用户名: 密码: 验证码:
西藏蒙亚啊矽卡岩型铅锌矿床地质地球化学特征研究及成矿物质来源探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矽卡岩型矿床是西藏冈底斯地区重要的矿床类型之一,是目前西藏铁、铜、铅、锌、银矿的最主要来源。西藏蒙亚啊铅锌矿床位于南冈底斯-念青唐古拉成矿带,念青唐古拉(弧背断隆)成矿亚带,是本区较为重要和典型的一个矽卡岩型矿床。
     本文在矿床地质特征研究的基础上,进行了矿床地球化学综合研究,探讨了成矿物质来源,提出蒙亚啊矽卡岩型铅锌矿床为层控矽卡岩型,并探讨了该矿床的成矿机制。
     地层常-微量元素地球化学研究表明,矿区来姑组、洛巴堆组地层在沉积成岩时受到不同程度的热水沉积作用的影响。地层微量元素地球化学研究表明矿区来姑组岩石的沉积环境为含氧环境;洛巴堆组灰岩的沉积环境为贫氧环境。来姑组与洛巴堆组岩石微量元素的较大差异应该是由于所处的构造环境及沉积物源不同引起的,本次通过地层的元素地球化学研究所得出的认识,佐证了来姑组沉积环境为大陆边缘裂谷环境,洛巴堆组为岛弧裂谷环境的观点。通过地层的成矿元素研究表明,本区石炭-二叠纪地层是区内重要的矿源层,来姑组岩石的Cu、Pb、Zn等元素的含量总体上高于洛巴堆组,并且明显高于大陆地壳丰度,更有可能成为本区的矿源层。
     岩体微量元素、稀土元素地球化学研究表明,矿区石英斑岩与矿区外围西南约4公里处的岩体具有相似的微量元素及稀土元素特征,推测两者是同源的,具有一定的演化关系,源岩可能为上地壳贫粘土的变质砂岩,具有明显的岛弧一同碰撞岩浆的特点。另外通过矿区石英斑岩与冈底斯地区斑岩体的对比研究,显示出与主碰撞期斑岩具有相似的地球化学特征,而与后碰撞伸展阶段的斑岩体有着较大的差别,推测本矿区的石英斑岩是印-亚大陆碰撞阶段,由于地壳缩短加压升温引起的上地壳物质部分熔融作用的结果。
     通过矿区蚀变围岩的化学成分研究,表明来姑组砂岩、灰岩在热液作用过程中主要带出了Al_2O_3、K_2O、SiO_2等物质成分,带入了CaO、Fe_2O_3、MgO等;板岩在矿化过程中,带入的是CaO、SiO_2等,带出的是Al_2O_3、Fe_2O_3、MgO、Na_2O等,这与近矿砂岩、灰岩广泛发育碳酸盐化、矽卡岩化,矿体附近板岩多发生碳酸盐化和硅化的地质事实一致;根据矿体附近蚀变的围岩与远矿围岩的对比研究,表明围岩在热液作用后带出了Cu、Pb、Zn等成矿元素。以上表明了本矿床与热液交代作用关系密切。
     矿石金属硫化物稀土元素研究表明矿石和来姑组地层岩石具有相近的稀土元素配分模式,均具有轻稀土富集,重稀土亏损,为相对平缓的右倾型,同时具有明显的Eu负异常和Ce无异常或较弱的正异常,表明其在成矿物质来源上具有某种亲缘关系。
     矿石硫、铅同位素,碳氧同位素研究表明,矿区地层为蒙亚啊矿床的形成提供了一定的成矿物质,成矿物质来源具岩浆和地层双重作用、两种来源特点。根据矿石中Pb、Zn没有相关性,赋矿围岩在热液交代中Zn元素相对亏损明显,而岩体的成矿元素与大陆地壳相比Pb元素富集趋势明显,推测成矿物质Pb可能主要来自岩体,Zn可能更多的来源于地层。
     综合矿床成矿地质特征,提出本矿床为层控矽卡岩型铅锌矿床,认为是在热水沉积的基础上,在喜山期发生的印-亚板块碰撞作用产生地壳物质熔融形成广泛的岩浆作用的环境下,通过含有一定成矿物质的岩浆期后热液长期的顺层交代、淋滤地层成矿物质形成富矿流体,在特定的岩性组合条件下沉淀成矿。
As one of the most important types of ore deposit in Gangdese area of Tibetan, skarn-related ore deposits are currently the main source of iron, copper, lead, zinc and silver production in Tibetan. The Mengya'a lead and zinc deposit in Tibet, which is located in Nyainqentanglha metallogenic sub belt of south Gangdise-Nyainqentanglha metallogenic belt(retro-arc depressions and uplifts) , is a significant and typical skarn ore deposit in this area.
