用户名: 密码: 验证码:
高温高压流动条件下灰岩溶解实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水-岩反应几乎涉及到地质学的各个方面,是地质科学的重要研究领域。地球化学动力学一直以来都是地球化学家们的研究热点,对自然系统的地球化学不平衡特征的研究可以使我们更好的理解许多依赖时间变量的地质系统。石灰岩是地表出露最为广泛的碳酸岩地层,约占整个陆地总面积的15%。
     本文以灰岩为研究对象,首先测定了灰岩在pH=3的HCl-H2O体系中,在250℃、300℃、350℃、400℃时的溶解度分别为24.12、65.07、60.84、53.21mg/l。在此基础上,利用流动液相反应装置,对其在高温高压条件下,在NaCl-H2O体系中的溶解动力学行为进行了初步探讨。获得了灰岩在25MPa、分别在50℃、100℃、150℃、200℃、250℃、300℃、350℃、400℃、450℃、500℃时的溶解动力学曲线,得出了不同温度下的速率常数和反应级数。实验证明:不同温度下的速率常数和反应级数不同,温度相同时,流速越大,则溶解的钙的量越少,且符合幂函数的关系。流速相同时,温度越高,反应速率越大,达到一个最大值以后就不再变化。且T<300℃时,随着温度的升高,速率常数随温度的升高而变大,在约300℃左右,速率常数最大,300℃以后反而减小。实验所得的地球化学动力学数据,如、反应速度、速率常数、反应级数是十分珍贵的,它有利于解释许多地球化学难题。对于揭示热液交代作用、围岩蚀变及成矿作用等都具有重要的意义。
Rock-water reaction plays an important role in many aspects of geology science. Scientists spend a lot on studying dissolution kinetics . It is a hot spot. Limestone covers nearly 15% of the whole area of earth surface.
     In this paper we studied the solubility of limestone in HCl-H2O system respectively at 250℃、300℃、350℃、400℃at a stable pressure of 25 MPa . They are 24.12、65.07、60.84、53.21 mg/l. The experimental study thus indicates that it is a rapid process that limestone dissolutes in HCl-H2O system. On the base of this, we then changed HCl-H2O into NaCl-H2O system of 0.6mol/ to determine the limestone dissolution kinetics at 50℃、100℃、150℃、200℃、250℃、300℃、350℃、400℃、450℃、500℃of 25 MPa . The experimental study thus indicates the process of limestone dissolution in NaCl-H2O system is regularity. When temperature is not changed , the concentration of Ca2+ decrease with the increase of the velocity of flow in a nilpotent way. The rate constant and the reaction progression are different at different temperature. The rate constant increase with the increasing of the temperature blow 300℃which is the highest, than it is fall. These dates are very important . It is necessary in uncovering and solving some relative geological matters.
引文
[1] 李传军,金丽,刘建强,等. 灰岩地层化学洗井酸液浓度实验分析. 山东水利,1999,4:38-39.
    [2] 张芳,赵炜编.李发荣审. 碳酸盐岩气藏的酸化压裂技术.国外油田工程, 2005,21(1):14-18.
    [3] 胥耕. 碳酸盐岩储层酸压工艺技术综述. 油田化学,1997,14(2):175-179.
    [4] 陈翼嵋,赵立强,刘平礼. 固体酸性能评价及碳酸盐岩反应特性的研究.西南石油学院学报, 2005,27(2):57-60.
    [5] 龚庆杰,於崇文,岑况,等.超临界流体中 WO3与 WoO3溶解度实验探讨. 岩石学报, 2005,2:240-244.
    [6] 龚庆杰,岑况,於崇文. NaCl-H2O 体系中 WO3溶解度超临界现象实验探讨.中国科学,2002,7: 562-567.
    [7] 龚庆杰,岑况. 高温高压条件下 WO3在金管内溶解实验中金的溶解现象.地学前缘, 2000,4: 540.
    [8] 韩德刚,高盘良.化学动力学基础. 北京大学出版社,2001:60-114.
    [9] 刘英俊,李兆麟, 谢少卿,等. 华南钨矿实验地球化学研究.钨矿地质讨论会论文集(中文版).北京:地质出版社, 1981,10 :127-141.
    [10] 赵斌,王声远,吴厚泽,等, 高温高压实验地球化学. 北京:科学出版社,1995:1-40.
    [11] 徐有生,侯渭,郑海飞,等. 超临界水的特性及其对地球深部物质研究的意义. 地球科学进展, 1995,10: 445-449.
    [12] 张荣华,胡书敏. 地球深部流体 NaCl-H2O 的高温高压实验观测及其科学意义. 科学通报, 1998,11: 2451-2456.
