用户名: 密码: 验证码:
基于环烯烃及其衍生物聚合的新型三维立体结构α-二亚胺镍、钯配合物的合成及催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文设计合成出一系列不同芳环取代基的三维立体α-二亚胺镍配合物C1-C4(其中,芳环:C1,2,6-二甲基苯基;C2,2,6-二异丙基苯基;C3,2,4,6-三甲基苯基;C4,2,6-二甲基-4-溴苯基)。所有配合物均通过单晶X射线衍射测定其晶体结构,这四种镍的配合物中,C1、C3和C4的晶体结构基本类似,均为单核四配位结构。而芳环取代基为异丙基C2的晶体结构是双金属中心五配位的配合物且两个金属中心镍与两个溴原子形成了一个平面四元环。
     在B(C6F5)3为助催化剂下,三维立体α-二亚胺镍配合物C1-C4催化降冰片烯(NB)均聚和NB与5-降冰片烯-2-乙酸酯(NB-OCOCH3)不同比例共聚时都呈现出较高的活性(107gpolymer/molNi·h)。四类配合物催化活性大小为:C2>C3>C1>C4,这一规律说明催化剂的空间效应和电子效应对于催化剂活性有一定的影响,芳环取代基位阻越大,活性越大;芳环取代基给电子能力越强,活性越大。通过Kelen-Tüd s法计算得到单体竞聚率分别为rNB OCOCH3=0.05,rNB=6.72。此外,聚合物末端为基团C6F5可以推导出C1-C4/B(C6F5)3催化体系催化聚合的活化机理:金属卤素键即Ni-Br键打开,C6F5从硼化物上转移到金属镍上。这一结论同时也通过密度泛函理论得到证实。前线分子轨道理论分析,催化剂与降冰片烯的能级相互作用对于催化剂催化活性起着非常关键的影响,计算表明:催化剂的最低未占有分子轨道(LUMO)能级与降冰片烯的最高占有分子轨道(HOMO)能级相差越小,其活性就越大。
     运用相似的合成方式,还设计合成出六类不同芳环取代基的三维立体α-二亚胺钯配合物C5-C10(其中,芳环:C5,2,6-二甲基苯基;C6,2,6-二异丙基苯基;C7,2,4,6-三甲基苯基;C8,2,6-二甲基-4-溴苯基;C9,4-氯苯基;C10,4-三氟甲基苯基)。α-二亚胺钯配合物C5、C7和C9的晶体结构中,金属中心钯与配体形成四方平面的配位结构,在配位平面内键长、键角均在这种配位方式标准范围之内。这三种配合物的两个苯胺结构几乎垂直于五元环的配位平面,对于具有大位阻的空间立体骨架结构没有任何排斥作用。
     采用C5-C10/B(C6F5)3体系催化降冰片烯与5-降冰片烯-2-羧酸甲酯(NB-COOCH3)共聚合呈现较高的催化活性(105gpolymer/molPd·h)。三维立体骨架结构的引入,能够有效提高钯配合物的稳定性,催化活性及极性单体插入率。详细地考察了芳环上取代基对于钯配合物催化活性的影响,芳环上具有大位阻或者强给电子基团的配合物具有较高的催化活性。聚合物碳谱和氢谱分析表明其末端基团为甲基,证实了金属卤素键即Pd-Cl键能够被B(C6F5)3活化,Pd-Cl断裂,形成活性中心,从而引发聚合。
     催化剂负载化是一种改善催化剂稳定性和制备功能化纳米环烯烃聚合物材料的有效方法,本文还设计合成出带有羟基的三维立体α-二亚胺镍配合物(C11)和钯配合物(C12),分别利用其羟基与三甲基铝活化的多壁碳纳米管(Me3Al/MWNTs)通过化学键进行键合,形成多壁碳纳米管负载镍、钯催化剂(C11/Me3Al/MWNTs和C12/Me3Al/MWNTs)。由于多壁碳纳米管的大比表面积和良好的热质传递作用,相比C11、C12和多壁碳纳米管物理掺杂的三维立体α-二亚胺镍、钯配合物(C11@MWNTs和C12@MWNTs),C11/Me3Al/MWNTs和C12/Me3Al/MWNTs对于降冰片烯均聚和降冰片烯与甲基丙烯酸正丁酯的共聚呈现出较高的催化活性和产率。除此之外,多壁碳纳米管负载镍催化剂C11/Me3Al/MWNTs催化所得纳米复合聚合物中,碳纳米管分散均匀,并且机械性能也得到加强。
     聚降冰片烯的功能化一直是扩大降冰片烯应用前景的有效途径。设计合成出两类新型苯并降冰片烯衍生物单体(OAc)2BenzoNBD和(OCH2PhBr)2-BenzoNBD,在甲苯中采用C2/B(C6F5)3分别对其与5-降冰片烯-2-亚甲基丁基醚进行共聚合研究,催化活性达到3.2×104gpolymer/molNi·h。苯并降冰片烯衍生物在共聚物中具有非常高的插入率,当苯并降冰片烯衍生物(OAc)2BenzoNBD和(OCH2PhBr)2BenzoNBD加入摩尔比为10-50%时,其插入率分别为9.1-26.7%和9.7-30.4%。该聚合物具有很好的热稳定性,玻璃化转变温度和透光率。能够通过溶液成膜和静电纺丝技术进行加工处理,采用溶液成膜法制备的共聚物薄膜在可见光范围具有良好透光性,静电纺丝技术制备的聚合物纤维表面光滑,直径约700-1200nm。
In this paper, a series of novel three-dimensional geometry9,10-dihydro-9,10-ethanoanthracene-11,12-diimine nickel complexes with different aryl substituentsC1-C4(Aryl: C1,2,6-dimethylphenyl; C2,2,6-diisopropylphenyl; C3,2,4,6-trimethylphenyl; C4,2,6-dimethyl-4-bromophenyl) were synthesized. The solid-statestructures of all complexes had been determined by single crystal X ray diffractions.In these complexes, the coordination geometries of the complexes C1, C3and C4were demonstrated to be very similar in the solid state. They were both mononuclearand four-coordinate. However, the crystal structure of C2showed a binuclearcomplex, where each nickel atom is five-coordinate. The two nickel atoms togetherwith two bromine atoms form planar four-membered ring.