     Based on ore deposit geology, by studying geochemistry of the ore deposit comprehensively and discussing the origin of ore-forming substances, this thesis suggests that Mengya'a lead and zinc deposit is of stratabound skarn type. Finally, the genesis of the ore deposit has been specified.
     Geochemical studies on major and minor elements in strata demonstrate that Laigu Formation and Luobadui Formation have been influenced differently by hydrothermal sedimentation during their sedimentation and diagenesis. Meanwhile, geochemical studies on minor elements in strata suggest rocks from Laigu Formation were deposited under aerobic conditions, In sharp contrast, rocks from Luobadui Formation were deposited under anaerobic conditions. Diversity in contents of minor elements in rocks from Laigu Formation and Luobadui Formation were resulted from different tectonics and origins of sediments. Conclusions made from element geochemical researches correspond with idea that sedimentary environments of Laigu and Luobadui Formations are rifted continental margin and rifted arc respectively. Studies on ore-forming elements in strata manifest that Cu> Pb and Zn contents of Laigu Formation generally higher than those of Luobadui Formation and obviously surpass the abundance of continental crust, which makes Laigu Formation possible to be the potential source bed of this area.
     Geochemical studies on minor elements and REE (Rare Earth Elements) show that, characteristics of minor elements and REE of quartz porphyry in mining area closely resemble those of rock masses 4 kilometers southwest to the mining area, from which it could be inferred that the 2 rock masses share a same source and have a relationship considering the evolution process. The source rocks possibly are clay-depleted metasandstones from upper crust, which has obvious island arc -syn-collisional natures. Additionally, comparative research on quartz porphyry in mining area and porphyry masses in Gangdise areas demonstrates the geochemistry of the 2 sorts of porphyry are similar to that of porphyries of main collision stage but different to that of post collision extending stage. So it could be inferred that quartz porphyries in this area were resulted from partial melting of materials from upper crust induced by increasing temperature and pressure that caused by shrinking crust.
     Study on chemical composition of altered wall rocks in mining area suggests that substances like Al_2O_3 K_2O SiO_2 emigrated from sandstones and limestones during hydrothermal process, meanwhile CaO -, Fe_2C>3 and MgO migrated in . However, considering plates, Al_2O_3 Fe_2O_3> MgO and Na_2O emigrated out and CaCK SiC>2 migrated in , which is consistent with the geology that carbonatization and skarnization are present in sandstones and limestones adjacent to ore bodies, in addition, carbonatization and silicification usually exist in plates close to ore bodies. According to comparative study on altered wall rocks adjacent to ore bodies and wall rocks away, hydrothermal fluids leached ore-forming elements as Cu> Pb and Zn out of wall rocks. Above has demonstrated that the ore deposit is strata bound and entwined with hydrothermal metasomatism.Researches on REE in metal sulphides manifest that, REE distribution patterns of ores and rocks from Laigu Formation are quite similar, which represents being rich in light REE and depleted in heavy REE. The curve is gently right-dec lined. Furthermore, obvious Eu negative anomalies and Ce invisible or weak positive anomalies, which suggest that with respect to the origin of ore-forming substances, ores and rocks from Laigu Formation have a genetic relationship with each other somewhat.
