰瑞.基于火积耗散率最小的离散和连续变截面导热通道构形优化.中国科学E刊:技术科学.2010,40(10):1189-1200.
    [102]肖庆华,陈林根,孙丰瑞.基于火积耗散率最小的伞形柱状肋片构形优化.中国科学E刊:技术科学.2011,11(41):365-373.
    [103]肖庆华,陈林根,孙丰瑞.基于火积耗散率和流阻最小的冷却流道构形优化.中国科学E刊:技术科学.2011,41(2):251-261.
    [104]谢志辉,陈林根,孙丰瑞.以火积耗散最小为目标的空腔几何构形优化.中国科学E刊:技术科学.2009,39(12):1949-1957.
    [105]吴晶,梁新刚.火积耗散极值原理在辐射换热优化中的应用.中国科学E刊:技术科学.2009,39(2):272-277.
    [106]程雪涛,徐向华,梁新刚.火积在航天器热控系统并联热网络优化中的应用.中国科学E刊:技术科学.2011,41(4):507-514.
    [107]王松平,陈清林,张冰剑.火积传递方程及其应用.科学通报.2009,54(15):2247-2251.
    [108]Som, S. K., Mondal, S. S., Dash, S. K. Energy and exergy balance in the process of pulverized coal combustion in a tubular combustor. Journal of Heat Transfer-Transactions of the Asme.2005,127(12):1322-1333.
    [109]Rosen, M. A., Tang, R. Effect of altering combustion air flow on a steam power plant: Energy and exergy analysis. International Journal of Energy Research.2007,31(3): 219-231.
    [110]Rosen, M. A., Tang, R. Improving steam power plant efficiency through exergy analysis:effects of altering excess combustion air and stack-gas temperature. International Journal of Exergy.2008,5(1):31-51.
    [111]Prins, M. J., Ptasinski, K. J. Energy and exergy analyses of the oxidation and gasification of carbon. Energy.2005,30(7):982-1002.
    [112]Martin, C., Villamanan, M. A., Chamorro, C. R., et al. Low-grade coal and biomass co-combustion on fluidized bed:exergy analysis. Energy.2006,31(2-3):330-344.
    [113]Eskin, N., Gungor, A., Ozdemir, K. Effects of operational parameters on the thermodynamic performance of FBCC steam power plant. Fuel.2009,88(1):54-66.
    [114]Pak, P. S., Lee, Y. D., Ahn, K. Y. Characteristic evaluation of a CO2 capturing repowering system based on oxy-fuel combustion and exergetic flow analyses for improving efficiency. International Journal of Energy Research.2010,34(14): 1272-1284.
    [115]Reddy, B. V., Chui, K. F., Gnanapragasam, N. V., et al. Energy and exergy analyses of a CFB-based indirectly fired combined cycle power generation system. International Journal of Energy Research.2009,33(15):1309-1320.
    [116]Srinivas, T., Gupta, A. V. S. S. K. S., Reddy, B. V., et al. Parametric analysis of a coal based combined cycle power plant. International Journal of Energy Research.2006, 30(1):19-36.
    [117]Xu, Y. J., Jin, H. G., Lin, R. M., et al. System study on partial gasification combined cycle with CO2 recovery. Journal of Engineering for Gas Turbines and Power-Transactions of the Asme.2008,130(5).
    [118]Jin, H., Hong, H., Wang, B., et al. A new principle of synthetic cascade utilization of chemical energy and physical energy. Science in China Series E:Technological Sciences.2005,48(2):163-179.
    [119]金红光,王宝群.化学能梯级利用机理探讨.工程热物理学报.2004,25(2):181-184.
    [120]Anheden, M., Svedberg, G. Exergy analysis of chemical-looping combustion systems. Energy Conversion and Management.1998,39(16-18):1967-1980.
    [121]Brandvoll, O., Bolland, O. Inherent CO2 capture using chemical looping combustion in a natural gas fired power cycle. Journal of Engineering for Gas Turbines and Power-Transactions of the Asme.2004,126(2):316-321.
    [122]Geuzebroek, F. H., Schneiders, L. H. J. M., Kraaijveld, G. J. C., et al. Exergy analysis of alkanolamine-based CO2 removal unit with AspenPlus. Energy.2004,29(9-10): 1241-1248.
    [123]Gou, C. H., Cai, R. X., Hong, H. A novel hybrid oxy-fuel power cycle utilizing solar thermal energy. Energy.2007,32(9):1707-1714.
