用户名: 密码: 验证码:
快速热疲劳对无铅微焊点性能和微观组织的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电子封装微互连技术正在向小型化,高密度方向快速发展,微焊点不仅起着电气和机械连接的作用,还提供了散热的途径,因此微焊点的可靠性显得尤为重要。本文采用快速热疲劳研究无铅微焊点的界面与表面组织的变化与演化,金属间化合物(IMC)的生长规律以及在极限循环温度下的热疲劳现象;还采用快速热疲劳对LED进行应用研究,研究其对LED性能以及对芯片无铅微焊点的界面微观组织影响,并与在高低温恒湿条件下的常规热疲劳试验结果进行对比。结果表明,快速热疲劳对微焊点的性能和微观组织产生明显的影响,并可用其对微焊点的可靠性和相对使用寿命进行评估。
     本文首先设计并搭建了一套快速加热的实验研究装置,并采用无铅锡银铜焊料Sn3.0Ag0.5Cu (SAC305)分别制备球栅阵列(BGA)单基板和双基板微焊点。首先研究了快速热疲劳对微焊点界面和表面的性能和微观组织影响;另外还采用快速热疲劳对大功率LED进行测试,除了研究其对LED的性能影响外,还研究了其对LED中无铅微焊点(Au/Sn和Ni/Au)的微观组织影响,并与常规热疲劳下的结果进行比较。研究得出的主要结论如下:
     研究了快速热疲劳对单基板SAC305微焊点在不同循环时间和循环温度条件下的微观组织影响。在0h至12h循环时间以及在55-125℃和55-180℃循环温度的热疲劳过程中,焊点界面间IMC开始由扇贝状变成大波浪状,其厚度逐渐增厚,而且IMC中由开始单一的Cu6Sn5,后来在Cu6Sn5层与Cu层之间会生成新的IMC层Cu3Sn,且Ag3Sn颗粒由开始的短棒状变成椭圆的颗粒状。此外,还发现在IMC中Cu3Sn层内出现柯肯达尔孔洞,并且随温度升高越来越大。根据Fick扩散定律和分子动力学方程,IMC的生长厚度与累积测试时间的平方根大致呈线性关系,故拟合计算出了与传统热疲劳结果近似的扩散系数,扩散常数和活化能。还采用快速热疲劳对微焊点在60-200℃这种极限温度下分别进行24h和36h的实验时,发现了界面IMC呈锯齿状的生长,而且IMC的边界出现了疲劳裂纹现象,并正在进行萌生和扩展。因此,验证了快速热疲劳对微焊点研究具有一定的可行性。
     对比研究了快速热疲劳对双基板SAC305和63Sn37Pb两种微焊点在不同循环时间和循环温度条件下的微观组织影响。首先对双基板微焊点进行热模拟分析,分析在热循环过程中其受热分布。然后在循环温度为60-200℃的条件下观察循环时间为Oh,12h,24h,36h和72h的双基板SAC305微焊点微观组织,可以看到焊点界面中IMC开始由只有Cu6Sn5后演变成有Cu6Sns和Cu3Sn。在36小时后,焊点界面出现重结晶的现象,导致产生应力集中和裂纹的产生。在72小时后则发现裂纹已经充满整个截面,并且形成网络化。最后还通过扫描电镜(SEM)和X射线衍射(XRD)观察微焊点表面的形貌和成分,分析得出是由于在表面有氧化锡薄膜的存在,加上热膨胀系数(CTE)差异和氧化锡的脆性促使腐蚀沟形成,导致焊点的网络化龟裂失效的主要原因。观察在循环温度为55-180℃和相同的循环时间条件下的双基板63Sn37Pb微焊点界面和表面的微观组织,看到63Sn37Pb晶粒比SAC305的晶粒细小,而且没有出现重结晶的现象,裂纹从边界处开始萌生和扩展,最终扩展至整个焊点截面。最后根据热变形理论对双基板微焊点的失效过程进行演示,以上结论对评估焊点的热疲劳损伤有重要参考价值。
     研究了快速热循环对LED在工作状态和非工作状态下的性能影响,并与在高低温恒湿条件下的常规热疲劳试验的LED性能进行对比。在工作状态测试后的LED,以光通量为例,在测试24小时后下降了30%,达到了失效的条件;而非工作状态测试则在440小时下降了15%,在高低温恒湿条件下测试在552小时后仅下降了4%;同时,还对比光谱图,在工作状态的LED蓝光相对光谱提高36%,在非工作状态下提高了17%,而在高低温恒湿条件下只提高了7%,表明红绿光谱出现不同程度地下降。此外,色纯度和辐射功率都是出现了类似下降的情况,其幅度都逐渐降低;但是色温和正向工作电压却逐渐升高,而且工作状态的上升幅度最高,常规热疲劳试验的下降幅度最小。这表明快速热循环对LED的可靠性能影响非常显著,故可作为快速评估LED可靠性和相对使用寿命的一种方法。
     研究了快速热循环对LED芯片无铅微焊点(Au/Sn和Ni/Au)在工作状态和非工作状态下界面微观组织的影响。首先通过SEM观察在工作状态下测试的微观组织,观察到芯片n电极微焊点(Ni/Au)开始变形,微观组织出现空洞,p电极金属层(Au/Sn)也开始出现分层和剥离现象,随着时间的推移,现象越来越明显,分析原因是由于界面各材料的热膨胀系数不同产生了内应力,在LED工作过程中芯片自身产生的温度和热循环施加的环境温度,导致焊点发生重熔而变形,同时由于电迁移和热迁移耦合的作用,使得微焊点出现空洞,导致接触面积变小,使得其性能快速下降。在观察非工作状态下的微焊点微观组织时,n电极微焊点发生变形和p电极金属层分层的程度没有在工作状态时明显,分析原因是由于n电极微焊点处仅发生了热迁移现象使得发生微焊点晶粒粗化,p电极金属层因热膨胀系数差异而产生的内应力小,使得接触面积减小有限,故性能下降幅度没有工作状态时大。在观察高低温恒湿条件下的测试LED的微观组织时,观察到n电极微焊点仅出现了轻微的裂纹,且p电极金属层仅开始出现分层,两者的幅度均没有前两种状态的明显,这些结果与测试的性能变化结果基本是一致的。因此进一步证实了快速热循环可以作为快速评估LED可靠性和相对使用寿命的方法。
Micro-interconnection technology in electronic packaging is rapidly developing to the orientation of miniaturization, high-density, the solder joint not only plays the role of electrical and mechanical connection, also provides a way to heat dissipation, so the reliability of micro-interconnection solder joint is very important. The present paper study the change and evolution of interface microstructure, the growth rhythm of intermetallic compounds (IMC) and thermal fatigue proformance under limiting conditions for ball grid array (BGA) lead-free micro-solder joint by rapid thermal fatigue. In addition, light-emitting diodes (LED) was appliedly researched by rapid thermal fatigue, too. The influences of LED property and interface microstructure of lead-free micro-solder joint in its chip were studied, and compared with results of conventional thermal fatigue experiment, the results shows that rapid thermal fatigue can obviously affects ther preformance and microstructure of micro-solder joint, so it can be used to evaluate reliability and life of micro-solder joint.