     The nickel complexes C1-C4, with three-dimensional geometry, exhibited veryhigh activities for norbornene (NB) homopolymerization with only B(C6F5)3ascocatalyst(107gpolymer/molNi·h). To investigate whether they also had high activitiestoward copolymerization of NB and5-norbornene-2-yl acetate(NB-OCOCH3),complexes C2and C3were selected for copolymerization of NB and NB-OCOCH3inrelatively high activities. Comparing the activities with structures of catalysts, it couldbe found that the activities were following the law: C2>C3>C1>C4. The activitieswere affected remarkably by bulky effect and electronic effect, larger steric hindranceand stronger electron-donating effect of substituents around the aryl in the ligandcould increase the activities. The reactivity ratios of the NB and NB-OCOCH3monomers for C2/B(C6F5)3system by the Kelen-Tüd s method were determined toberNB OCOCH3=0.05and rNB=6.72, respectively. Moreover, the mechanism ofpolymerization catalyzed by the novel three-dimensional geometry nickel(II)complexes was presented and supported by the end group analysis of the polymer anddensity functional theory (DFT) calculation of the reaction. The substituent effect ofthe catalysts and the interaction between Ni2+and NB were discussed, and the resultsshowed that α-diimine nickel complexes with smaller HOMO–LUMO gap couldachieve higher reactivity.
     Six three-dimensional geometry9,10-dihydro-9,10-ethanoanthracene-11,12-diimine methyl palladium chloride complexes C5-C10with different aryl substituents(Aryl: C5,2,6-dimethylphenyl; C6,2,6-diisopropylphenyl; C7,2,4,6-trimethylphenyl; C8,2,6-dimethyl-4-bromophenyl; C9,4-chlorophenyl; C10,4-trifluoromethylphenyl) were synthesized and characterized. The solid-state structuresof palladium complexes C5, C7and C9had been determined by single crystal X raydiffractions. They featured a square-planar coordination of the central metal. Thebond angles and distances in the palladium coordination plane were within thestandard range for these types of complexes. Two aniline moieties of C5, C7and C9were nearly perpendicular to the five-membered coordination plane, showing noobviously repulsive interactions between the aniline moiety and backbonesubstituents.
     The catalytic system C5-C10/B(C6F5)3exhibited high activities(105gpolymer/molPd·h) in the homopolymeization of norbornene and copolymerization ofnorbornene with5-norbornene-2-carboxylic acid methyl ester. Introduction ofthree-dimensional geometry on the backbone of palladium complexes couldeffectively improve their thermal stability and afford high incorporation of polarmonomer. The α-diimine palladium complexes with big steric hindrance or stronglyelectron-donating on the aryl ring of ligand could achieve higher reactivities.Moreover, The13C NMR and1H NMR analysis of polymer revealed that the bond ofpalladium-halogen of complexes could be effectively activated by B(C6F5)3.
     Supported catalyst was an effective method that increased the catalysts’ stabilityand prepared polyolefin nanocomposite materials. The covalently immobilizedmultiwalled carbon nanotubes(MWNTs) supported three-dimensional geometryα-diimine nickel, palladium catalysts(C11/Me3Al/MWNTs and C12/Me3Al/MWNTs)were prepared by corresponding α-diimine nickel(C11), palladium(C12) complexesand Me3Al activated MWNTs(Me3Al/MWNTs). Compared with C11, C12andphysical mixing of nickel, palladium catalysts with MWNTs(C11@MWNTs andC12@MWNTs), C11/Me3Al/MWNTs and C12/Me3Al/MWNTs showed improvedactivity and productivity in norbornene homopolymerization and copolymerizationwith polar monomer. The morphology of the resulting polymers obtained from C11/Me3Al/MWNTs revealed that the MWNTs were dispersed uniformly in polymerand wrapped by polymers to squeeze out of spherical particles, leading to theenhanced processability and mechanical properties.
     The functionalization of polynorbornene was proved to be an effective strategyto expand its application prospect. Two novel benzonorbornadiene derivatives(OAc)2BenzoNBD and (OCH2PhBr)2BenzoNBD monomers were synthesized andused to copolymerization with2-butoxymethylene norbornene(BN) by the catalyticsystem of C2/B(C6F5)3in toluene, respectively. The (OCH2PhBr)2BenzoNBD or(OAc)2BenzoNBD content in the copolymers could be controlled up to9.1-26.7%or9.7-30.4%by varying the comonomer feed ratios (OCH2PhBr)2BenzoNBD or(OAc)2BenzoNBD from10%to50%. The BN/(OCH2PhBr)2BenzoNBD copolymersand BN/(OAc)2BenzoNBD copolymers exhibited high thermal stability and highglass transition temperature, together with excellent optical transparency. Copolymerswere processed into films and fibers by solution casting method and electrospinning.The films showed good transparency in the visible region, the fibers were uniformand their surfaces were reasonably smooth, with the average diameters of fibersranging from700to1200nm.
引文
[1] Ivin K J, Mol J C. Olefin metathesis and metathesis polymerization[M], Academic Press, SanDiego,1997,407-410.
    [2] Kress J, Wesolek M, Osborn J A. Tungsten (IV) carbenes for the metathesis of olefins. Directobservation and identification of the chain carrying carbene complexes in a highly activecatalyst system [J]. Journal of the Chemical Society, Chemical Communications,1982,9:514-516.