    [124]Simpson, A. P., Simon, A. J. Second law comparison of oxy-fuel combustion and post-combustion carbon dioxide separation. Energy Conversion and Management. 2007,48(11):3034-3045.
    [125]Zhang, N., Lior, N. Two novel oxy-fuel power cycles integrated with natural gas reforming and CO2 capture. Energy.2008,33(2):340-351.
    [126]Seepana, S., Jayanti, S. Optimized enriched CO2 recycle oxy-fuel combustion for high ash coals. Fuel.2009, doi:10.1016/j.fuel.2009.04.029.
    [127]Valero, A., Lozano, M. A., Munoz, M. A general theory of exergy saving. Parts Ⅰ. On the Exergetic Cost. in:ASME Book H0341A, AES:vol.2-3,1986.1-8.
    [128]Valero, A., Lozano, M. A., Munoz, M. A general theory of exergy saving. Parts Ⅱ. On the Thermoeconomic Cost. in:ASME Book H0341A, AES:vol.2-3,1986.9-15.
    [129]Valero, A., Lozano, M. A., Munoz, M. A general theory of exergy saving. Parts Ⅲ. Energy saving and thermoeconomics. in:ASME Book H0341A, AES:vol.2-3,1986. 17-21.
    [130]Kotas, T. J. The exergy method of thermal plant analysis. Butterworth Publishers, Stoneham, MA,1985.
    [131]Lozano, M. A., Valero, A. Theory of the exergetic cost. Energy.1993,18(9):939-960.
    [132]Uche, J. Thermoeconomic analysis and simulation of a combined power and desalination plant:[Ph.D. thesis]. Department of Mechanical Engineering, University of Zaragoza,2000.
    [133]Traverso, A., Massardo, A. F., Santarelli, M., et al. A new generalized carbon exergy tax:An effective rule to control global warming. Journal of Engineering for Gas Turbines and Power-Transactions of the Asme.2003,125(4):972-978.
    [134]Santarelli, M. G. L. Carbon exergy tax:a thermo-economic method to increase the efficient use of exergy resources. Energy Policy.2004,32(3):413-427.
    [135]Tribus, M., Evans, R. B., Thermoeconomics, Technical UCLA Department of Engineering Report:1962; pp 52-63.
    [136]Evans, R. B. Thermoeconomic isolation and essergy analysis. Energy.1980,5(8-9): 805-821.
    [137]Gaggioli, R. A. Thermodynamics and non-equilibrium system:[Ph.D thesis]. University of Wisconsin,1961.
    [138]El-Sayed, Y. M., Gaggioli, R. A. Critical review of second law costing methods-I: Background and algebraic procedures. Journal of Energy Resources Technology, Transactions of the ASME.1989,111(1):1-7.
    [139]Gaggioli, R. A., El-Sayed, Y. M. Critical review of second law costing methods-Ⅱ: Calculus procedures. Journal of Energy Resources Technology, Transactions of the ASME.1989,111(1):8-15.
    [140]E1-Sayed, Y. M., Evans, R. B. Thermoeconomics and the design of heat systems. Journal of Engineering for Power.1970,92 Ser A(1):27-35.
    [141]Valero, A., Lozano, M. A., Serra, L., et al. CGAM problem:definition and conventional solution. Energy.1994,19(3):279-286.
    [142]Frangopoulos, C. A. Application of the Thermoeconomic Functional Approach to the CGAM Problem. Energy.1994,19(3):323-342.
    [143]Tsatsaronis, G., Pisa, J. Exergoeconomic evaluation and optimization of energy systems-Application to the CGAM problem. Energy.1994,19(3):287-321.
    [144]Valero, A., Lozano, M. A., Serra, L., et al. Application of the exergetic cost theory to the CGAM problem. Energy.1994,19(3):365-381.
    [145]von Spakovsky, M. R. Application of engineering functional analysis to the analysis and optimization of the CGAM problem. Energy.1994,19(3):343-364.
    [146]Valero, A., Serra, L., Lozano, M. A. Structural theory of thermoeconomics. in: Richter, H. J., editor. International Symposium on Thermodynamics and the Design, Analysis and Improvement of Energy Systems, ASME Winter Annual Meeting:ASME Book no. H00874,1993.189-198.