     In this present paper, a rapid heating experimental device was designed. Lead-free Sn3.0Ag0.5Cu (SAC305) solders were used to preparate SAC305micro-solder joints with single/double substrates, respectively. The influence of interface and surface profermances and microstructure of BGA micro-solder joints were investigated by rapid thermal fatigue. In addition, high-power LEDs were tested by rapid thermal fatigue. The influence of microstructures of lead-free micro-solder joint (Au/Sn and Ni/Au) in LED chip were researched except for the influence of LED properties, which results were compared with results of conventional thermal fatigue experiment.The main research results are listed as follows:
     The study on the single-base substrate SAC305solder joints revealed the influence of rapid thermal fatigue on microstructures of at0hour and rapid thermal cycle12hours at55-125℃and55-180℃. It was found that the intermatellic (IMC) between interface of solder joint starts from the scallop shape to a big wave, and its thickness increases with time, and IMC is only single Cu6Sn5firstly, later a new Cu3Sn layer is generated in the between Cu6Sn5layer and Cu layer, and it is also gradually thickening, and Ag3Sn grain start from short stick shape to elliptical granular. In addition, it was also found that Kirkendall holes appear in the IMC Cu3Sn layer, and it is bigger and bigger with the temperature. According to Fick diffusion law, the growth of the relationship of IMC thickness and the square root of cumulative test time is roughly linear, so the diffusion coefficient, and the diffusion constant and activation energy are calculated by the means of fitting. The single-base plate SAC305/Cu solder joint was tested at extreme temperature60-200℃by rapid thermal cycle24hours and36hours respectively, it was found the IMC grow by the zigzag shape, and fatigue cracks appear at the interface of IMC/Cu, they are initiating and propagating along the boundary, and thread through the cross section of solder joint in the end, which lead to the failure of solder joint.
     The study compared the influence of rapid thermal fatigue on the interface microstructures of two solder joints with double-base substrates of Cu/Sn3.0Ag0.5Cu/Cu and Cu/63Sn37pb/Cu at cyclic temperature60-200℃and55-180℃and test time for0hour,12hours,24hours,36hours and72hours, respectively. It was found the IMC in SAC305solder joints only haves Cu6Sn5, then evolves into Cu6Sn5and Cu3Sn. After36hours, the interface of solder joint appears recrystallization phenomenon, which causes stress concentration and crack generation. After72hours, it was also found that cracks have filled the entire section, and formed a network. However, the solder in Cu/63Sn37Pb/Cu solder joints happen remelting and deformation, the solder didn't happen a recrystallization phenomenon, but the tin oxide film exist on the solder surface later, and the reasons of dismatch coefficient of thermal expansion (CTE) and frangibility of tin oxide urge cracks to form corrosion grooves. At last, according to the thermal simulation analysis and thermal deformation theory, the cracking process was explained with a schematic diagram.