     Study on lead, sulphur, carbon and oxygen isotopes shows that, strata provided a certain amount of ore-forming substances for Mengya'a ore deposit. The source of ore-forming substances has undergone dual effects by magma and strata, and has characteristics of the both. According to the facts that no correlations exist between Pb and Zn in ores, ore-bearing wall rocks are relatively more depleted in Zn during hydrothermal metasomatism. However, comparing to continental crust, rock masses are more enriched in Pb, from which it could be inferred that Pb in ore-forming substances is probably sourced from rock masses. As for zn, it is possibly derived from strata.
     Considering geology and mineralization as a whole, the ore deposit is one of strata bound skarn lead and zinc deposits. Beginning with hydrothermal sedimentation, in such environment with extensive magmatism resulted from melting of substances of crust caused by collision of Indian plate and Asian Plate in Himalayan, the mineralization was formed in certain lithologic associations by ore- bearing fluid that resulted from long term metasomatism along the beds and leachinj ore-forming substances by magma hydrothermal fluids with certain ore-forminj substances.
引文
[1]郑有业,王保生,樊子珲,等.西藏冈底斯东段构造演化及铜多金属成矿潜力分析[J].地质科技情报,2002,21(2):55-60.
    [2]郑有业,多吉,王瑞江,等.西藏冈底斯巨型斑岩铜矿带勘查研究最新进展[J].中国地质, 2007,34(2):324-334.
    [3]李光明,潘桂棠,王高明,等.西藏冈底斯成矿带矿产资源远景评价与展望[J].成都理工大学学报(自然科学版),2004,31(1):22-27.
    [4]李光明,芮宗瑶.西藏冈底斯成矿带斑岩铜矿的成岩成矿年龄[J].大地构造与成矿学, 2004,28(2):165-170.
    [5]李光明,刘波,屈文俊,等.西藏冈底斯成矿带的斑岩一矽卡岩成矿系统:一来自斑岩矿床和矽卡岩型铜多金属矿床的Re一Os同位素年龄证据[J].大地构造与成矿,2005, 29(4):482-488.
    [6]佘宏全,丰成友,张德全,等.西藏冈底斯中东段矽卡岩铜-铅-锌多金属矿床特征及成矿远景分析[J].矿床地质,2005,24(5):508-520.
    [7]王方国,李光明,林方成.西藏冈底斯地区矽卡岩型矿床资源潜力初析[J].地质通报,2 005, 24(4):378-385.
    [8]候增谦,莫宣学,杨志明,等.2006.青藏高原碰撞造山带成矿作用:构造背景、时空分布和主要类型〔J].中国地质,33:348-359.
    [9]候增谦,王二七,莫宣学,等.青藏高原碰撞造山与成矿作用[M].北京:地质出版社,2 008: 346-350.
    [10]藏文栓,孟祥金,杨竹森,等.西藏冈底斯成矿带铅锌银矿床的S、Pb同位素组成及其地质意义[J].地质通报,2007,26(10):1393-1397.
    [11]孟祥金,侯增谦,叶培盛,等.西藏冈底斯银多金属矿化带的基本特征与成矿远景分析[J].矿床地质,2007,26(2):154-162.
    [12]唐菊兴,陈毓川,多吉,等.西藏冈底斯成矿带东段主要矿床类型、成矿规律和找矿评价[J].矿物学报,2009,476-478.
    [13]唐菊兴,陈毓川,王登红,等.西藏工布江达县沙让斑岩钼矿床辉钼矿铼—锇同位素年龄及其地质意义[J].地质学报,2009,83(5):698-704.
    [14]张旺生,曹新志,燕长海,等.西藏念青唐古拉地区铜铅锌多金属矿床热水沉积岩特征与成矿关系[J].地质科技情报,2009,28(1):87-92.