    [3] Kress J, Osborn J A, Greene R M E, et al. First direct observation of the simultaneouspresence and of the interconversion of chain-propagating metal-carbene andmetallacyclobutane complexes in a catalytic olefin metathesis reaction: the ring-openingpolymerization of norbornene [J]. Journal of American Chemistry Society,1987,109(3):899-901.
    [4] Schrock R R, Feldman J, Cannizzo L F, et al. Structure of a poly[(1-4)-a-D-gaIactosamineanhydride] studied by X-ray diffraction coupled with conformational analysis [J].Macromolecules,1987,20(5):1172-1174.
    [5] Takashima Y, Nakayama Y, Harada A. Synthesis of a novel oxotungsten(VI) complex having achelating bis(aryloxo) ligand and its catalytic behavior for ring-opening metathesispolymerization [J]. Chemistry Letters,2001,6:488-489.
    [6] Lehtonen A, Sillanp R. New practical tungsten(VI) based catalyst systems for ring openingmetathesis polymerisation [J]. Inorganic Chemistry Communications,2002,5(4):267-268.
    [7] Murdzek J S, Schrock R R. Well-characterized olefin metathesis catalysts that containmolybdenum [J]. Organometallics,1987,6(6):1373-1374.
    [8] Murdzek J S, Schrock R R. Fractal geometry in branched epoxy polymer kinetics [J].Macromolecules,1987,20(10):2642-2644.
    [9] Bazan G C, Schrock R R, Cho H N, et al. Polymerization of functionalized norbornenesemploying Mo(CH-t-Bu)(NAr)(O-t-Bu)2as the initiator [J]. Macromolecules,1991,24(16):4495-4502.
    [10] Heroguez V, Fontanille M. Polymerizability of norbornene in ring-opening metathesispolymerization initiated by Mo-based complexes [J]. Journal of Polymer Science Part A:Polymer Chemistry,1994,32(9):1755-1760.
    [11] Cazalis C, Héroguez V, Fontanille M. Polymerizability of cycloalkenes in “living” ring-opening metathesis polymerization initiated by schrock complexes,2. effect of initiatorstructure [J]. Macromolecular Chemistry and Physics,2001,202(9):1513-1517.
    [12] Nomura K, Takahashi S, Imanishi Y. Synthesis of poly(macromonomer)s by repeatingring-opening metathesis polymerization (ROMP) with Mo(CHCMe2Ph)(NAr)(OR)2initiators[J]. Macromolecules,2001,34(14):4712-4723.
    [13] Hiya K, Nakayama Y, Yasuda H. Facile syntheses of bis[1-(arylimino)ethyl]pyridineMoCl3/MMAO catalytic systems and their dual catalytic functions for ROMP of norborneneand linear polymerization of ethylene [J]. Macromolecules,2003,36(21):7916-7922.
    [14] Schwab P, France M B, Ziller J W, et al. A Series of well-defined metathesis catalysts–synthesis of [RuCl2(=CHR′)(PR3)2] and its reactions [J]. Angewandte Chemie InternationalEdition,1995,34(18):2039-2041.
    [15] Amoroso D, Fogg D E. Ring-opening metathesis polymerization via ruthenium complexes ofchelating diphosphines [J]. Macromolecules,2000,33(8):2815-2818.
    [16] Castarlenas, R, Sémeril, D, Noels, A F, et al. Allenylidene-ruthenium-arene precatalyst forring opening metathesis polymerisation [J]. Journal of Organometallic Chemistry,2002,663(1-2):235-238.
    [17] Haigh D M, Kenwright A M, Khosravi E. Ring opening metathesis polymerisations ofnorbornene and norbornadiene derivatives containing oxygen: a study on the regeneration ofgrubbs catalyst [J]. Tetrahedron,2004,60(34):7217-7224.
    [18] Bernechea M, Lugan N, Gil B, et al. Six-coordinate alkynyldiphenylphosphine ruthenium(II)complexes: synthesis, structure, and catalytic activity as ROMP initiators [J].Organometallics,2006,25(3):684-692.
    [19] Gilliom L R, Grubbs R H. Titanacyclobutanes derived from strained, cyclic olefins: the livingpolymerization of norbornene [J]. Journal of American Chemistry Society,1986,108(4):733-742.
    [20] Eisch J J, Adeosun A A. Novel alkylidenating agents via the α lithiation of monoalkyl group4metal derivatives: methylidene-metal complexes and their active lithiated precursors [J].European Journal of Organic Chemistry,2005,2005(6):993-997.
    [21] Yamada J, Fujiki M, Nomura K. A Vanadium(V) alkylidene complex exhibiting remarkablecatalytic activity for ring-opening metathesis polymerization (ROMP)[J]. Organometallics,2005,24(10):2248-2250.
    [22] Nakayama Y, Tanimoto M, Shiono T. Effect of cocatalysts on the catalytic activities oftantalum-and niobium-based catalysts for ring-opening metathesis polymerization ofnorbornene [J]. Macromolecular Rapid Communications,2007,28(5):646-650.
    [23] Rietveld M H P, Lohner P, Nijkamp M G, et al. A novel synthetic route to tantalum–zincneophylidyne complexes stabilized by ortho-chelating arylamine ligands; the X-Raystructure of [TaCl2(μ-C6H4CH2NMe22)(μ-CCMe2Ph)ZnCl(THF)][J]. Chemistry-AEuropean Journal,1997,3(5):817-822.
    [24] Burmaghim J L, Girolami G S. Ring-opening metathesis polymerization of norbornene byCp*2Os2Br4and related compounds [J]. Organometallics,1999,18(10):1923-1929.
    [25] Frech C M, Blacque O, Schmalle H W, et al. Unprecedented ROMP activity of low-valentrhenium–nitrosyl complexes: mechanistic evaluation of an electrophilic olefin metathesissystem [J]. Chemistry-A European Journal,2006,12(12):3325-3338.