     The study on LED revealed the influence of rapid thermal fatigue on the changes of performances under operating life test and non-operating life test onditions and compared the results of conventional thermal fatigue contidion. It was found that a luminous flux is ones of LED optical properties, as an example, and quickly fell down30%when it was tested24hours in the operating life test and achieve a failure standard, and it fell down15%after440hours in non-operating life test, but it only dropped to4%after552hours test. At the same time, their spectrogram also were studied, the relative spectrum of LED blue light is increased36%in the operating life test, it is increased17%in non-operating life test, and it is only increased7%in the constant humidity and temperature conditions. In addition, the color purity and radiation power appear similar declines, its amplitude are gradually reduced. But color temperature and forward working voltage is increased, and their increasing amplitude in operating life test is the highest among three states and conditions and it is minimum in the constant humidity and temperature conditions. This results show that rapid thermal cycle on LED reliability is remarkable, but the test in the constant humidity and temperature condition effects a little about LED reliability, so it must pay attention to heat dissipation for LED.
引文
[1]Lau J H. Ball grid array technology. McGraw Hill, Inc. New York,1995
    [2]金玉丰,王志平,陈兢.微系统封装技术概论.北京:科学出版社,2006
    [3]吴懿平,丁汉等.电子制造技术基础.北京:机械工业出版社,2005
    [4]陈元灯.LED制造技术与应用.北京:电子工业出版社.2007
    [5]林海恋,李冠群,刘大伟等.功率型LED封装技术简述.中国照明电器,2012,(6):19-22.
    [6]莫蒂尔,王晓刚译.LED照明应用技术.北京:机械工业出版.2011:43-45.
    [7]Chu C.F., Lai F.I., Chu J.T., etc. Study of GaN light-emitting diodes fabricated by laser lift-off technique. Journal of Applied Physics,2004,95(8):3916-3922.
    [8]Abtew M., Selvaduray G. Lead-free solders in microelectronics. Materials Science Engineering-R,2000,27(5/6):95-141
    [9]Mutoh Y, Zhao J, Miyashita Y. et al. Special Issue on lead-free and lead-bearing solders. Soldering and Surface Mount Technology,2002,14(3):37
    [10]Pang J. H. L., Chong D. Y. R., Low T. H. Thermal cycling analysis of flip-chip solders joint reliability. IEEE Transactions on Components and Packaging Technologies[J],2001,24(4):705
    [11]Young D, Christou A. Failure mechanism models for electromigration. IEEE Transactions on Reliability,1994,43(2):186-192
    [12]Dave S. Vibration analysis for electronic equipment. Second Edition. John whey& Sons Inc.,1988:55-63
    [13]Lee W W, Nguyen L. T., Selvaduray G. S. Solder Joint fatigue models:Review and Applicability to Chip Scale Packages [J]. Microelectronics Reliability,2000, 40:231-244
    [14]Yoshiki Oshida, Chen P C. High and low-cycle fatigue damage evaluation of multilayer thin film structure. Journal of Electronic Packaging,1991,113:58
    [15]平修二(日本)编,郭廷玮,李安定译.热应力与热疲劳.国防工业出版社.1984(11).第一版:115-180.
    [16]Frear D., Grivas D., McCormack M., Morris J.W., JR. Fatigue and thermal fatigue of Pb-Sn solder joints. Proc.3rd Ann. Electronic Packaging and Corrosion in Microelectronics Conf.,3,269 (1987).
    [17]Frear D., Grivas D., Morris J.W., JR. A microstructural study of the thermal fatigue failures of 60Sn-40Pb solder joints. Journal of Electronic Materials,1988, 17(2):171-180
    [18]Frear D., Grivas D., Morris J.W., JR. Parameters affecting thermal fatigue behavior of 60Sn-40Pb solder joints. Journal of Electronic Materials,1989,18(6):671-680
    [19]Basaran C, Tang H., Nie S. Experimental damage mechanics of microelectronic solder joints under fatigue loading. Mechanics of Materials,2004,36:1111-1121
    [20]林健,雷永平,赵海燕,鲁立.电子电路中焊点的热疲劳裂纹扩展规律.机械工程学报.2010,46(6):120-125
    [21]林健,雷永平,赵海燕,鲁立.板级封装焊点中热疲劳裂纹的萌生及扩展过程.稀有金属材料与工程.2010,39(1):15-19
    [22]林健,雷永平,赵海燕,吴中伟.微连接接头在热疲劳过程中的破坏规律.焊接学报.2009,30(11):65-68
    [23]Vaynman S., McKeown S. A. Energy-based methodology for the fatigue life prediction of solder materials. IEEE Transactions on Components, Hybrids, and Manufacturing Technology,1993,16(3):317-322
    [24]Evans J.W., Evans J. Y., Lall P., Cornford S. L. Thermomechanical failures in microelectronic interconnects. Microelectronic Reliability,1998,38(4):523-529
    [25]Bae Jong-Woo, Kim Wonho, Cho Suk-Hyeon, Hong Yong-Woo, Shin Jung-Eun, Lee Sang-Hyun. Thermal fatigue-resistant EMCs (Epoxy Molding Compounds) for microelectronic encapsulation. Korean Journal of Chemical Engineering,2000, 17(1):41-46
    [26]Chien C. H., Chen Y. C., Hsieh C. C., Chiou Y. X., Wu Y. D., Chen T. P. Thermomechanical behaviour of underfill/solder mask/substrate interface under thermal cycling. Society of Experimental Mechanics,2004,44(2):214-220