    [13] 王玉荣,王志详,张生. 水/岩反应实验与成矿作用. 矿物岩石地球化学通报,2000,10:246-247.
    [14] 龚庆杰,於崇文,张荣华.柿竹园钨多金属矿床形成机制的物理化学分析.地学前缘,2004,10:618-625.
    [15] 木尾本兴亚着(,齐衡译).超临界流体—从微观角度观察其特性. 张家口师专学(自然科学版),1998(1,2):53-56.
    [16] 刘晓明. 超临界萃取技术.新技术,1995,4:12-13.
    [17] 张荣华,胡书敏.地球深部流体演化与矿石成因.地学前缘,2001.10:297-309.
    [18] 刘丛强,黄智龙等.地幔流体及成矿作用. 北京:地质出版社. 2004,50-80.
    [19] 曾贻善.热水溶液地球化学.地学前缘,1996,3(3,4):89-95.
    [20] 徐兆文,黄顺生等. 铜陵冬瓜山铜矿成矿流体特征和演化.地质评论, 2005,51(1):36-41.
    [21] 孙占学,朱永刚,张文.矿物-水反应的地球化学动力学研究进展. 东华理工学院学报.2004,27(1):115-124
    [22] 石平方,於崇文.化学动力学在地球化学中的某些应用.地球科学, 1986 (11):341-349.
    [23] 张荣华,胡书敏,R. Hellmann R and D.Crerar.矿物在热液内化学动力学与物质迁移.北京:科学出版社, 1992,1-63.
    [24] 张焘,张荣华.自然作用热力学与化学动力学.北京:科学技术出版社, 1994,148.
    [25] L.N.Plummer,T.M.L.Wigley,D.L.Parkhurst. The kinetics of calcite dissolution in CO2 -H2O system at 5℃ to 60℃ and 0.0 to 1.0 atm CO2. American Journal of Science. 1978(278) :179-216
    [26] Jeremy B,John V.Walther. Calcite solution and speciation in supercritical NaCl-HCl aqueous fluids[J]. Contribution to Mineraology and Petrology . 1989(103):317-324.
    [27] Young-Joon Lee,JohnW.Morse,David V.Wiltschko. An experimentally verified moldel for calcite precipaition in veins. Chemical Geology. 1996 (130):203-256.
    [28] Maran Alkattan, Eric H.Oelkers,et al. An experimental study of calcite and limestone dissolution rates as a function of pH from -1 to 3 and temperature from 25 to 80℃[J]. Chemical Geology ,1998(151):199-214.
    [29] Marwan Alkattan,Eric H. Oelkers,et al. An experimental study of calcite dissolution rates at acidic conditions and 25℃ in the presence of NaPO3 and MgCl2 [J]. Chemical Geology. 2002(190) :291-302.
    [30] Jeremy B.Fein,John V.Walther. Calcite solubility and speciation in supercritical NaCl-HCl aqueous fluids. Contributions to Mineralogy and Petrology.1989, 103: 317-324.
    [31] Bischoff J L, Rosenbauer R J. The system NaCl-H2O: relations of vapor-liquid near the critical temperature of water and of vapor-liquid-halite from 3000 to 5000℃. Geochimica et Cosmochimica Acta. 1986, 50: 1437-1444.
    [32] Knight C L, Bodnar R J. Synthetic fluid inclusions: IX. Critical PVTX properties of NaCl-H2O solutions. Geochimica et Cosmochimica Acta. 1989, 53: 3-8.
    [33] Zhou I M, Eugster H P. Solubility of magnetite in supercritical chloride solutions. American Journal of Science. 1977, 277: 1296-1314.
    [34] Ertel W, O'nell H St C, Dingwell D B, et al. Solubility of tungsten in a haplobasaltic melt as a function of temperature and oxygen fugacity. Geochimica et Cosmochimica Acta. 1996, 60: 1171-1180.
    [35] Wood S A. Experimental determination of the solubility of WO3(S) and the thermodynamic properties of H2WO4 (aq) in the range 300~600℃ at 1 kbar: Calculation of scheelite solubility. Geochemica et Cosmochimica Acta. 1992, 56: 1827-1836.
    [36] Herman,J.S., The dissolution Kinetics of Calcite Dolomite and Dolomitic Rocks in the Carbon Dioxide-Water sestem. .Geochimica et comochimica acta.1982,36 35-40
    [37] Wood S A, Samson A I. The hydrothermal geochemistry of tungsten in granitoid environments: I. Relative solubilities of ferberite and scheelite as a function of T, P, pH, and MNaCl. Economic Geology. 2000, 95: 143-182.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700