    [26] Kennedy J P, Makowski H S. Carbonium ion polymerization of norbornene and itsderivatives [J]. Journal of Macromolecular Science: Part A-Chemistry,1967,1(3):345-370.
    [27] Kaminsky W, Bark A, D ke I, et al. Catalytic Olefin Polymerization [M], Kodansha–Elsevier,Tokyo–Amsterdam,1990,425-438.
    [28] Peacock A J. Handbook of polyethylene structures, properties, and applications [M]. MarcelDekker, Inc.: New York, USA,2000.
    [29] Hiemenz P C, Lodge T P. Polymer chemistry second edition [M]. Taylor&Francis Group,LLC: Florida, USA,2007.
    [30] Janiak C, Lassahn P G. The vinyl homopolymerization of norbomene [J]. MacromolecularRapid Communications,2001,22(7):479-492.
    [31] Janiak C, Lassahn P G. Metal catalysts for the vinyl polymerization of norbomene [J]. Journalof Molecular Catalysis A: Chemical,2001,166(2):193-209.
    [32] Johnson L K, Killian C M, Brookhart M. New Pd(II)-and Ni(II)-based catalysts forpolymerization of ethylene and α-olefins [J]. Journal of American Chemistry Society,1995,117(23):6414-6415.
    [33] Guo L H, Gao H Y, Guan Q R, et al. Substituent effects of the backbone in α-diiminepalladium catalysts on homo-and copolymerization of ethylene with methyl acrylate [J].Organometallics,2012,31(17):6054-6062
    [34] Shi X, Jin G X. Synthesis and characterization of nickel(II) and palladium(II) complexesbased on tridentate [N NP] and [N NS] ligands and their applications in norbornenepolymerization [J]. Organometallics,2012,31(13):4748-4754.
    [35] Antonov A A, Semikolenova N V, Zakharov V A, et al. Vinyl polymerization of norborneneon nickel complexes with bis(imino)pyridine ligands containing electron-withdrawinggroups [J]. Organometallics,2012,31(3):1143-1149.
    [36] Weberski M P, Jr., Chen C, et al. Ligand steric and fluoroalkyl substituent effects onenchainment cooperativity and stability in bimetallic nickel(II) polymerization atalysts [J].Chemistry-A European Journal,2012,18(34):10715-10732.
    [37] Sacchi M C, Sonzogni M, Losio S, et al. Vinylic polymerization of norbornene by latetransition metal-based catalysis [J]. Macromolecular Chemistry and Physics,2001,202(10):2052-2058.
    [38] Chen J X, Huang Y B, Li Z S, et al. Syntheses of iron, cobalt, chromium, copper and zinccomplexes with bulky bis(imino)pyridyl ligands and their catalytic behaviors in ethylenepolymerization and vinyl polymerization of norbornene [J]. Journal of Molecular Catalysis A:Chemical,2006,259(1-2):133-141.
    [39] Lassahn P-G, Lozan V, Timco G A, et al. Homo-and heterometallic carboxylate cagecomplexes as precatalysts for olefin polymerization-activity enhancement through"inertmetals”[J]. Journal of Catalysis,2004,222(1):260-267.
    [40] Sato Y, Nakayama Y, Yasuda H. Controlled vinyl-addition-type polymerization of norborneneinitiated by several cobalt complexes having substituted terpyridine ligands [J]. Journal ofOrganometallic Chemistry,2004,689(4):744-750.
    [41] Sacchi M C, Sonzogni M, Losio S, et al. Vinylic polymerization of norbornene by latetransition metal-based catalysis [J]. Macromolecular Chemistry and Physics,2001,202(10):2052-2058.
    [42] Bao F, Lü X Q, Qiao Y Q, et al. Nickel and cobalt complexes bearing β-ketoamine ligands:syntheses, structures and catalytic behavior for norbornene polymerization [J]. AppliedOrganometallic Chemistry,2005,19(8):957-963.
    [43] Bao F, Lü X Q, Gao H Y, et al. Vinylic and ring-opening metathesis polymerization ofnorbornene with bis(β-ketoamine) cobalt complexes [J]. Journal of Polymer Science Part A:Polymer Chemistry,2005,43(22):5535-5544.
    [44] Nelkenbaum E, Kapon M, Eisen M S. Synthesis and molecular structures of neutral nickelcomplexes. catalytic activity of (benzamidinato)(acetylacetonato)nickel for the additionpolymerization of norbornene, the oligomerization of ethylene, and the dimerization ofpropylene [J]. Organometallics,2005,24(11):2645-2659.
    [45] Nelkenbaum E, Kapon M, Eisen M S. Retro-brook rearrangement induces the formation ofan octahedral nickel(benzamidinate) complex; synthesis, structure and catalytic activity [J].Journal of Organometallic Chemistry,2005,690(9):2297-2305.
    [46] Zai Shaobo, Gao Haiyang, Huang Zengfang, et al. Substituent effects of pyridine-aminenickel catalyst precursors on ethylene polymerization [J]. ACS Catalysis,2012,2(3):433-440.
    [47] Peoples B C, Vega G D L, Valdebenito C, et al. Nickel pre-catalysts bearing [(N)-imidoylamidine] ligands; influence of the presence of pyridine and pentafluorophenyl groupsin ligand backbone on the reactivity in ethylene polymerizations [J]. Journal ofOrganometallic Chemistry,2012,700(1):147-153.
    [48] Gao Haiyang, Guo Wenjuan, Bao Feng, et al. Synthesis, molecular structure, andsolution-dependent behavior of nickel complexes chelating anilido imine donors and theircatalytic activity toward olefin polymerization[J]. Organometallics,2004,23(26):6273-6280.
    [49] Gao Haiyang, Zhang Junkai, Chen Yan, et al. Vinyl-polymerization of norbornene withnovel anilido–imino nickel complexes/methylaluminoxane: abnormal influence ofpolymerization temperature on molecular weight of polynorbornenes [J]. Journal ofMolecular Catalysis A: Chemical,2005,240(1-2):178-185.