    [147]Torres, C., Serra, L., Valero, A., et al. The productive structure and thermoeconomic theories of system optimization. in:Proceedings of the ASME, Advanced Energy Systems Division, AES:vol.36,1996.429-436.
    [148]Erlach, B., Serra, L., Valero, A. Structural theory as standard for thermoeconomics. Energy Conversion and Management.1999,40:1627-1649.
    [149]Serra, L., Lozano, M. A., Valero, A., et al. On average and marginal cost in thermoeconomics. in:Gogus, Y A., Ozturk, A. and Tsatsaronis, G., editors. The International Conference ECOS'95. Estambul, Turkey:1995.428-435.
    [150]Valero, A., Correas, L., Zaleta, A., et al. On the thermoeconomic approach to the diagnosis of energy system malfunctions:Part 1:the TADEUS problem. Energy. 2004,29(12-15):1875-1887.
    [151]Lazzaretto, A., Toffolo, A., Reini, M., et al. Four approaches compared on the TADEUS (thermoeconomic approach to the diagnosis of energy utility systems) test case. Energy.2006,31(10-11):1586-1613.
    [152]Verda, V., Borchiellini, R. Exergy method for the diagnosis of energy systems using measured data. Energy.2007,32(4):490-498.
    [153]Verda, V. Accuracy level in thermoeconomic diagnosis of energy systems. Energy. 2006,31(15):3248-3260.
    [154]Abusoglu, A., Kanoglu, M. Exergoeconomic analysis and optimization of combined heat and power production:A review. Renewable & Sustainable Energy Reviews. 2009,13(9):2295-2308.
    [155]Tsatsaronis, G., Lin, L., Pisa, J. Exergy costing in exergoeconomics. Journal of Energy Resources Technology, Transactions of the ASME.1993,115(1):9-16.
    [156]Tsatsaronis, G., Moran, M. J. Exergy-aided cost minimization. Energy Conversion and Management.1997,38(15-17):1535-1542.
    [157]Tsatsaronis, G., Park, M.-H. On avoidable and unavoidable exergy destructions and investment costs in thermal systems. Energy Conversion and Management.2002, 43(9-12):1259-1270.
    [158]Kim, S.-M., Oh, S.-D., Kwon, Y.-H., et al. Exergoeconomic analysis of thermal systems. Energy.1998,23(5):393-406.
    [159]El-Sayed, Y. M., Tribus, M. Strategic use of thermoeconomics for system improvement. ACS Symposium Series.1983:215-238.
    [160]Gaggioli, R. A., Wepfer, W. J. Exergy economics. Energy.1980,5(8-9):823-837.
    [161]Gaggioli, R. A. Analysis of energy systems-design and operation. in:American Society of Mechanical Engineers, Advanced Energy Systems Division. Miami Beach, FL, USA:ASME, vol.1,1985.175.
    [162]Gaggioli, R. A. Second law analysis of a solar domestic hot water heating system. in: American Society of Mechanical Engineers, Advanced Energy Systems Division. Miami Beach, FL, USA:ASME, vol.1,1985.135-148.
    [163]Gaggioli, R. A., E1-Sayed, Y. M., E1-Nashar, A. M., et al. Second law efficiency and costing analysis of a combined power and desalination plant. in:American Society of Mechanical Engineers, Advanced Energy Systems Division. Anaheim, CA, USA: ASME, vol.2-3,1986.77-85.
    [164]Valero, A., Torres, C., Lozano, M. A. On the unification of thermoeconomic theories, in:American Society of Mechanical Engineers, Heat Transfer Division. San Francisco, CA, USA:ASME, vol.124,1989.63-74.
    [165]Valero, A., Torres, C., Serra, L. A general theory of thermoeconomics:Part I. Structural analysis. in:ECOS'92 International Symposium. Zaragoza, Spain:ASME Book 100331,1992.137-145.
    [166]Serra, L., Torres, C. Structural Theory of Thermoeconomics. in:Frangopoulos, C. A., editors. Exergy, Energy System Analysis, and Optimization, Oxford, UK: Encyclopedia of Life Support Systems (EOLSS), Developed under the Auspices of the UNESCO, Eolss Publishers; 2003.
    [167]Frangopoulos, C. A. Optimal synthesis and operation of thermal systems by the thermoeconomic functional approach. Journal of Engineering for Gas Turbines and Power, Transactions of the ASME.1992,114(4):707-714.
    [168]Frangopoulos, C. A., von Spakovsky, M. R., Sciubba, E. A brief review of methods for the design and synthesis optimization of energy systems. International Journal of Applied Thermodynamics.2002,5(4):151-160.