    [27]Lee H. T., Chen M. H., Jao H. M., Liao T. L. Influence of interfacial intermetallic compound on fracture behavior of solder joints. Materials Science and Engineering, 2003,358(15):134-141
    [28]Frear D. Microstructural evolution during thermomechanical fatigue of 62Sn-36Pb-2Ag and 60Sn-40Pb solder joints. IEEE Transactions on Components. Hybrids and Manufacturing Technology.1990,13(4):718-726
    [29]沈萌,华彤,邵丙铣等.IMC生长对无铅焊球可靠性的影响.半导体技术.2007,32(11):929-932
    [30]Mutoh Y, Zhao J., Miyashita Y, Kanchanomai C. Fatigue crack growth behaviour of lead-containing and lead-free solders. Soldering and Surface Mount Technology, 2002,14(3):37-45
    [31]Zhao J. Mutoh Y, Miyashita Y, Mannan S. L. Fatigue crack-growth behavior of Sn-Ag-Cu and Sn-Ag-Cu-Bi lead-free solders. Journal of Electronic Material.2002, 31(8):879-886
    [32]Lee K. O., Yu Jin, Park T.S., Lee S.B. Low-cycle fatigue characteristics of Sn-based solder joints. Journal of Electronic Materials,2004,33(4):249-257
    [33]Tu P. L., Chan Yan C., Lai J.K.L. Effect of intermetallic compounds on the thermal fatigue of surface mount solder joints. IEEE Transactions on Components, Packaging, and Manufacturing Technology-Part B,1997,20(1):87-93
    [34]Pang J. H. L., Tan K. H., Shi X.Q. Wang Z.P. Microstructure and intermetallic growth effects on shear and fatigue strength of solder joints subjected to thermal cycling aging. Materials Science and Engineering A,2001,307:42-50
    [35]Erinc M., Schreurs P.J.G, Geers M.G.D. Integrated numerical-experimental analysis of interfacial fatigue fracture in SnAgCu solder joints. International Journal of Solids and Structures,2007,44:5680-5694
    [36]常俊玲,刘晓庆,谢晓明.SnAgCu(SnPb)/Ni和SnAgCu(SnPb)/Cu界面金属间化合物在热冲击过程中的生长规律.功能材料与器件学报.2005,11(4):445-450
    [37]Sauber J. Fracture properties of molding compound materials for IC plastic packaging. Microelectronics and Reliability,1996(3):36
    [38]Nagara J.B, Mahalingam M. Package-to-Board Attach Reliability Methodology and Case Study on OMPAC Package[J]. Transactions of the ASME, Journal of Electronic Package,1998(120):290-295
    [39]Gao J G, Wu Y P, Ding H. Micro-BGA Package reliability and optimization of reflow soldering profile[C].Proceeding of 2005 International Conference on Asian Green Electronics-Design for Manufacturability and Reliability,2005:135-139
    [40]Lee W W, Nguyen L. T., Selvaduray G S. Solder Joint fatigue models:Review and Applicability to Chip Scale Packages [J]. Microelectronics Reliability,2000, 40:231-244
    [41]Dave S. Vibration analysis for electronic equipment. Second Edition. John whey& Sons Inc.,1988:55-63
    [42]K. S. Kim, S. H. Huh, K. Suganuma. Effects of Cooling Speed on Microstructure and Tensile Properties of Sn-Ag-Cu Alloys. Mater. Sci. Eng.2002,333:106-114
    [43]Shiau L. C., Kao C. R. Advanced Alloy for Lead-free Solder. Balls. Solder Surf. Mount Tech.2002,14:25-29
    [44]A. Syed. Proceedings of International Symposium on Advanced Packaging Materials, Braselton, USA,2001:143-147
    [45]S. Nurmi, J. Sundelin, E. Ristolainen. The Effect of Solder Paste Composition on the Reliability of SnAgCu Joints. Microelectron Reliability,2004,44:485-494
    [46]Mutoh Y, Zhao J, Miyashita Y. et al. Special Issue on lead-free and lead-bearing solders. Soldering and Surface Mount Technology,2002,14(3):37
    [47]Pang J. H. L., Chong D. Y. R., Low T. H. Thermal cycling analysis of flip-chip solders joint reliability. IEEE Transactions on Components and Packaging Technologies[J],2001,24(4):705
    [48]Zhao J., Y. Miyashita, Y. Mutoh. Fatigue crack growth behavior of 96.5Sn-3.5Ag lead-free solder. International Journal of Fatigue,2001,23:723-731
    [49]Lee H. T., Chen M. H., Jao H. M., Liao T. L. Influence of interfacial intermetallic compound on fracture behavior of solder joints. Materials Science and Engineering, 2003,358(15):134-141
    [50]Yu Qiang, Shiraori Masaki. Fatigue-strength prediction of microelectronics solder joints under thermal cyclic loading. IEEE Transactions on Components, Packaging and Manufacturing Technology-Part A,1997,20:266-274
    [51]Yan Qi, Rex Lam, Hamid R et al. Temperature profile effects in accelerated thermal cycling of SnPb and Pb-free solder joints. Microelectronics Reliability.2006,46: 574-588
    [52]Khatibi G., Wroczewski W., Weiss B., Licht T. A fast mechanical test technique for life time estimation of micro-joints. Microelectronic Reliability,2008,48:1822-1830
    [53]Khatibi G., Lederer M., Weiss B., Licht T. et al. Accelerated mechanical fatigue testing and lifetime of interconnects in microelectronics. Procedia Engineering.2010, 2:511-519.