    [15]李泽琴、胡涛、王奖臻,等.西藏自治区铅锌矿产资源潜力评价成果报告(R).西藏自治区地质调查院,2011.
    [16]陈喜峰,彭润民.铅锌矿床类型划分评析[J].化工矿产地质,2007,29(4):209–215.
    [17]戴自希,盛继福,白冶,等.世界铅锌资源的分布与潜力[M].北京:地震出版社,2005: 9.
    [18]杨建文,冯佐海,罗先熔,等.论浮力对热液喷发型(SEDEX)矿床成矿的作用:以澳大利亚北部为例[J].中国科学D辑:地球科学,2009,39(5):594-601.
    [19]杨永强,翟裕生,侯玉树,等.沉积岩型铅锌矿床的成矿系统研究[J].地学前缘(中国地质大学(北京),2006,13(3):200-204.
    [20] Magnusson,N.H.,Granlund,E.&Landqvist, G.,.Sveriges Geo1ogi., Kungl.Boktryckeriet, 1949,Stockho1m.
    [21]姚凤良,孙丰月.矿床学教程[M].北京:地质出版社,2006:1-254.
    [22]ОвчинниковЛН.Ополигенностискарновыхжелезорудныхместорождений[J ] .ГеологияРудныхМесторождений,1980,22 (3):58-73.
    [23]涂光炽.全国铁矿工作会议上的学术报告[R].(上海),1981.
    [24] Einaudi,M.T, Meinert,L. D and Newberry R T. Skarn deposits[J]. Econ. Geol,1981,75th Anniv.,317-391.
    [25]翟裕生,石准立,林新多,等.鄂东大冶式铁矿成因的若干问题[J ].地球科学,1982,(3 ) : 239-251.
    [26]赵斌.中国主要矽卡岩及矽卡岩型矿床[M].北京:科学出版社,1989,1-268.
    [27]赵一鸣,林文蔚,毕承思,等.中国矽卡岩矿床[M].北京:地质出版社,1990,1-200.
    [28]赵一鸣.矽卡岩矿床研究的某些重要新进展[J].矿床地质,2002,21(2):114-120.
    [29] Meinert,L.D.Skarns and skarn deposits.Geoscience Canada[J],1992,19(4),145-162.
    [30] Meinert,L.D,Lentz.D.R,Newberry.D.J.A special issue devoted to skarn deposits[J]. Economic Geology,2000,95:1183-1184.
    [31] ]Meinert,L.D.,Dipple,G.M.,Nicolescu,S.. World skarn deposits. In:Hedenquist,J.W., Thompson,J.F.H.,Goldfarb,R.J.,Richards,J.P. (Eds.),Economic Geology 100th Anniversary Volume. Society of Economic Geologists,2005,299–336.
    [32]梁祥济.中国夕卡岩和夕卡岩矿床形成机理的实验研究[M].北京:学苑出版社.2000, 1-365.
    [33]梁祥济,王福生.层控交代型夕卡岩金矿床形成机理的实验研究[J].黄金地质,2000,6 (4):1-13.
    [34]马润则,魏显贵,肖渊甫.米仓山地区一种与超基性岩有关的矽卡岩[J].四川地质学报, 2000,20(1):17-22.
    [35]代军治,毛景文,赵财胜,等.辽宁肖家营子矽卡岩型钼(铁)矿床高盐度流体特征及演化[J].岩石学报,2008,24(09):2124-2132.
    [36]王兴保.雅满苏铁矿床地质特征及成因浅析[J].地质找矿论丛,2 005,2 0(增刊):1 25-128.
    [37]喻茨玫.西榆皮铅矿床流体包裹体研究及成岩成矿机理的探讨[J].大地构造与成矿学, 1988,12(4):317-326.
    [38] Meinert,L.D,HeDenquiSt J.W,Sato,H. H. Formation of anhydrous and hydrous skarn in Cu-Au ore deposits by magmatic fluids[J]. Econ Geol,2003,98:147–156.
