用户名: 密码: 验证码:
陕西省太白县双玉金矿床地质地球化学特征及成因探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
陕西双王金矿床位于西秦岭凤太矿集区东部,为一大型含金钠长角砾岩型金矿床。矿床赋矿地层为上泥盆统星红铺组,为一套由钙质粉砂岩、粉砂质绢云板岩和灰岩组成的类复理石沉积建造。金矿体明显受角砾岩体控制,呈断续带状分布,矿石硫化物主要为黄铁矿,主要围岩蚀变类型为钠长石化。本文在矿床地质特征研究基础上,系统分析了该矿床岩(矿)石的主量元素、微量元素、稀土元素和稳定同位素的组成特征,取得以下主要成果和认识:
     双王金矿床含金角砾岩体为气液隐爆作用形成。其形成与区内晚印支期岩浆活动有密切关系,属于气液隐爆角砾岩。双王成矿带由若干个构造活动较强烈的热液活动中心—隐爆中心控制成矿。双王金矿带由西向东分布四个隐爆中心,隐爆中心地质特征表现为热液活动较强烈,野外宏观地质现象显示隐爆中心由西向东逐渐加深。
     将矿床成矿过程分为隐爆前交代成矿期和隐爆后充填成矿期两大成矿期,其中隐爆前交代成矿期以热液交代作用为主,隐爆后充填成矿期以充填成矿作用为主,金成矿主要发生在隐爆后充填成矿期的铁白云石-黄铁矿阶段。
     岩(矿)石的主量元素、微量元素和稀土元素特征显示, Au可能在星红铺组地层中有预富集,构成金的初始矿源层;西坝岩体和围岩在矿石形成过程中可能均提供了部分成矿物质。稳定同位素研究表明:成矿流体由早期岩浆热液和建造水热液的混合热液向晚期岩浆热液、大气降水热液演化;碳可能主要来源于深部,部分来源于地层;硫源即有深部岩浆硫源,也有地层硫源的加入;铅主要来源于上地壳,并混有地幔物质,具有多来源混合铅的结构特征。
     探讨了双王金矿床的成因类型并建立了成矿模式,认为双王金矿床属于气液隐爆角砾岩型金矿床。矿床主要形成于晚印支期扬子板块和华北板块全面碰撞之后的后造山环境,矿床的形成经历了早期的热液对围岩的交代作用和气液隐爆作用之后的充填成矿作用。
The Shuangwang gold deposit, located in the east of the Fengtai ore concentrationarea of the West Qinling, is a large gold deposit of auriferous albite breccias type. The oredeposit occurs in the weakly metamorphosed upper Devonian Xinghongpu Group,dominated by calcareous siltstone, sericite silty slate and carbonate that comprise flyschoidformation. Gold mineralization is strictly controlled by auriferous breccia bodies. Pyrite isthe most important ore sulfide and the main wall-rock alteration is albitization. Based onthe research of the geological features of the deposit, this paper has systematicallyanalyzed the composition characters of the major elements, the trace elements, the rareearth elements and the stable isotope. The main achievements and conclusions that we gotare as follow:
     The breccia bodies of Shuangwang gold deposit were formed by the effect ofgas-liquid’s hidden exploding. The formation of the breccia bodies has close connectionwith the magatic activities of the Late Triassic, so we classified the breccia to the hiddenexploding breccia. The mineralization of Shuangwang metallogenic belt was controlled byseveral centers of hydrothermal activities which we called hidden exploding centers. Theare four hidden exploding centers in Shuangwang metallogenic belt from the west to theeast, which explored the geological features of strong hydrothermal activities. From thewest to the east, the hidden exploding centers were deeper as we saw from the filedgeological features.
     The gold mineralization could be divided into two stages, which we called themetasomatism stage before blasting action and the filling stage after blasting action. Theformer stage was mainly by the metasomatism and the latter stage by the filling, themineralization of gold mainly happened in the stage of ankerite-pyrite. The main elements,trace elements and REE elements analysis indicated that Au may had preconcentration inthe formation of Xinghongpu Group and this composed the source bed of gold deposit.Systematic stable isotope analysis results show that the ore-forming fluids of early andmain stages came from mixture fluids and the late mainly came form magmatichydrothermal fluids with little meteoric water. Carbon was mainly derived from the great depth and partly from dissolution of carbonate strata. Sulfur is the mixture sulfur of crustand magma. Lead mainly came from upper crust and mixed little mantle lead.
     Based on this study, we investigated the genetic type and established the metallogenicmodel of Shuangwang gold deposit. We think that The genetic type of the Shuangwanggold deposit is hidden exploding breccia type gold deposit. The mineralization of theShuangwang gold deposit relates to the post-orogenic environment after the collisionbetween of the North China Plate and the Yangtze Plate in Late Triassic. The early stagemineralization was mainly caused by hydrothermal metasomatism and the main goldmineralization occurred in the hydrothermal filling stage after blasting action.