    [169]Reklaitis, G. V., Ravindran, A., Ragsdell, K. M. Engineering optimization:methods and applications. New York:J. Wiley and Sons, Inc.,1983.
    [170]Frangopoulos, C. A. Thermoeconomic functional analysis:a method for optimal design or improvement of complex thermal systems:[Ph.D. thesis]. Georgia Institute of Technology,1983.
    [171]Frangopoulos, C. A. Thermoeconomic functional analysis and optimization. Energy. 1987,12(7):563-571.
    [172]Evans, R. B., von Spakovsky, M. R. Engineering functional analysis-Part Ⅱ. Journal of Energy Resources Technology, Transactions of the ASME.1993,115(2):93-99.
    [173]von Spakovsky, M. R., Evans, R. B. Engineering functional analysis-Part Ⅰ. Journal of Energy Resources Technology, Transactions of the ASME.1993,115(2):86-92.
    [174]Evans, R. B., Kadaba, P. V., Hendrix, W. A. Essergetic functional analysis for process design and synthesis. in:ACS Symposium Series:1983.239-261.
    [175]王加璇.动力工程热经济学.(第一版).北京:水利电力出版,1995.
    [176]von Spakovsky, M. R. A practical generalized analysis approach to the optimal thermoeconomic design and improvement of real-world thermal systems:[Ph.D. thesis]. Georgia Institute of Technology,1986.
    [177]Uche, J., Serra, L., Valero, A. Thermoeconomic optimization of a dual-purpose power and desalination plant. Desalination.2001,136(1-3):147-158.
    [178]Lozano, M. A., Valero, A., Serra, L. Local optimization of energy systems. in: Proceedings of the ASME, Advanced Energy System Division, AES. Atlanta, Georgia: vol.36,1996.241-250.
    [179]Frangopoulos, C. A. Methods of energy systems optimization. in:Summer School: Optimization of Energy Systems and Processes. Gliwice, Poland:2003.
    [180]Gogus, Y. A. Thermoeconomic optimization. International Journal of Energy Research.2005,29(7):559-580.
    [181]Himmelblau, D. M. Fault detection and diagnosis in chemical and petrochemical processes. Amsterdam:Elsevier press,1978.
    [182]Venkatasubramanian, V., Rengaswamy, R., Yin, K., et al. A review of process fault detection and diagnosis:Part I:Quantitative model-based methods, Part II: Qualitative models and search strategies, Part III:Process history based methods. Computers and Chemical Engineering.2003,27(3):293-346.
    [183]Lozano, M. A., Bartolome, J. L., Valero, A., et al. Thermoeconomic diagnosis of energy systems. in:Carnevale, E., editor. Proceedings of the International Conference Flowers'94-Florence World Energy Research Symposium. Florence, Italy:1994.149-156.
    [184]Valero, A., Correas, L., Zaleta, A., et al. On the thermoeconomic approach to the diagnosis of energy system malfunctions-Part 1:the TADEUS problem. Energy. 2004,29(12-15):1875-1887.
    [185]Valero, A., Correas, L., Zaleta, A., et al. On the thermoeconomic approach to the diagnosis of energy system malfunctions-Part 2. Malfunction definitions and assessment. Energy.2004,29(12-15):1889-1907.
    [186]Valero, A. On causality in organized energy systems:Part Ⅰ. Purpose, cause, irreversibility, cost, Part Ⅱ. Symbolic exergoeconomics, Part Ⅲ. Theory of perturbations. in:Stecco, S. S. and Moran, M. J., editors. International Symposium: A future for energy. Florence, Italy:Pergamon Press,1990.387-420.
    [187]Valero, A., Torres, C. On causality in organized energy systems:Part II. Symbolic exergoeconomics. in:Stecco, S. S. and Moran, M. J., editors. International Symposium:A future for energy. Florence, Italy:Pergamon Press,1990.393-401.
    [188]Torres, C. Symbolic thermoeconomic analysis of energy systems. in:Frangopoulos, C. A., editors. Exergy, Energy System Analysis, and Optimization, Oxford, UK: Encyclopedia of Life Support Systems (EOLSS), Developed under the Auspices of the UNESCO, Eolss Publishers; 2003.