    [50] Wan Haiyu, Meng Xia, Jin Guoxin. Synthesis, molecular structure and norbornenepolymerization behavior of three-coodinate nickel () complexes with chelatinganilido-imineligands [J]. Dalton Transactions,2006,21:2579-2585.
    [51] Zhang Dao, Jin Guoxin, Weng Linhong, et al. Synthesis, molecular structures, andnorbornene addition polymerization activity of the neutral nickel catalysts supported byβ-diketiminato [N, N], ketiminato [N, O], and schiff-base [N, O] ligands [J]. Organometallics,2004,23(13):3270-3275.
    [52] Li Yongfei, Gao Meili, Wu Qing. Vinyl polymerization of norbornene by nickel(II)complexes bearing β-diketiminate ligands [J]. Applied Organometallic Chemistry,2007,21(11):965-969.
    [53] Li Yongfei, Jiang Long, Wang Lingyun, et al. Nickel (II) complexes supported by afluorinated β-diketiminate backbone ligand: synthesis, catalytic activity toward norbornenepolymerization, and the oxygenated species [J]. Applied Organometallic Chemistry,2006,20(3):181-186.
    [54] Sacchi M C, Sonzogni M, Losio S, et al. Vinylic polymerization of norbornene by latetransition metal-based catalysis [J]. Macromolecular Chemistry and Physics,2001,202(10):2052-2058.
    [55] Berchtold B, Lozan V, Lassahn P G, et al. Nickel(II) and palladium(II) complexes withα-dioxime ligands as catalysts for the vinyl polymerization of norbornene in combinationwith methylaluminoxane, tris(pentafluorophenyl)borane, or triethylaluminum cocatalystsystems [J]. Journal of Polymer Science Part A: Polymer Chemistry,2002,40(21):3604-3614.
    [56] Li Yuesheng, Li Yanrong, Li Xiaofang. New neutral nickel(II) complexes bearing pyrrole-imine chelate ligands: synthesis, structure and norbornene polymerization behavior [J].Journal of Organometallic Chemistry,2003,667(1-2):185-191.
    [57] Liu Hao, Zhao, Weizhen, Yu Jiangang, et al. Synthesis, characterization and ethylenepolymerization behavior of nickel dihalide complexes bearing bulky unsymmetricala-diimine ligands [J]. Catalysis Science&Technology,2012,2(2):415-422.
    [58] Sen A, Lai T W, Thomas R R. Reactions of electrophilic transition metal cations with olefinsand small ring compounds. Rearrangements and polymerizations [J]. Journal ofOrganometallic Chemistry,1988,358(1-3):567-588.
    [59] Mehler C, Risse W. The Pd2+-catalyzed polymerization of norbornene [J]. MakromolekulareChemie, Rapid Communications,1991,12(5):255-259.
    [60] Mkoyi H D, Ojwach S O, Guzei I A, et al.(Pyrazol-1-yl)carbonyl palladium complexes ascatalysts for ethylene polymerization reaction [J]. Journal of Organometallic Chemistry,2013,724:95-101.
    [61] Lee D H, Lee J Y, Ryu J Y, et al. Novel nickel catalysts containing tetradentate chelatingligands for the polymerization of norbornene [J]. Bulletin of the Korean Chemical Society,2006,27(7):1031-1037.
    [62] Galletti A M R, Hayatifar, M. Highly active and easily accessible catalysts for vinylpolymerization of norbornene obtained by oxidative addition of salicylaldimine ligands tobis(1,5-cyclooctadiene)nickel(0) and methylaluminoxane [J]. Journal of Polymer SciencePart A: Polymer Chemistry,2012,50(21):4459-4464
    [63] Ulbrich A H D P S, Campedelli R R, Milani J L S, et al. Nickel catalysts based on phenylether-pyrazol ligands: synthesis, XPS study, and use in ethylene oligomerization [J]. AppliedCatalysis A: General,2013,453:280-286.
    [64] Brassat I, Keim W, Killat S, et al. Synthesis and catalytic activity of allyl, methallyl andmethyl complexes of nickel(II) and palladium(II) with biphosphine monoxide ligands:oligomerization of ethylene and copolymerization of ethylene and carbon monoxide [J].Journal of Molecular Catalysis A: Chemical,2000,157(1-2):41-48.
    [65] Starzewski K A O. Scope of olefin polymerization nickel catalysts [J]. Science,2000,288(5472):1749-1750.
    [66] Lutz E F. Shell higher olefins process [J]. Journal of Chemical Education,1986,63(3):202-203.
    [67] Keim W. Nickel: an element with wide application in industrial homogeneous catalysis [J].Angewandte Chemie International Edition,1990,29(3):235-244.
    [68] Piche L, Daigle J, Rehse G, et al. Structure-activity relationship of palladiumphosphanesulfonates: toward highly active palladium-based polymerization catalysts [J].Chemistry-A European Journal,2012,18(11):3277-3285.
    [69] Kaminsky W. The discovery of metallocene catalysts and their present state of the art [J].Journal of Polymer Science Part A: Polymer Chemistry,2004,42(16):3911-3921.
    [70] Resconi L, Cavallo L, Fait A, et al. Selectivity in propene polymerization with metallocenecatalysts [J]. Chemical Reviews,2000,100(4):1253-1346.
    [71] Gibson V C, Spitzmesser S K. Advances in non-metallocene olefin polymerization catalysis[J]. Chemical Reviews,2003,103(1):283-315.
    [72] Hlatky G G. Heterogeneous single-site catalysts for olefin polymerization [J]. ChemicalReviews,2000,100(4):1347-1376.
    [73] Severn J R, Chadwick J C, Duchateau R, et al.“Bound but not gagged”immobilizing single-site α-olefin polymerization catalysts [J]. Chemical Reviews,2005,105(11):4073-4147.