引文
Bryner L. Breccia and pebble columns associated with epithermal ore deposits[J]. Economic Geology,1961,56:488~508
    Clayton R N, O’Neil J R and Mayeda T K. Oxygen isotope exchange between quartz and water[J].Geophys. Res.,1972, B77,3057~3067
    Druitt TH. Setting behaviour of concentrared dispersions and some volcanological applications[J].Volcano. and Geotherm. Res.1995,65:27~39
    Faure G. Principles of Isotope Geology(Second Edition)[M]. New York: John Wiley&Sons,589
    Guillou-Frottier, L Burov E. The development and fracturing of plutonic apexes: implications forporphyry ore deposits[J]. Earth and Planetary Science Letters,2003,214:341~356
    Hoefs J. Stable Isotope Geochemistry(Forth Edition)[M]. Berlin: Springer-Verlag,1997,201
    Keith M L and Weber J N. Carbon and oxygen isotopic composition of selected limestone and fossils[J].Geochimica et Cosmochimica Acta,1964,28:1787~1816
    Matthews A and Katz A. Oxygen isotope fractionation during the dolomitization of calcium carbonate[J].Geochim. Gosmochim. Acta,1977,41,1431~1438
    Northrop D A and Clayton R N. Oxygen isotope fractionation in the system containing dolomite[J].Geology,1966,74,174~196
    O’Neil J R and Taylor H P Jr. Oxygen isotope equilibrium between muscovite and water[J]. Geophys.Res.,1969,74,6012~6022
    O’Neil J R and Taylor H P Jr. The Oxygen isotope and cation exchange chemistry of feldspars[J].Mineral,1967,52,1414~1437
    Schidlowski M. Beginning of terrestrial life: problems of the early record and implications forextraterrestrial scenarios[J]. Instruments, Methods, and Missions for Astrobiology. SPIE,1998,3441:149~157
    Sillitoe R. H. Ore-related breccias in volcanoplutonic ares[J]. Economic Geology,1985,80(6):1467~1514
    Sun, S.-S., McDonough, W. F., Chemical and isotopic systematics of oceanic basalts: implications formantle composition and processes[A]. In: Saunders, A.D., Norry, M. J. Eds., Magmatism in theOcean Basins[C], London: Geological Society Special Publication,1989,313~345
    Taylor B E. Magmatic volatiles: Isotope variation of C,H and S reviews in mineralogy. Valley J W,Taylor H P, Clayton R N, O’Neil J R: Stable Isotopes In High Temperature Geological Process[J].America: Mineralogical Society of America,1986,16:185~226.
    Taylor H P. The application of oxygen and hydrogen isotope studies to problems of hydrothermalalteration and ore deposition[J]. Economic Geology,1974,69:843~883
    Taylor S R, Rudnick R L, Melennan S M, et al. Rare earth element pattems in Archean high-grademetasediments and their tectonic significance[J]. geochimica et Cosmochimica Acta,1986,50:2267~2279
    Zartman R E and Doe B R. Plubotectonics-the model Tectonophysics[J]. Tectonophysics,1981,75:135~162