    [54]C. Biber. LED light emission as a function of thermal conditions [C]. Semi-Therm 2008. In:Twenty-fourth annual IEEE.16-20 March,2008:180-184.
    [55]J. M. Kang, J. W. Kim, J. H. Choi et al. Life-time estimation of high-power blue light emitting diode chips [J]. Microelectronics Reliability.2009,49 (9-11): 1231-1235.
    [56]E. Hong, N. Narendran. A method for projecting useful life of LED lighting systems [C]. Third International Conference on Solid State Lighting, Proceedings of SPIE 5187.2004:93-99.
    [57]J. S. Jeong, J. K. Jung, S. D. Park. Reliability improvement of InGaN LED backlight module by accelerated life test (ALT) and screen policy of potential leakage LED [J].Microelectronics Reliability.2008,48(8-9):1216-1220.
    [58]L. X. Tan, J. Li, K. Wang et al. Effect of defects on the thermal and optical performance of HB LED. IEEE Transactions On Electronics Packaging Manufacturing.2009,32(4):233-240
    [59]M. Y Tsai, C. H. Chen, W. L. Tsai. Thermal resistance and reliability of high-power LED packages under WHTOL and thermal shock tests [J]. IEEE Transactions On Components and Packaging Technologies.2010,33(4):738-746.
    [60]P. Szabo, O. Steffens, M. Lenz, et al. Transient junction-to-case thermal resistance measurement methodology of high accuracy and high repeatability [J]. IEEE Transactions on components and packaging technologies.2005,28(4):630-636.
    [61]G Mitic, K. H. Sommer, D. Dieci et al. The thermal impedance of new power semiconductor modules using A1N substrates [C]. Conference Record-IAS Annual Meeting, St. Louis,1998(2):1026-1030.
    [62]B. Smith, T. Brunschwiler, B. Michel. Comparison of transient and static test methods for chip-to-sink thermal interface characterization. Microelectronics Journal Microelectronics Journal.2009,40(9):1379-1386.
    [63]B. Khong, M. Legros, P. Tounsi et al. Characterization and modelling of ageing failures onpower MOSFET devices [J]. Microelectronics Reliability.2007,47(9-11): 1735-1740.
    [64]J. Z Hu, L. Q. Yang, M. W. Shin. Mechanism and thermal effect of delamination in light emitting diode packages [J]. Microelectronics Journal.2007,38(2):157-163
    [65]M. Rencz, V. Szekely, B. Courtois et al. Die attach quality control of 3D stacked dies. Electronics Manufacturing Technology Symposium. San Jose, CA.2004:78-84
    [66]L. Angrisani, L. Bechou, D. Dallet et al. Detection and location of defects in electronic devices by means of scanning ultrasonic microscopy and the wavelet [J]. Measurement.2002,31(2):77-91
    [67]N. Rada, G. Triplett, S. Graham et al. High-speed thermal analysis of high power diode arrays [J]. Solid-State Electronics.2008,52(10):1602-1605.
    [68]M. C. Cheng, F. X. Yu, L Jun et al. Steady-state and dynamic thermal models for heat flow analysis of silicon-on-insulator MOSFETs [J]. Microelectronics Reliability. 2004,44(3):381-396.
    [69]Y. Jaluria. Simulation-based optimization of thermal systems [J]. Applied Thermal Engineering.2009,29(7):1346-1355.
    [70]C. J. Weng. Advanced thermal enhancement and management of LED packages. International Communications in Heat and Mass Transfer.2009,36(3):245-248.
    [71]A. Ramalingam, F. Liu, S. R. Nassif et al. Accurate Thermal analysis considering nonlinear thermal conductivity [C].7th International Symposium on Quality Electronic Design. San Jose, California,2006:644-649
    [72]C. P. Ribeiro, Jr., M. H. Cano Andrade. A heat transfer model for the steady-state simulation of climbing-falling-film plate evaporators [J]. Journal of Food Engineering.2002 54(4):309-320.
    [73]Joaquim M. Goncalves, Claudio Melo, Christian J. L. Hermes. A semi-empirical model for steady-state simulation of household refrigerators [J]. Applied Thermal Engineering.2009,29 (8-9):1622-1630.