    [39] Ye im Yücel ztürk,Cahit Helvacl,Muharrem Sat r.The influence of meteoric water on skarn formation and late-stage hydrothermal alteration at the Evciler skarn occurrences,Kazda , NW Turkey[J].Ore Geology Reviews,2008,34(3):271-284.
    [40] Teera Kamvong,Khin Zaw. The origin and evolution of skarn-forming fluids from the Phu Lon deposit,northernLoei Fold Belt,Thailand:Evidence from fluid inclusion and sulfur isotope studies[J]. Journal of Asian Earth Sciences,2009,34:624–633.
    [41]常印佛,刘学圭.关于层控式夕卡岩型矿床——以安徽省内下扬子坳陷中一些矿床为例[J].矿床地质,1983 ,(4): 25-33.
    [42]凌其聪,周贵斌,黄许陈,等.层控式”矽卡岩矿床特征及成矿机制——以铜陵大团山铜(金)矿床为例[J].贵金属地质,1998,7(2):91-103.
    [43]凌其聪,刘丛强.冬瓜山层控夕卡岩型铜矿床成矿流体特征及其成因意义[J].吉林大学学报(地球科学版),2002,32(3):219-226.
    [44]凌其聪,刘丛强.层控夕卡岩及有关矿床形成过程的稀土元素行为——以安徽冬瓜山矿床为例[J].岩石学报,2003,19(01):192-200.
    [45]赵劲松,邱学林,赵斌,等.大冶-武山矿化夕卡岩的稀土元素地球化学研究[J].地球化学, 2007,36(4):400-412.
    [46]张乾,潘家永.论接触交代矽卡岩型多金属矿床的矿质来源—以铅同位素组成为依据[J].矿物学报,1994,14(4):369-372.
    [47]於崇文,蒋耀淞,肖正域.安徽铜陵层控夕卡岩型铜矿床的成矿作用动力学[J].地质学报, 1995,69(3):243-254.
    [48] Oen,I.S.et al.Mid-proterozoic exhalative-sedimentary Mn skarns containing possiblemicrobial fossils[J],Grythyttan,Bergslagen,Sweden.Economic Geology,1986,81:1153-1543.
    [49]涂光炽.我国南方几个特殊的热水沉积矿床,中国矿床学—纪念谢家荣诞辰90周年文集[M],学术书刊出版社,1989.
    [50]路远发,战明国,陈开旭,等.羊拉地区含矿夕卡岩流体包裹体特征及其成因意义[J].矿床地质,1998,17(4):331-341.
    [51]路远发,陈开旭,战明国.羊拉地区含矿矽卡岩成因的地球化学证据[J].地球科学——中国地质大学学报,1999,24(3):298-303.
    [52]李金高,王全海,郑明华,等.西藏sedex型矿床赋矿性质对成矿元素的制约作用[J].沉积与特提斯地质,2001,21(4):11-20.
    [53]潘凤雏,邓军,姚鹏,等.西藏甲马铜多金属矿床矽卡岩的喷流成因.现代地质[J],2002, 16(4):359-364.
    [54]姚鹏,顾雪祥,李金高,等.甲马铜多金属矿床层控矽卡岩流体包裹体特征及其成因意义[J].成都理工大学学报,2006,33(3):285-293.
    [55]王长明,张寿庭,邓军,等.内蒙古黄岗梁锡铁多金属矿床层状夕卡岩的喷流沉积成因[J].岩石矿物学杂志,2007,26(5):409-417.
    [56]陈大经,谢世业.广西热水沉积成矿作用的基本特征.矿产与地质,2 004,1 8( 105):4 15-421.
    [57]陈多福,陈先沛,陈光谦,等.热水沉积作用与成矿效应[J].地质地球化学,1997,(4): 7-12.
    [58]姚鹏.西藏冈底斯南缘火山一岩浆弧演化与不同类型夕卡岩矿床的研究[D].成都理工大学博士学位论文,2006.