    Zartman R E and Haines S M. The plumbotectonics for Pb isotopic systematic among major terrestrialreservoirs-a case for bidirectonic transport Geochimical[J]. Cosmochimica Acta,1988,52:1327~1339
    Zhang F X, Zhang J. Geological-Geochemical Characteristics of Carlin-and Carlin-Like-Type GoldDeposits in South Qinling Mountains[J]. Chinese Journal of Geochemistry,2003,22(1):1~12
    Zheng Y F and Hoefs J. Carbon and oxygen isotopic covaiations in hydrothermal calcites[J].Mineralium Deposit a,,1993,28:79~89
    Zheng Y F. Carbon-oxygen isotopic covaiations in hydrothermal calcite during degassing of CO2: Aquantitative evaluation and application to the Kushikino gold mining area in Japan[J]. MineraliumDeposit a,1990,25:246~250
    曹益富,李世华.爆破角砾岩型金矿床成矿特点[J].黄金,1999,20(9):12~16
    陈衍景,崔毫,富士谷,等.论祁雨沟式金矿[J].矿产与地质,1992,28(6):103~110
    陈衍景,张静,张复新,等.西秦岭地区卡林—类卡林型金矿床及其成矿时间、构造背景和模式[J].地质评论,2004,50(2):1~5
    樊硕诚.陕西双王金矿床成矿模式成矿规律与找矿前景探讨[J].陕西地质,1994,12(1):27~35
    范宏瑞,谢奕汉,郑学正,等.河南祁雨沟热液爆破角砾岩体型金矿床成矿流体研究[J].岩石学报,2000,16(4):559~563
    冯建忠,汪东坡,王学明.西秦岭泥盆系Au背景值的确定、元素地球化学特征及地质意义[J].中国地质,2005,32(1):100~106
    付超,王建平,彭润民,等.内蒙古甲生盘铅锌硫矿床硫同位素特征及其成因意义[J].现代地质,2010,24(1):34~41
    古貌新,戴安周.陕西双王金矿床地质特征[J].陕西地质,1983,2:23~26
    韩吟文,马振东.地球化学[M].北京:地质出版社,2003
    何知礼,徐九华,谢玉玲,等.陕西太白金矿主矿段深部及东部成矿预测研究[R].北京:北京科技大学,1995:1~85
    胡西顺.陕西双王金矿床成因的再认识[J].黄金科学技术,2009,17(2):17~22
    靳西祥.陕西双王金矿成因的新认识[J].西北地质,1991,12(4):21~23
    黎彤.化学元素的地球丰度[J].地球化学,1976,3:167~174
    李惠,禹斌,等.陕西太白金矿床的构造叠加晕跟踪研究及进一步深部预测[R].长沙:中中南大学,2011
    李龙,郑永飞,周建波.中国大陆地壳铅同位素演化的动力学模型[J].岩石学报,2001,17(1):61~68
    李勇,苏春乾,刘继庆.东秦岭造山带钠长岩的特征、成因及时代[J].岩石矿物学杂志,1999,18(2):121~127
    梁华英,王秀璋,程景平.陕西双王钠长石岩特征及金矿床形成期次分析[J].大地构造与成矿学,2000,24(4):350~356
    刘必政,王建平,王可新,等.陕西省双王金矿床成矿流体特征及其地质意义[J].现代地质,2011,25(6):1088~1098
    刘家军,何明勤,李志明,等.云南白秧坪银铜多金属矿集区碳氧同位素组成及其意义[J].地学前缘,2004,23(1):1~10
    刘家军,毛光剑,吴胜华,等.甘肃寨上金矿床成矿特征与形成机理[J].矿床地质,2010,29(1):1~16
    路远发. Geokit:一个用VBA构建的地球化学工具软件包[J].地球化学,2004,33(5):459~464
    罗镇宽,苗来成,关康.角砾岩型金矿床——一种值得重视的金矿床类型[J].地质找矿论丛,1999,14(4):15~23
    毛景文.西秦岭地区造山型与卡林型金矿床[J].矿物岩石地球化学通报,2001,20(1):11~13
    弥建勇,王友文.陕西秦巴地区金区域地球化学特征[J].陕西地质,1996,14(1):70~83
    彭恩生,柳建新,孙连仁,等.陕西太白金矿深边部地质地球物理找矿研究[R].长沙:中中南大学,2001
    彭建堂,胡瑞忠,苏文超.扬子地块南缘锑矿床中矿石铅的组成及其地质意义[J].地质地球化学,2000,28(4):43~47
    祁思敬,李英.南秦岭泥盆系成矿带热水沉积成矿系列[J].西安地质学院学报,1997,19(3):19~26
    祁思敬,李英.南秦岭晚古生代海底喷气—沉积成矿系统[J].地学前缘,1999,6(1):171~179
    卿敏,韩先菊.隐爆角砾岩型金矿研究述评[J].黄金地质,2002,8(2):1~7
    邱士东,徐九华,谢玉玲,等.陕西太白金矿含金角砾岩中铂族元素特征[J].中国地质,2007,34(1):117~122
    任富根,李维明,李增慧,等.熊耳山—崤山地区金矿成矿地质条件和找矿综合评价模型[M].北京:地质出版社,1996
    陕西省地质局第三地质队.陕西省太白县双王金矿化带西段地质报告[R].1998.
    陕西省地质局第三地质队.陕西太白县双王金矿床东段八号矿体最终勘探报告[R],1990.
    陕西省地质矿产局.陕西省区域地质志[M].北京:地质出版社,1989
    陕西太白黄金矿业有限责任公司.太白县仙马沟—北沟地区金矿普查工作总结报告[R].2006.
    陕西太白黄金矿业有限责任公司.太白县小庙沟地区金矿普查[R].2006.