    [74]T. Cheng, X. B. Luo, S. Y. Huang et al. Simulation on thermal characteristics of LED chips for design optimization [C]. Electronic Packaging Technology&High Density Packaging, Shanghai.2008:1-4.
    [75]W. H. Chi, T. L. Chow C. N. Han et al. Analysis of thermal performance of high power light emitting diodes package. Electronics Packaging Technology Conference. Singapore.2008:533-538
    [76]J. P. You, Y. He, F. G. Shi. Thermal management of high power LEDs:Impact of die attach Materials [C]. Microsystems, Packaging, Assembly and Circuits Technology. Taipei.2007:239-242
    [77]M. R. Rencz, V. Szekely. Measuring partial thermal resistances in a heat-flow path [J]. IEEE Transactions on components and packaging technologies,2002,25(4): 547-553
    [78]G. Farkas, S. Haque, F. Wall et al. Electric and thermal transient effects in high power optical devices [C]. Semiconductor Thermal Measurement and Management Symposium. San Jose. CA, USA,2004:168-176
    [79]A. Poppe, G Farkas, G. Horvath. Electrical, thermal and optical characterization of power LED assemblies [C]. International Workshop on Thermal investigations of ICs. Nice, Coted'Azur, France,2006:27-29.
    [80]H. T. Chen, Y. J. Lu, Y. L. Gao, et al. The performance of compact thermal models for LED package [J]. Thermochimica Acta.2009,488(1-2):33-38.
    [81]A. Poppe, Y. Zhang, J. Wilson et al. Thermal measurement and modeling of multi-die packages [J]. IEEE Transactions on components and packaging technologies.2009,32(2):484-492.
    [82]Wong Joon Hwang, Tae Hee Lee,:tong Hwa Choi, Hyung Kun Kim, Ok Hyun Nam, Y.J. Park, and Moo Whan Shin. Thermal Investigation of GaN-Based Laser Diode Package [J]. IEEE Transactions on components and packaging technologies.2007, 30(4):637
    [83]S.Levada, M.Meneghini, E.Zanoni, S.Buso, GSpiazzi, G.Meneghesso. High brightness InGaN leds degradation at high Proceedings. San Jose, CA.2006: injection current bias [J]. Reliability Physics Symposium:615-616.
    [84]T. Yanagisawa. Estimation of the dlegradation of InGaN/AlGaN blue light-emitting diodes [J]. Microelectronics and Reliability.1997,37(8):1239-1241.
    [85]L. Wang, S. W. Feng, C. S. Guo et al. Analysis of degradation of GaN-based light-emitting diodes [C]. Physical and Failure Analysis of Integrated Circuits, Suzhou, Jiangsu, China.2009:472-475.
    [86]N. Narendran, Y. Gu, J. P. Freyssinier et al. Solid-state lighting:Failure analysis of white LEDs [J]. Journal of Crystal Growth.2004,268(3-4):449-456.
    [87]J. Z. Hu, L. Q. Yang, M. W. Shin. Electrical, optical and thermal degradation of high power GaN/InGaN light-emitting diodes [J]. Journal of Physics D:Applied Physics. 2007,41(3):
    [88]J. G. Bai, G Q. Lu. Thermomechanical reliability of low-temperature sintered silver die attached SiC power device assembly [J]. IEEE Transactions on device and materials reliability.2006,6(3):436-441.
    [89]J. Z. Hu, L. Q. Yang, L. Kim et al. The ageing mechanism of high-power InGaN/GaN light emitting diodes under electrical stresses [J]. Semiconductor Science and Technology.2007,22(12):1249-1252.
    [90]L. Trevisanello, M. Meneghini, G. Mura et al. Accelerated life test of high brightness light emitting diodes. IEEE Transactions on Device and Materials Reliability.2008, 8(2):304-310
    [91]G. Meneghesso, M. Meneghini, E. Zanoni. Recent results on the degradation of white LEDs for lighting [J]. Journal of P 场 sics D:Applied Physics.2010,43(35): 1-11
    [92]S. Ishizaki, H. Kimura; M. Sugimoto. Lifetime estimation of high power white LEDs [J]. Journal of Light&Visual Environment.2007,31(1):11-18
    [93]S. C. Yang, P. Lin, C. P. Wang, et al. Failure and degradation mechanisms of high-power white light emitting diodes [J]. Microelectronics Reliability.2010,50(7): 959-964
    [94]E. Nogueira, M. Vazquez, N. Nez. Evaluation of AlGalnP LEDs reliability based on accelerated tests [J]. Microelectronics Reliability.2009,49(9-11):1240-1243.
    [95]C. M. Tan, B. K. Chen, G. Xu et al. Analysis of humidity effects on the degradation of high-power white LEDs [J]. Microelectronics Reliability.2009,49(9-11): 1226-1230.
    [96]张丽卿.基于ANSYS的电磁感应加热重熔BGA凸台发热机理研究[D].哈尔 滨:哈尔滨工业大学,2008.
    [97]孟金龙.金刚石刀具高频感应钎焊工艺的研究[D].大连:大连理工大学,2009.
    [98]傅永华.有限元分析基础[M].武汉:武汉大学出版社,2003.