    [189]Valero, A., Lozano, M. A., Torres, C. On causality in organized energy systems:Part III. Theory of perturbations. in:Stecco, S. S. and Moran, M. J., editors. International Symposium:A future for energy. Florence, Italy:Pergamon Press,1990.402-420.
    [190]Torres, C., Valero, A., Serra, L., et al. Structural theory and thermoeconomic diagnosis. Part I:On malfunction and dysfunction analysis. Energy Conversion and Management.2002,43(9-12):1503-1518.
    [191]Valero, A., Torres, C., Lerch, F. Structural theory and thermoeconomic diagnosis. Part III:Intrinsic and Induced Malfunctions. in:Ishida, M., Tsatsaronis, G., Moran, M. J. and Kataoka, editors. ECOS'99. Efficiency, Costs, Optimization, Simulation and Environmental Aspects of Energy Systems. Tokyo. Japan:1999.35-41.
    [192]Valero, A., Lerch, F., Serra, L., et al. Structural theory and thermoeconomic diagnosis. Part Ⅱ:Application to an actual power plant. Energy Conversion and Management.2002,43(9-12):1519-1535.
    [193]Lazzaretto, A., Toffolo, A. A critical review of the thermoeconomic diagnosis methodologies for the location of causes of malfunctions in energy systems. in. Washington, DC., United States:American Society of Mechanical Engineers, New York, NY 10016-5990, United States, vol.43,2003.345-354.
    [194]Valero, A., Correas, L., Lazzaretto, A., et al. Thermoeconomic philosophy applied to the operating analysis and diagnosis of energy utility systems. International Journal of Thermodynamics.2004,7(2):33-39.
    [195]Valero, A., Correas, L., Zaleta, A., et al. On the thermoeconomic approach to the diagnosis of energy system malfunctions:Part 2. Malfunction definitions and assessment. Energy.2004,29(12-15):1889-1907.
    [196]Reini, M., Taccani, R. On the thermoeconomic approach to the diagnosis of energy system malfunctions the role of the fuel impact formula. International Journal of Thermodynamics.2004,7(2):61-72.
    [197]Toffolo, A., Lazzaretto, A. On the thermoeconomic approach to the diagnosis of energy system malfunctions indicators to diagnose malfunctions:Application of a new indicator for the location of causes. International Journal of Thermodynamics. 2004,7(2):41-49.
    [198]Verda, V. Thermoeconomic analysis and diagnosis of energy utility systems from diagnosis to prognosis. International Journal of Thermodynamics.2004,7(2): 73-83.
    [199]Verda, V., Serra, L., Valero, A. Thermoeconomic diagnosis:Zooming strategy applied to highly complex energy systems. Part 1:Detection and localization of anomalies. Journal of Energy Resources Technology, Transactions of the ASME.2005,127(1): 42-49.
    [200]Verda, V., Serra, L., Valero, A. Thermoeconomic diagnosis:Zooming strategy applied to highly complex energy systems. Part 2:On the choice of the productive structure. Journal of Energy Resources Technology, Transactions of the ASME.2005,127(1): 50-58.
    [201]Frangopoulos, C. A. Introduction to environomics. in:American Society of Mechanical Engineers, Advanced Energy Systems Division. Atlanta, GA, USA:ASME, vol.25,1991.49-54.
    [202]Frangopoulos, C. A. Introduction to environomic analysis and optimization of energy-intensive systems, in:ECOS'92 International Symposium. Zaragoza, Spain: ASME,1992.231-239.
    [203]Frangopoulos, C. A., Caralis, Y. C. A method for taking into account environmental impacts in the economic evaluation of energy systems. Energy Conversion and Management.1997,38(15-17):1751-1763.
    [204]Agazzani, A., Massardo, A. F., Frangopoulos, C. A. Environmental influence on the thermoeconomic optimization of a combined plant with NOx abatement. Journal of Engineering for Gas Turbines and Power-Transactions of the Asme.1998,120(3): 557-565.
    [205]Curti, V., von Spakovsky, M. R., Favrat, D. An environomic approach for the modeling and optimization of a district heating network based on centralized and decentralized heat pumps, cogeneration and/or gas furnace. Part Ⅰ:Methodology. International Journal of Thermal Sciences.2000,39(7):721-730.
    [206]Curti, V., Favrat, D., von Spakovsky, M. R. An environomic approach for the modeling and optimization of a district heating network based on centralized and decentralized heat pumps, cogeneration and/or gas furnace. Part Ⅱ:Application. International Journal of Thermal Sciences.2000,39(7):731-741.