    [74] van Leeuwen P W N M, Chadwick J C. Homogeneous catalysts. activity–stability-deactivation [M]. Wiley-VCH Verlag GmbH, Weinheim,2011.
    [75] Kaul F A R, Puchta G T, Schneider H, et al. Immobilization of bis(imino)pyridyliron(II)complexes on silica [J]. Organometallics,2001,21(1):74-82.
    [76] Priftis D, Nikolaos P, Georgios S, et al. Surface-initiated titanium-mediated coordinationpolymerization from catalyst-functionalized singleand multiwalled carbon nanotubes [J].Macromolecules,2009,42(9):3340-3346.
    [77] Preishuber-Pflugl P, Brookhart M. Highly acive supported nickel diimine catalysts forpolymerization of ethylene [J]. Macromolecules,2002,35(16):6074-6076.
    [78] Yuan Bin, He Xianhui, Chen Yiwang, et al. Preparation of nanosilica/polynorbornenenanocomposite by covalently immobilized silica-supported acetylacetonate palladium(II)dichloride catalyst [J]. Macromolecular Chemistry and Physics,2011,212(21):2378-2388.
    [79] Hermans J, Henrioulle P. U.S.Pat.,3769233,197.
    [80] Severn J R, Chadwick J C. MgCl2-based supports for the immobilization and activation ofnickel diimine catalysts for polymerization of ethylene [J]. Macromolecules,2004,37(17):6258-6259.
    [81] Choi Y, Soares J B P. Ethylene slurry polymerization using nickel diimine catalystscovalently-attached onto MgCl2-based supports [J]. Polymer,2010,51(11):2271-2276.
    [82] Ran R. Polymer-supported Ziegler–Natta catalyst for the polymerization of isoprene [J].Journal of Polymer Science Part A: Polymer Chemistry,1993,31(6):1561-1569.
    [83] Roseoe S B, Freehet J M J, Walzer J F, Dias A J. Polyolefin spheres from metallocenessupported on noninteracting polystyrene [J]. Scienee,1998,280(5361):270-273.
    [84] Jin G, Zhang D. Micron-granula polyolefin with self-immobilized nickel and iron diiminecatalysts bearing one or two allyl groups [J]. Journal of Polymer Science Part A: PolymerChemistry,2004,42(4):1018-1024.
    [85] Zhang D, Jin G X, Hu N. Self-immobilized catalysts for ethylene polymerization: neutral,single-component salicylaldiminato phenyl nickel(ii) complexes bearing allyl substituents [J].Chemical Communications,2002,6:574-575.
    [86] Li W, Zhou Q, Jiang B B, et al. Organic/inorganic support for immobilizing(n-BuCp)2ZrCl2/TiCl3hybrid catalyst to prepare polymer blends [J]. Polymer International,2011,60(4):676-684.
    [87] Benedikt G M, Elce E, Goodall B L, et al. Copolymerization of ethene with norbornenederivatives using neutral nickel catalysts [J]. Macromolecules,2002,35(24):8978-8988.
    [88] Naga N, Imanishi Y. Composition distribution of ethylene or propylene-norbornenecopolymers obtained with zirconocene catalysts [J]. Journal of Polymer Science Part A:Polymer Chemistry,2003,41(3):441-448.
    [89] Naga N. Copolymerization of ethylene with cycloolefins or cyclodiolefins by aconstrained-geometry catalyst [J]. Journal of Polymer Science Part A: Polymer Chemistry,2005,43(6):1285-1291.
    [90] Wehrmann P, Zuideveld M, Thomann R, et al. Copolymerization of ethylene with1-buteneand norbornene to higher molecular weight copolymers in aqueous emulsion [J].Macromolecules,2006,39(18):5995-6002.
    [91] Gao H Y, Chen Y, Zhu F M, et al. Copolymerization of norbornene and styrene catalyzed bya novel anilido–imino nickel complex/methylaluminoxane system [J]. Journal of PolymerScience Part A: Polymer Chemistry,2006,44(18):5237-5246.
    [92] Tritto I, Boggioni L, Ferro D R. Metallocene catalyzed ethene-and propene co-norbornenepolymerization: Mechanisms from a detailed microstructural analysis [J]. CoordinationChemistry Reviews,2006,250(1-2):212-241.
    [93] Terao H, Iwashita A, Ishii S, et al. Ethylene/norbornene copolymerization behavior ofbis(phenoxy-imine)Ti complexes combined with MAO [J]. Macromolecules,2009,42(13):4359-4361.
    [94] Li Yongfei, Gao Haiyang, Wu Qing. Homo-and Copolymerization of ethylene andnorbornene with bis(β-diketiminato) titanium complexes activated with methylaluminoxane[J]. Journal of Polymer Science: Part A: Polymer Chemistry,2008,46(1):93-101.
    [95] He Lipeng, Liu Jingyu, Li Yanguo, et al. High-temperature living copolymerization ofethylene with norbornene by titanium complexes bearing bidentate [O, P] ligands [J].Macromolecules,2009,42(21):8566-8570.
    [96] Cai Zhengguo, Harada R, Nakayama Y, et al. Highly active living random copolymerizationof norbornene and1-alkene with ansa-fluorenylamidodimethyltitanium derivative:substituent effects on fluorenyl ligand [J]. Macromolecules,2010,43(10):4527-4531.
    [97] Chiniwalla P, Bai Y, Elce E, et al. Crosslinking and decomposition reactions of epoxidefunctionalized polynorbornene. part I FTIR and thermogravimetric analysis [J]. Journal ofApplied Polymer Science,2003,89(2):568-577.
    [98] Chiniwalla P, Bai Y, Elce E, et al. Crosslinking and decomposition reactions ofepoxide-functionalized polynorbornene. II.impact of reactions on mechanical properties [J].Journal of Applied Polymer Science,2004,91(2):1020-1029.