    [59]程顺波,庞迎春,曹亮.西藏蒙亚啊矽卡岩铅锌矿床的成因探讨[J].华南地质与矿产, 2008,10(1):50-56.
    [60]王立强,顾雪祥,程文斌,等.西藏蒙亚啊铅锌矿床S、Pb同位素组成及对成矿物质来源的示踪[J].现代地质,2010,24(1):52-58.
    [61]王立强.西藏蒙亚啊铅锌矿床地质地球化学特征及矿床成因探讨[D].北京:中国地质大学(北京)硕士学位论文,2010.
    [62]耿全如,王立全,潘桂棠,等.西藏冈底斯带石炭纪陆缘裂陷作用:火山岩和地层学证据[J].地质学报,2007,81(9):1259-1274.
    [63]耿全如,王立全,潘桂棠,等.西藏冈底斯带洛巴堆组火山岩地球化学及构造意义[J].岩石学报,2007,023(11):2699-2712.
    [64]王立全,潘桂棠,朱弟成,等.西藏冈底斯带石炭纪—二叠纪岛弧造山作用:火山岩和地球化学证据[J].地质通报,2008,27(9):1509-1535.
    [65]纪占胜.西藏石炭一三叠纪沉积体系和古生物群演化规律及其地质意义[D].中国地质科学院博士学位论文,2006.
    [66]杜欣,刘俊涛,王亚平.西藏拉屋铜铅锌多金属矿床地质特征和成因分析[J].矿产与地质, 2004,18(5):410-414;449.
    [67]西藏自治区地质矿产局.西藏自治区区域地质志[M].北京:地质出版社,1993.
    [68]潘桂棠,王立全,尹福光,等.从多岛弧盆系研究实践看板块构造登陆的魅力[J].地质通报,2004,23(9~10):933-939.
    [69]朱弟成,潘桂棠,莫宣学,等.藏南特提斯喜马拉雅带中段二叠纪—白垩纪的火山活动(I):分布特点及其意义[J],地质通报,2004,23(7):645-655.
    [70]西藏地勘局第二地质大队.西藏蒙亚啊铅锌矿床2008年地质普查总结,2008.
    [71] Rollison H R. Using geochemical data:evaluation,presentation,interpretation[M]. NewYork: Longman Scientific &TechnicalLimited,1993. 3-28.
    [72]温春齐,多吉.矿床研究方法[M].成都理工大学(内部),2008.
    [73] Hatch JR,Leventhal JS. Relationship between inferred redoxpo-tential of the depositional environment and geochemistry of theUp-perPennsylvanian Stark ShaleMember of the Dennis Limestone,Wabaunsee County,Kansas,U S A. [J]. Chemical Geology,1992,99:65-82.
    [74] Jones B,ManningA C. Comparison of geochemical indices used for the interpretation ofpalaeoredox conditions in ancientmudstones[J]. ChemicalGeology,1994,111(2):111-129.
    [75]张哨波,高明,岳国利,等.西藏亚贵拉铅锌矿床地质特征及成因浅析[J].矿产与地质, 2009,23(4):297-301.
    [76]连永牢,曹新志,燕长海,等.西藏工布江达县亚贵拉铅锌矿床地质特征及成因分析[J].地质与勘探,2009,45(5):570-577.
    [77]连永牢,曹新志,燕长海,等.西藏当雄县拉屋铜铅锌多金属矿床喷流沉积成因[J].吉林大学学报(地球科学版),2010,40(5):1041-1047.
    [78]李泽琴.上芒冈金矿床成矿作用过程研究[D].中国科学院博士学位论文:中国科学院地球化学研究所(贵阳),2001.
    [79]丁振举,刘丛强,姚书振,等.海底热液沉积物稀土元素组成及其意义[J].地质科技情报, 2000,19(1):27-32.