    [207]Pelster, S., Favrat, D., Von Spakovsky, M. R. The thermoeconomic and environomic modeling and optimization of the synthesis, design, and operation of combined cycles with advanced options. Journal of Engineering for Gas Turbines and Power. 2001,123(4):717-726.
    [208]Ahmadi, P., Dincer, I. Exergoenvironmental analysis and optimization of a cogeneration plant system using Multimodal Genetic Algorithm (MGA). Energy. 2010,35(12):5161-5172.
    [209]Meyer, L., Tsatsaronis, G., Buchgeister, J., et al. Exergoenvironmental analysis for evaluation of the environmental impact of energy conversion systems. Energy.2009, 34(1):75-89.
    [210]Boyano, A., Blanco-Marigorta, A. M., Morosuk, T., et al. Exergoenvironmental analysis of a steam methane reforming process for hydrogen production. Energy. 2011,36(4):2202-2214.
    [211]Petrakopoulou, F., Boyano, A., Cabrera, M., et al. Exergoeconomic and exergoenvironmental analyses of a combined cycle power plant with chemical looping technology. International Journal of Greenhouse Gas Control.2011,5(3): 475-482.
    [212]Commission, E., ExternE—Externalities of Energy, Methodology 2005 Update, Technical Luxembourg:Office for Official Publications of the European Communities, 2004:2005.
    [213]Streimikiene, D., Roos, I., Rekis, J. External cost of electricity generation in Baltic States. Renewable & Sustainable Energy Reviews.2009,13(4):863-870.
    [214]郭伟和.福利经济学.北京:经济管理出版社,2001.
    [215]Soderholm, P., Sundqvist, T. Pricing environmental externalities in the power sector: ethical limits and implications for social choice. Ecological Economics.2003,46(3): 333-350.
    [216]Commission, E., External Costs--Research results on socio-environmental damages due to electricity and transport, Technical Luxembourg:Office for Official Publications of the European Communities,2003:2003.
    [217]徐肇翊,金福杰.辽宁城市大气污染造成的居民健康损失及其货币化估计.环境与健康杂志.2003,20(2):67-71.
    [218]胥卫平,魏宁波.西安市大气和水污染对人群健康损害的经济价值损失研究.中国人口,资源与环境.2007,17(4):71-75.
    [219]卫立冬.衡水市区大气污染经济损失估算.中国环境管理干部学院学报.2003, 13(4):40-43.
    [220]孙金芳,单长青.滨州市环境污染造成的经济损失估算.内蒙古科技与经济.2008,(162):44-46.
    [221]谭雪红.徐州市区大气污染经济损失估算.徐州工程学院学报.2007,22(10):85-88.
    [222]吴开亚,王.巢湖流域大气污染的经济损失分析.长江流域资源与环境.2007,16(6):781-785.
    [223]王艳,赵旭丽,许杨,李彦.山东省大气污染经济损失估算.城市环境与城市生态.2005,18(2):30-33.
    [224]桑燕鸿,周大杰,杨静.大气污染对人体健康影响的经济损失研究.生态环境.2010,(1):178-179.
    [225]杨丹辉,李红莉.基于损害和成本的环境污染损失核算-以山东省为例.中国工业经济.2010,(7):125-135.
    [226]杨永春,渠.城市环境污染的经济损失及其评估-以山城重庆为例.兰州大学学报(自然科学版).2005,41(3):14-18.
    [227]袁波,董德明.可吸入颗粒物造成的健康损失价值核算-以吉林市为例.四川环境.2006,25(2):83-86.
    [228]阚海东,陈秉衡,汪宏.上海市城区大气颗粒物污染对居民健康危害的经济学评价.中国卫生经济.2004,(2):8-11.
    [229]汪鹏.大气扩散模型与环境经济损失评价研究:[博士论文].能源与环境工程,大连理工大学,2010.
    [230]Rosen, M. A. Indicators for the environmental impact of waste emissions: comparison of exergy and other indicators. Trans. Can. Soc. Mech. Eng.2009,33(1): 145.
    [231]Dewulf, J., Van Langenhove, H.; Muys, B., et al. Exergy:its potential and limitations in environmental science and technology. Environmental Science & Technology. 2008,42(7):2221-2232.
    [232]DOE/NETL, Pulverized coal oxy-combustion Power Plants, Volume 1:bituminous coal to electricity, report DOE/NETL-2007/1291, Technical Washington, D.C.: National Energy Technology Laboratory,2007.