    [99] He Fuping, Chen Yiwang, He Xiaohui, et al. Copolymerization of norbornene and5-norbornene-2-yl acetate using novel bis(β-ketonaphthylamino) Ni(II)/B(C6F5)3/AlEt3catalytic system [J]. Journal of Polymer Science: Part A: Polymer Chemistry,2009,47(16):3990-4000.
    [100] Zhou Weihua, He Xiaohui, Chen Yiwang, et al. Vinyl-addition copolymerization ofnorbornene and polar norbornene derivatives using novel bis(β-ketoamino)Ni(II)//B(C6F5)3/AlEt3catalytic systems [J]. Journal of Applied Polymer Science,2011,120(4):2008-2016.
    [101] Xing Yuepeng, Chen Yiwang, He Xiaohui. Copolymerization of norbornene withmethoxycarbonylnorbornene catalyzed by Ni{CF3C(O)CHC[N(naphthyl)]CH3}2/B(C6F5)3catalytic system and good processability for dry/wet phase inversion and electrospinningtechnique [J]. Journal of Polymer Science: Part A: Polymer Chemistry,2011,49(20):4425-4432.
    [102] Casares J A, Espinet P, Salas G. Palladium catalysts for norbornene polymerization. a studyby NMR and calorimetric methods [J]. Organometallics,2008,27(15):3761-3769.
    [103] Kaminsky W, Laban A. Metallocene catalysis [J]. Applied Catalysis A: General,2001,222(1-2):47-53.
    [104] Bergstr m C H, Sperlich B R, Sepp l J V. Investigation of the microstructure ofmetallocene-catalyzed norbornene-ethylene copolymers using NMR spectroscopy [J].Journal of Polymer Science Part A: Polymer Chemistry,2000,36(10):1633-1638.
    [105] Kiesewetter J, Arikan B, Kaminsky W. Copolymerization of ethene with norbornene usingpalladium(II) a-diimine catalysts: influence of feed composition, polymerization temperature,and ligand structure on copolymer properties and microstructure [J]. Polymer,2006,47(10):3302-3314.
    [106] Shiono T, Sugimoto M, Hasan T, et al. Random copolymerization of norbornene with higher1-alkene with ansa-fluorenylamidodimethyltitanium catalyst [J]. Macromolecules,2008,41(22):8292-8294.
    [107] Finkelshtein E S, Makovetskii K L, Gringolts M L, et al. Addition-type polynorborneneswith Si(CH3)3side groups:synthesis, gas permeability, and free volume [J]. Macromolecules,2006,39(20):7022-7029.
    [108] Grove N R, Kohl P A, Bidstrup Allen S, et al. Functionalized polynorbornene dielectricpolymers:adhesion and mechanical properties [J]. Journal of Polymer Science Part B:Polymer Physics,1999,37(21):3003-3010.
    [109] Wendt R A, Fink G. Homogeneous metallocene/MAO-catalyzed polymerizations of polarnorbornene derivatives: copolymerizations using ethene, and terpolymerizations usingethene and norbornene [J]. Macromolecular Chemistry and Physics,2000,201(12):1363-1373.
    [110] Goodall B L, Benedikt G M, McIntosh L H. Modified cycloolefin addition polymer andcurable resin composition containing the same.1995, WO9514048.
    [111] Goodall B L, Risse W, Mathew J P. Addition polymer of polycloolefins containingfunctional substituents.1996, WO9637526.
    [112] Myagmarsuren G, Lee K, Jeong O, et al. Homopolymerization of5-alkyl-2-norbornenes andtheir copolymerization with norbornene over novel Pd(acac)2/PPh3/BF3OEt2catalyst system[J]. Polymer,2005,46(11):3685-3692.
    [113] Breunig S, Risse W. Transition-metal-catalyzed vinyl addition polymerizations ofnorbornene derivatives with ester groups [J]. Die Makromolekulare Chemie,1992,193(11):2915-2927.
    [114] Suzuki H, Matsumura S, Satoh Y, et al. Random copolymerizations of norbornene withother monomers catalyzed by novel Ni compounds involving N-or O-donated ligands [J].Reactive and Functional Polymers,2004,58(2):77-91.
    [115] Wang L Y, Li Y F, Wu Q. Homo-and copolymerization of norbornene and norbornenederivative with Ni-and Pd-based β-ketoiminato complexes and MAO [J]. European PolymerJournal,2006,42(2):322-327.
    [116] Kaita S, Matsushita K, Tobita M, et al. Cyclopentadienyl nickel and palladium complexes/activator system for the vinyl-type copolymerization of norbornene with norbornenecarboxylic acid esters: control of polymer solubility and glass transition temperature [J].Macromolecular Rapid Communications,2006,27(20):1752-1756.
    [117] Wang Kaiti, Chen Yiwang, He Xiaohui, et al. Ni(II) and Pd(II) complexes bearing novelbis(β-ketoamino) ligandand their catalytic activity toward copolymerization of norborneneand5-norbornene-2-yl acetate combined with B(C6F5)3[J]. Journal of Polymer Science PartA: Polymer Chemistry,2011,49(15):3304-3313.
    [118] Liu Fengshou, Hu Haibin, Xu Ying, et al. Thermostable α-diimine nickel(II) catalyst forethylene polymerization: effects of the substituted backbone structure on catalytic propertiesand branching structure of polyethylene [J]. Macromolecules,2009,42(20):7789-7796.
    [119] Leung D H, Ziller J W, Guan Z B. A new strategy for late transition metal olefinpolymerization catalysis [J]. Journal of the American Chemical Society,2008,130(24):7538-7539.
    [120] Gates D P, Svejda S A, Onate E, et al. Synthesis of branched polyethylene using(α-diimine)nickel(II) catalysts: influence of temperature, ethylene pressure, and ligandstructure on polymer properties[J]. Macromolecules,2000,33(7):2320-2334.