    邵世才.爆破角砾岩型金矿床的成因及其定位机制—以河南祁雨沟金矿为例[J].矿物学报,1995,15(2):230~235
    石准立.与碱性碳酸岩有关的双王金矿床[A].秦巴金矿论文集[C].北京:地质出版社,1993,113~146
    时准立,樊硕诚,张文宣,等.陕西双王金矿床地质特征及其成因[M].西安:陕西科学技术出版社,1989
    史静海.陕西双王金矿床含金角砾岩分类及其找矿意义[J].地质找矿论丛,2001,16(3):206~209
    汤静如,汪劲草,王国富,等.陕西双王金矿床角砾岩地质特征及成因初探[J].西北地质,2002,35(1):60~64
    滕道鹏.陕西双王金矿床韧脆性剪切变形控矿特征[J].黄金学报,2001,3(1):14~18
    汪劲草,汤静如,王国富,等.太白双王含金角砾岩体的形成过程及金矿体预测[J].地质论评,2001,47(5):508~513
    汪昭祥.试论双王金矿的矿化特征和成矿模式[J].陕西地质,1989,7(2):23~26
    王国富,孙振家,彭恩生,等.陕西双王金矿床角砾岩动力学成因探讨[J].大地构造与成矿学,2002,35(1):81~85
    王国富.陕西双王金矿床构造成矿作用及成矿预测研究[D].湖南:中南大学,2006:1~137
    王思程,薛春纪,李志丹.新疆伽师砂岩型铜矿床地质及S、Pb同位素地球化学[J].现代地质,2011,25(2):220~227
    王亚力.太白双王含金角砾岩带钠长板岩的成因探讨[C].陕西秦巴地质论文稿集,第一集,陕西地质矿产局,1985
    王宗起,闫全人,闫臻,等.秦岭造山带主要大地构造单元的新划分[J].地质学报,2009,83(11):1527~1546
    肖荣阁,刘敬党,费红彩,等.岩石矿床地球化学[M].北京:地震出版社,2008
    谢玉玲,徐九华,何知礼,等.太白金矿流体包裹体中黄铁矿和铁白云石等子矿物的发现及成因意义[J].矿床地质,2000,19(1):54~60
    徐贵忠,等.陕西太白金矿矿区深部矿体预测及外围靶区优选[R].北京:中国科学地质研究院,1999
    严阵,等.陕西花岗岩[M].西安:西安交通大学出版社,1985
    炎金才.论双王金矿床的成因[J].西北大学学报,1992,22(增刊):221~229
    炎金才.秦岭泥盆系热水沉积硅质岩的地球化学特征[J].西北地质,1996,17(1):32~38
    炎金才.秦岭泥盆系热水沉积岩中主要矿物的标型特征[J].矿物学报,1995,15(3):317~326
    炎金才.陕西双王金矿床含铁白云石的某些标型特征[J].矿物岩石,1993,13(4):27~33
    曾键年,范永香,林卫兵.江西金山金矿床成矿物质来源的铅和硫同位素示踪[J].现代地质,2002,16(2):1~7
    张本仁,骆庭川,高山,等.秦巴岩石圈构造及成矿规律地球化学研究[M].武汉:中国地质大学出版社,1994,284~298
    张帆,刘树文,李秋根,等.秦岭西坝花岗岩LA-ICP-MS锆石U-Pb年代学及其地质意义[J].北京大学学报,2009,45(5):833~840
    张复新,季军良,龙灵利,等.南秦岭卡林型—似卡林型金矿床综合地质地球化学特征[J].地质论评,2001,47:492~499
    张复新,刘文峰.秦岭泥盆系层控金矿类型及找矿前景[J].西北大学学报,1992,22(增刊):213~220
    张复新,魏宽义,马建秦.南秦岭微细粒浸染型金矿床地质与找矿[M].西安:西北大学出版社,1997,1~190
    张复新.沉积岩型金矿床综述—兼论秦岭沉积岩区金矿类型及其分布[J].西北地质,1996,17(4):24~30
    张国伟,董云鹏,姚安平.秦岭造山带基本组成与结构及其构造演化[J].陕西地质,2003,15(2):1~14
    张国伟,张本仁,袁学诚,等.秦岭造山带与大陆动力学[M].北京:科学出版社,2001:1~855
    张理刚.铅同位素地质研究现状及展望[J].地质与勘探,1992,28(4):21~29
    张宗清,刘敦一,付国民.北秦岭变质地层同位素年代研究[M].北京:地质出版社,1994:1~231
    张作衡,毛景文,李晓峰.双王角砾岩型金矿床地质地球化学及成矿机制[J].矿床地质,2004,23(2):241~252
    赵振华.微量元素地球化学原理[M].北京:科学出版社,1997,1~153
    郑永飞.稳定同位素体系理论模型及其矿床地球化学应用[J].矿床地质,2001,20(1):57~70
    朱炳泉,李献华,戴谟,等.地球科学中同位素体系理论与应用—兼论中国大陆壳幔演化[M].北京:科学出版社,1998:224-226
    朱华平,任涛,李建斌,等.陕西山阳夏家店金矿床地质特征、控矿因素与金的富集规律[J].地质通报,2004,23(7):695~701

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700