    [233]Nguyen, N., Demirel, Y. Retrofit of distillation columns in biodiesel production plants. Energy.2010,35(4):1625-1632.
    [234]More, R. K., Bulasara, V. K., Uppaluri, R., et al. Optimization of crude distillation system using aspen plus:Effect of binary feed selection on grass-root design. Chemical Engineering Research & Design.2010,88(2A):121-134.
    [235]Verhoef, A., Degreve, J., Huybrechs, B.; et al. Simulation of a hybrid pervaporation-distillation process. Computers & Chemical Engineering.2008,32(6): 1135-1146.
    [236]Allam, R. J. Improved oxygen production technologies. Greenhouse Gas Control Technologies 9.2009,1(1):461-470.
    [237]Amann, J. M. G., Bouallou, C. CO2 Capture from Power Stations Running with Natural Gas (NGCC) and Pulverized Coal (PC):Assessment of a New Chemical Solvent Based on Aqueous Solutions of N-MethyIDiEthanolAmine plus TriEthylene TetrAmine. Greenhouse Gas Control Technologies 9.2009,1(1):909-916.
    [238]Pellegrini, L. A., Moioli, S., Gamba, S. Energy saving in a CO2 capture plant by MEA scrubbing. Chemical Engineering Research and Design.2010, In Press, Corrected Proof.
    [239]Romeo, L. M., Bolea, I., Escosa, J. M. Integration of power plant and amine scrubbing to reduce CO2 capture costs. Applied Thermal Engineering.2008,28(8-9): 1039-1046.
    [240]Sotudeh-Gharebaagh, R., Legros, R., Chaouki, J., et al. Simulation of circulating fluidized bed reactors using ASPEN PLUS. Fuel.1998,77(4):327-337.
    [241]Hughes, R. W., Lu, D. Y., Anthony, E. J., et al. Design, process simulation and construction of an atmospheric dual fluidized bed combustion system for in situ CO2 capture using high-temperature sorbents. Fuel Processing Technology.2005, 86(14-15):1523-1531.
    [242]Doherty, W., Reynolds, A., Kennedy, D. The effect of air preheating in a biomass CFB gasifier using ASPEN Plus simulation. Biomass & Bioenergy.2009,33(9):1158-1167.
    [243]Ong'iro, A. O., Ugursal, V. I., Al Taweel, A. M., et al. Simulation of combined cycle power plants using the ASPEN PLUS shell. Heat Recovery Systems and CHP.1995, 15(2):105-113.
    [244]Kunze, C., Spliethoff, H. Modelling of an IGCC plant with carbon capture for 2020. Fuel Processing Technology.2010,91(8):934-941.
    [245]Perez-Fortes, M., Bojarski, A. D., Velo, E., et al. Conceptual model and evaluation of generated power and emissions in an IGCC plant. Energy.2009,34(10):1721-1732.
    [246]De Kam, M. J., Morey, R. V., Tiffany, D. G. Biomass Integrated Gasification Combined Cycle for heat and power at ethanol plants. Energy Conversion and Management. 2009,50(7):1682-1690.
    [247]Amann, J. M., Kanniche, M., Bouallou, C. Natural gas combined cycle power plant modified into an O2/CO2 cycle for CO2 capture. Energy Conversion and Management.2009,50(3):510-521.
    [248]Zheng, L. G., Furimsky, E. ASPEN simulation of cogeneration plants. Energy Conversion and Management.2003,44(11):1845-1851.
    [249]Ong'iro, A., Ugursal, V. I., Al Taweel, A. M., et al. Thermodynamic simulation and evaluation of a steam CHP plant using ASPEN Plus. Applied Thermal Engineering. 1996,16(3):263-271.
    [250]Li, F. X., Zeng, L. A., Velazquez-Vargas, L. G., et al. Syngas Chemical Looping Gasification Process:Bench-Scale Studies and Reactor Simulations. Aiche Journal. 2010,56(8):2186-2199.
    [251]Cimini, S., Prisciandaro, M., Barba, D. Simulation of a waste incineration process with flue-gas cleaning and heat recovery sections using Aspen Plus. Waste Management.2005,25(2):171-175.
    [252]Hong, J. S., Chaudhry, G., Brisson, J. G., et al. Analysis of oxy-fuel combustion power cycle utilizing a pressurized coal combustor. Energy.2009,34(9):1332-1340.