    [121] Wegner M M, Ott A K, Rieger B. Gas phase polymerization of ethylene with supportedα-diimine nickel(II) catalysts [J]. Macromolecules,2010,43(8):3624-3633.
    [122] Popeney C S, Guan Z B. Effect of ligand electronics on the stability and chain transfer ratesof substituted Pd(II) α-diimine catalysts [J]. Macromolecules,2010,43(8):4091-4097.
    [123] Mondal R, Shah B K, Neckers D C. Photogeneration of heptacene in a polymer matrix [J].Journal of the American Chemical Society,2006,128(30):9612-9613.
    [124] Vijayakrishna K, Padmanabhan S, Kannan T, et al. Highly active novel Ni-diiminepre-catalyst containing bis-ketimine ligand for the vinyl polymerization of norbornene [J].Polymer Bulletin,2012,68(3):635-645.
    [125] Appukuttan V, Kim J H, Ha C S, et al. Influence of type and positioning of N-arylsubstituents on vinyl polymerization of norbornene by Ni(II) α-diimine complexes [J].Korean Journal of Chemical Engineering,2008,25(3):423-425.
    [126] Funk J K, Andes C E, Sen A. Addition polymerization of functionalized norbornenes: theeffect of size, stereochemistry, and coordinating ability of the substituent [J].Organometallics,2004,23(8):1680-1683.
    [127] Sen A. Mechanistic aspects of metal-catalyzed alternating copolymerization of olefins withcarbon monoxide [J]. Accounts of Chemical Research,1993,26(6):303-310.
    [128] Markies B A, Kruis D, Rietveld M H P, et al. Alkene and carbon monoxide insertionreactions of nitrogen-coordinated monoorganopalladium(II) complexes: the stepwiseconstruction of alternating copolymers of CO and alkenes on a palladium(II) center [J].Journal of the American Chemical Society,1995,117(19):5263-5274.
    [129] Kelen T, Tüd s F J. Analysis of the linear methods for determining copolymerizationreactivity ratios. I. a new improved linear graphic method [J]. Journal of MacromolecularScience: Part A-Chemistry,1975,9(1):1-27.
    [130] Barnes D A, Benedikt G M, Goodall B L, et al. Addition polymerization of norbornene-typemonomers using neutral nickel complexes containing fluorinated aryl ligands [J].Macromolecules,2003,36(8):2623-2632.
    [131] Jang Y C, Sung H K, Lee S, et al. Effects of tris(pentafluorophenyl)borane on the activationof zerovalent-nickel complex in the addition polymerization of norbornene [J]. Polymer,2005,46(25):1130-11310.
    [132] Barlow G K, Boyle J D, Cooley N A, et al. Mechanistic studies of alkene/COpolymerization with palladium complexes promoted by B(C6F5)3[J]. Organometallics,2000,19(8):1470-1476.
    [133] Mecking S, Johnson L K, Wang L, et al. Mechanisitic studies on the palladium-catalyzedcopoymerization for ethylene and α-olefins with methyl acrylate [J]. Journal of the AmericanChemical Society,1998,120(5):888-899.
    [134] Sehmid M, Ebethardt R, Klinga M, et al. New C2v-and chiral C2-Symmetric olefinpolymerization catalysts based on nickel(II) and palladium (II) diimine complexes bearing2,6-diphenylaniline moieties: synthesis, structural characterization, and first insight intopolymerization properties [J]. Organometallics,2001,20(11):2321-2330.
    [135] Shi X C, Jin G X. Synthesis and characterization of nickel(II) and palladium(II) complexesbased on tridentate [N-NP] and [N-NS] ligands and their applications in norbornenepolymerization [J]. Organometallics,2012,31(13):4748-4754.
    [136] Guo L H, Gao H Y, Guan Q R, Hu H B, Deng J A, Liu J, Liu F S, Wu Q. Substituent effectsof the backbone in α-diimine palladium catalysts on homo-and copolymerization of ethylenewith methyl acrylate [J]. Organometallics,2012,31(17):6054-6062.
    [137] He X H, Liu Y M, Chen L, et al. Ni(II) and Pd(II) complexes bearing benzocyclohexane-ketoarylimine for copolymerization of norbornene with5-norbornene-2-carboxylic ester [J].Journal of Polymer Science Part A: Polymer Chemistry,2012,50(22):4695-4704.
    [138] Klug H P, Alexander L E. X-ray diffraction procedures for polycrystalline and amorphousmaterials [M].1st edition, John Wiley&Sons, New York,1954,631.
    [139] Yu M F, Lourie O, Dyer M J, et al. Strength and breaking mechanism of multiwalled carbonnanotubes under tensile load [J]. Science,2000,287(5453):637-640.
    [140] Yu M F, Files B S, Arepall S, et al. Tensile loading of ropes of single wall carbon nanotubesand their mechanical properties [J]. Physical Review Letters,2000,84(24):5552-5555.
    [141] Krishnan A, Dujardin E, Ebbesen T W, et al. Young’s modulus of single-walled nanotubes[J]. Physical Review B,1998,58(20):14013-14019.
    [142] Poncharal P, Wang Z L, Ugarte D, et al. Electrostatic deflections and electromechanicalresonances of carbon nanotubes [J]. Science,1999,283(5407):1513-1516.
    [143] Ajayan P M, Shur J, Koratkar N. Utilizing interfaces in carbon nanotube reinforced polymercomposites for structural damping [J]. Journal of Materials Science,2006,41(23):7824-7829.
    [144] Ajayan P M. Nanotubes from Carbon [J]. Chemical Reviews,1999,99(7):1787-1799.
    [145] Fujiwara T, Shinba Y, Sugimoto K, et al. Novel high Tg low dielectric constant coil-shapedpolymer [J]. Journal of Photopolymer Science and Technology,2005,18(2):289-295.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700