    [99]周斌,邱宝军,罗道军.片式元件焊点的热循环应力应变模拟技术研究[J].电子元件与材料,2008,27(7):58-61.
    [100]S.T. Jiang, W. Li, Magnetism of Condensed Matter,1st ed. Beijing, China:Science Press,2003.
    [101]M.Y. Li, H.B. Xu, S.W.R. Lee, J. Kim, D. Kim, Eddy Current Induced Heating for the Solder Reflow of Area Array Packages, IEEE T. Adv. Pack.31 (2008) 399-403.
    [102]P. Sun, C. Andersson, J. Liu, D. R. Andersson, P. Tegehall and D. Shangguan: 'Evolution of intermetallic compounds in PBGA Sn-Ag-Cu solders joints during thermal cycles testing', in 7th Inter. Conf. Electron. Pack. T.2006,760-767.
    [103]H. T. Lee and M. H. Chen:'Influence of intermetallic compounds on the adhesive strength of solder joints', Mater. Sci. and Eng. A.,2002,333,24-34.
    [104]P. Liu, P. Yao and J. Liu:'Evolutions of the interface and shear strength between SnAgCu-xNi solder and Cu substrate during isothermal aging at 150℃', J. Alloys Compd.,2009,486,474-479.
    [105]K. N. Tu, A. M. Gusak and M. Li:'Physics and materials challenges for lead-free solders', J. Appl. Phys.,2003,93,1335-1353.
    [106]D. W. Henderson, T. Gosselin, A. Sarkhel, S. K. Kang, W. Choi, D. Shih, C. Golsmith and K. J. Puttlitz:'Ag3Sn plate formation in the solidification of near ternary eutectic Sn-Ag-Su alloys', J. Mater. Res.,2002,17,2775-2778.
    [107]K. Zeng and K. N. Tu:'Six cases of reliability study of Pb-free solder joints in electronic packaging technology', Mater. Sci. Eng. Rep.,2002,38:55-105.
    [108]Tu P. L., Chan Yan C., Lai J.K.L. Effect of intermetallic compounds on the thermal fatigue of surface mount solder joints. IEEE Transactions on Components, Packaging, and Manufacturing Technology-Part B,1997,20(1):87-93
    [109]邹建,吴丰顺,王波等.电子封装微焊点中柯肯达尔孔洞问题.电子工艺技术.2010,31(1):1-5
    [110]Chiu Tz-C, Zeng K, Stierman R, et al. Effect of thermal aging on board level drop reliability for Pb-free BGA packages[G]. Proceeding of elecctronic component and technology conference. Las vegas, USA,2004,1256-1262
    [111]Lin Xiao Qin, Luo Le. Viod evolution in sub-100-micro Sn-Ag solder bumps during multi-reflow and aging and its effects on bonding reliability [J]. Journal of electronic materials,2008,37(3):307-313
    [112]Chen B. L., Li GY. An investigation of effects of Sb on the intermetallic formation in Sn-3.SAg-0.7Cu solder joints. IEEE Transactions on Components and Packaging Technologies.2005,28(3):534-541
    [113]C. K. Alex,Y C. Chan. Aging Studies of Cu-Sn Intermetallic Compounds in Annealed Surface Mount Solder Joints.1996 Electronic Components and Technology Conference.1996:1164-1171
    [114]D. Q. Yu, C. M. L. Wu, C. M. T. Law, L. Wang and J. K. L. Lai:'Intermetallic compounds growth between Sn-3.5Ag lead-free solder and Cu substrate by dipping method', J. Alloys Compd.,2005,392,192-199.
    [115]L. Zakraysek and J. Welding:'Intermetallic growth in tin-rich solders', Research Suppl.,1972,51,536-541.
    [116]E. K. Ohriner and J. Welding:'Intermetallic Formation in Soldered Copper-Based Alloys at 150℃ to 250℃',Research Suppl.,1987,66,191-202.
    [117]于大全,段莉蕾,赵杰等.Sn-3.5Ag/Cu界面金属间化合物的生长行为研究.材料科学与工艺.2005,13(5):532-536
    [118]X. Ma, F. J. Wang, Y.Y. Qian etc. Development of Cu-Sn intermetallic compound at Pb-free solder/Cu joint interface. Materials Letters.2003,57:3361-3365
    [119]L. H. Xu, J.H. L. Pang, K. H. Frakash, T. H. Low. Interfacial IMC and Kirkendall void on SAC Solder Joints subject to Thermal Cycling.2005 Electronics Packaging Technology Conference.2005:863-867
    [120]L. H. Xu, J.H. L. Pang, K. H. Prakash, T. H. Low. Isothermal and thermal cycling aging on IMC growth rate in lead-free and lead-based solder interface. IEEE Transactions on components and packaging technologies.2005,28(3):408-414
    [121]Lee J. H., Park J. H., Lee Y H, Iim Y S, Shin D. H. Stability of channels at a scalloplike Cu6Sn5 layer in solder interconnections. Journal of Materials Research,2001,16(5):1227 — 1230
    [122]Li G. Y, Chen B. L, Tey J N. Reaction of Sn-3.SAg-0.7Cu-xSb solder with Cu metallization during reflow soldering. IEEE Trans, on Electronics Packaging Manufacturing, January.2004,27 (1):77-85
    [123]J.H. L. Pang, K. H. Frakash, T. H. Low. Isothermal and thermal cycling aging on IMC growth rate in lead-free and lead-based solder interfaces.2004 International Society Conference on Thermal Phenomena.2004:109-115
    [124]Y. Zheng, C. Hillman, P. McCluskey. Intermetallic growth on PWBs soldered with Sn3.8Ag0.7Cu.2002 electronic components technology conference. 2002:1226-1231
    [125]Tu P. L., Chan Y.C., Lai J. K. L.. Effect of Intermetallic Compounds on the Thermal Fatigue of Surface Mount Solder Joints[J]. IEEE transactions on components, packaging, and manufacturing technology,1997,20(1):87-93.