    [253]Rodewald, A., Kather, A., Frie, S. Thermodynamic and economic aspects of the hard coal based oxyfuel cycle. International Journal of Green Energy.2005,2(2): 181-192.
    [254]Wall, T. F. Combustion processes for carbon capture. Proceedings of the Combustion Institute.2007,31:31-47.
    [255]Luyben, W. L. Distillation Design and Control Using Aspen Simulation. Hoboken, New Jersey:John Wiley & Sons,2006.
    [256]Kister, H. Z. Distillation Design. New York:McGraw-Hill,1992.
    [257]中国电力工程顾问集团公司电力规划设计总院.火电工程限额设计参考造价指标(2008年水平).北京:中国电力出版社,2009.
    [258]Simbeck, D. R. CO2 mitigation economics for existing coal-fired power plants, in: First national conference on carbon sequestration. Washington DC:2001.
    [259]孙克勤,钟秦.火电厂烟气脱硫系统设计、建造及运行.北京:化学工业出版社,2005.
    [260]孙克勤,钟秦.火电厂烟气脱硝技术及其工程应用.北京:化学工业出版社,2007.
    [261]刘学军.SCR脱硝技术在广州恒运热电厂 300MW机组上的应用.中国电力.2006,39(3):86-89.
    [262]黄闽.江苏省内脱硫电厂环境经济性分析.电力环境保护.2006,22(5):54-57.
    [263]刘殿海,杨勇平,杨昆,et al.计及环境成本的火电机组供电成本研究.中国电力.2005,38(9):24-28.
    [264]Hagem, C., Holtsmark, B. From small to insignificant:climate impact of the Kyoto protocol with and without US. CICERO.Policy Note 1, http://www.cicero.uio.no. 2001.
    [265]朱明善.能量系统火用分析.(第一版).清华大学出版社,1989.
    [266]Daniel, J. J., Rosen, M. A. Exergetic environmental assessment of life cycle emissions for various automobiles and fuels. Exergy, An International Journal.2002, 2(4):283-294.
    [267]Bilgen, S., Kaygusuz, K. The calculation of the chemical exergies of coal-based fuels by using the higher heating values. Applied Energy.2008,85(8):776-785.
    [268]Wall, G. Exergy tools. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy.2003,217(2):125-136.
    [269]张超.复杂能量系统的热经济学分析和优化:[博士论文].能源与动力工程学院,华中科技大学,2006.
    [270]熊杰.传统燃煤发电系统及CO2减排系统的热经济学成本分析和优化:[硕士论文].能源与动力工程学院,华中科技大学,2007.
    [271]Lozano, M. A., Valero, A. Thermoeconomic analysis of gas turbine cogeneration systems. in:Richter, H. J., editor. Thermodynamics and the Design, Analysis, and Improvement of Energy Systems-Session II:General Thermodynamics & Energy Systems, AES. New Orleans, LA, USA:ASME, vol.30,1993.311-320.
    [272]Arsalis, A. Thermoeconomic modeling and parametric study of hybrid SOFC-gas turbine-steam turbine power plants ranging from 1.5 to 10 MWe. Journal of Power Sources.2008,181(2):313-326.
    [273]Dones, R., Heck, T., Bauer, C., et al., ExternE-Pol Externalities of Energy:Extension of Accounting Framework and Policy Applications, in, Editor△Editors.2005, Final Report on Work Package. p.
    [274]treimikien, D., Pu inait, R. External cost of electricity generation in Lithuania. Environment Research, Engineering and Management.2008:44.
    [275]Kypreos, S., Krakowski, R., An Assessment of the Power-Generation Sector of China, in, Editor△Editors.2005, Paul Scherrer Institut, Switzerland. p.
    [276]Friedrich, R., Rabl, A., Spadaro, J. V. Quantifying the costs of air pollution:the ExternE project of the European Commission. Pollution Atmospherique.2001: 77-104.
    [277]El-Kordy, M. N., Badr, M. A., Abed, K. A., et al. Economical evaluation of electricity generation considering externalities. Renewable Energy.2002,25(2):317-328.
    [278]Schleisner, L. Comparison of methodologies for externality assessment. Energy Policy.2000,28(15):1127-1136.
    [279]Matthews, H. S., Lave, L. B. Applications of environmental valuation for determining externality costs. Environmental Science & Technology.2000,34(8):1390-1395.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700