    [80] Michard.A.Rareearthelement systematics in hydrothermal fluids[J]. Geochim. Cosmochim. Acta, 1989,53:745-750.
    [81]赵振华,熊小林,王强,等.铌与钽的某些地球化学问题[J].地球化学,2008,37(4): 304-320.
    [82]王立全,朱弟成,耿全如,等.西藏冈底斯带林周盆地与碰撞过程相关花岗斑岩的形成时代及其意义[J].科学通报,2006,51(16):1920-1928.
    [83]侯增谦,高永丰,孟祥金,等.西藏冈底斯中新世斑岩铜矿带:埃达克质斑岩成因与构造控制[J].岩石学报,2004,20(2):239—248.
    [84]曲晓明,侯增谦,国连杰,等.冈底斯铜矿带埃达克质含矿斑岩的源区组成与地壳混染: Nd、Sr、Pb、O同位素约束[J].地质学报, 2004,78(6):813—821.
    [85]张晖.西藏冈底斯成矿带碰撞期岩浆作用与成矿系列研究[D].北京:中国地质科学院硕士学位论文,2008.
    [86]夏抱本,夏斌,王保弟,等汤不拉含矿斑岩的形成时代及其对斑岩钼铜矿的制约[J].大地构造与成矿学,2010,34(2):291-297.
    [87]葛良胜,邓军,杨立强,等.西藏冈底斯地块中新生代中酸性侵入岩浆活动与构造演化[J].地质与资源,2006,15(1):1-10.
    [88]顾雪祥,刘建明,Oskar Schulz,等.湖南沃溪金-锑-钨矿床成因的稀土元素地球化学证据[J].地球化学,2005,34(5): 428-442.
    [89] German C R,Hergt J,PalmerM R,eta.l Geochemistry ofa hy-drothermal sediment core from theOBSvent-field,21°N EastPa-cific Rise [J]. ChemicalGeology,1999,155:65-75.
    [90]丁振举,姚书振,刘丛强,等.东沟坝多金属矿床喷流沉积成矿特征的稀土元素地球化学示踪,岩石学报,2003,19(4):792-798.
    [91]郑永飞,陈江峰.稳定同位素地球化学[M].北京:科学出版社,2000.
    [92]桂林冶金地质研究所矽卡岩铜矿专题组、同位素地质组.硫同位素分析方法在矽卡岩铜矿找矿工作中的意义[J].地质与勘探,1974,(1):8-13.
    [93]沈渭洲.稳定同位素地球化学[M].北京:原子能出版社, 1987.
    [94]张理刚.长石铅和矿石铅同位素组成及其地质意义[J].矿床地质,1988,7(2) :55-64.
    [95]曲晓明,侯增谦,李佑国.S、Pb同位素对冈底斯斑岩铜矿带成矿物质来源和造山带物质循环的指示[J].地质通报,2002,21(11):768-776.
    [96] ]孟祥金,侯增谦,李振清,等.西藏驱龙斑岩铜矿S、Pb同位素组成:对含矿斑岩与成矿物质来源的指示[J].地质学报,2006,80(4):554-560.
    [97]郑有业,西藏冈底斯斑岩铜矿带成矿规律及勘查选区研究,2006.
    [98]侯增谦,孟祥金,曲晓明,等.西藏冈底斯斑岩铜矿带埃达克质斑岩含矿性:源岩相变及深部约束过程[J].矿床地质,2005,24(2):108-121.
    [99]段士刚,薛春纪,冯启伟,等.豫西南栾川地区铅锌矿床碳、氧同位素地球化学[J].现代地质,2010,24(4):767-776.
    [100]郑永飞.稳定同位素体系理论模式及其矿床地球化学应用[J].矿床地质, 2001, 20(1): 57-70, 85.
    [101]刘建明,张宏福,孙景归,等.山东幔源岩浆岩的碳-氧和锶-钕同位素地球化学研究[J].中国科学(D辑), 2003, 33(10):921-930.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700