    [126]土国强.实用工程数值模拟技术.ANSYS上的实践.西安:西安工业大学出版社,1999.8
    [127]杜平安.结构有限元分析建模方法.北京:机械工业出版社,1998.5
    [128]孙菊芳.有限元法及其应用.北京:北京航空航天大学出版,1990.7
    [129]Pang H.L.J., Tan K.H., Shi X.Q. et al. Microstructure and intermetallic growth effects on shear and fatigue strength of solder joints subjected to thermal cycling aging[J]. Materials Science and Engineering:A,2001,307:42-50.
    [130]Toni Tuomas Mattila, Jorma Kalevi Kivilahti. The role of recrystallization in the failure of SnAgCu solder interconnections under thermomechanical loading[J]. IEEE Transaction on Components and Packaging Technologies,2010,33(3): 629-635.
    [131]冯晓增,刘剑虹.3Cr2W8V,4Cr5MoSiV1钢热疲劳机理及热疲劳抗力的差异.安徽工学院学报.1988,7(2):1-9
    [132]李熙章,施占华,汤继跃,肖钟义,吴一平.评定模具钢热疲劳性能的Uddeholm法.安徽工学院学报.1988,7(2):101-108
    [133]李熙章,施占华,吴一平.析出硬化型热作模具钢在热疲劳中的组织变化.钢铁.1991,26(12):36-39
    [134]M.X. Chen, L.L. Yuan and S. Liu:'Research on low-temperature anodic bonding using induction heating', Sens. Actuators A.,2007,133,266-269.
    [135]M. D. Aggarwal and J. K. D. Verma:'Gruneisen constant of some rare-earth elements', Physica,1972,58,327.
    [136]T. Iida and R. I. L. Guthrie:'the Physical Properties of Liquid Metals', Clarendon Press, Oxford,1993.
    [137]侯镇冰等.固体热传导.上海:上海科学技术出版社,1984,67-95
    [138]Y. Takeuti:"Approximate formulae for temperature distribution in a heat-generating polygonal cylinder with a central circular hole", Nuclear Eng. Design.,1968,8,241-246.
    [139]Roland Haitz, Fred Kish and Jeff Tsao et al. The Case for a National Research Program on Semiconductor Lighting. Report of Optoelectronics Industry Development Association (OIDA) forum (1999), http://lighting.sandia.gov
    [140]赵阿玲.大功率白光LED的可靠性研究及失效机理分析[D].北京:北京工业大学,2009.
    [141]周龙早.半导体照明封装的热量管理及失效分析研究.博士学位论文.华中科技大学.2010
    [142]MatWeb[EB10L]. www.matweb.com
    [143]Hayward J. Lead (Pb)-free packaging strategy 2000-2003. AMD,2001
    [144]Zeng K, Tu K N. Six cases of reliability study of I'lrfree solder joints in electronic packaging technology. Mater Sci Eng,2002, R38:55
    [145]Lee T. Electromigration and solid state aging of flip chip solder joints and analysis of tin whisker on lead-frarme. Thesis for PhD, University of California, Los Angeles, 2001:1
    [146]吴懿平,张金松,吴丰顺,安兵.SnAgCu凸点互连的电迁移.半导体学报.2006,27(6):1136-1140
    [147]张金松,奚弘甲,吴懿平,吴丰顺.Cu-Ni/Solder/Ni-Cu互连结构的电迁移.半导体学报.2008,29(1):174-178
    [148]张金松,吴懿平,王永国,陶媛.集成电路微互连结构中的热迁移.物理学报.2010,59(6):4395-4402
    [149]Van Gurp G J, De Waard P J, Du Chateuier F J. Appl. Phys. Lett.1984,45 1054
    [150]Ye H, Basaran C, Hopkins D C, Frear D, Lin J K.2004 54th Electronic Compornents and Technology Conference (Las Vedas:IEEE), p988
    [151]Tu K N, Gusak A M, Li M. Physics and materials challenges for lead-free solders. J Appl Phvs,2003,93(3):1335
    [152]Lee T Y, Tu K N J. Appl. Phys.2001,893189
    [153]Basaran C, Li S D, Abdulhamid M F. J Appl. Phys.2008,103 123520

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700