用户名: 密码: 验证码:
铁基多元合金耐熔锌腐蚀机理的研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
熔融锌液对金属材料的腐蚀一直是热镀锌行业中最难解决的问题,因而,目前热镀锌工业中普遍采用陶瓷锌锅,以减少液态锌对锌锅的腐蚀。但是由于陶瓷材料导热性差,无法像铁锅那样采用外加热,故陶瓷锌锅多采用内加热方式。
     目前内加热器的外套管还没有找到理想的材料,既具有优异的耐熔锌腐蚀性能,又具有良好的高温力学性能,因而内加热技术的应用和推广受到了很大的限制。本文从铁基金属材料出发,对耐熔锌腐蚀合金的制备进行了研究。
     本文通过对Fe-Al-B合金的研究,发现其中的B和Al元素对材料的耐腐蚀性能和高温力学性能都有很大的影响,通过对合金成份的优化,确定了合金中B和Al元素的含量。Fe-Al-B三元合金具有较好的耐熔锌腐蚀性能,Fe-B共晶组织的存在,增加了锌原子在合金中的扩散路径,降低了锌液对合金的腐蚀速度。利用扫描电子显微镜、X射线衍射仪、透射电子显微镜对合金中锌液中的腐蚀界面进行了观察和分析,发现合金在液态锌中的腐蚀为晶间腐蚀,锌原子在合金中的扩散以晶界扩散为主,锌液主要与合金中的α相发生反应生成Fe-Zn金属间化合物,其熔点较低,很容易向高温的液态锌中溶解,致使网格状的铁硼共晶组织在锌液的冲刷下折断,并向锌液中漂移。
     文中对锌铁反应的热力学和动力学过程进行了分析,结果表明,锌液对铁基合金的腐蚀是一个自发的过程,腐蚀速度受多种因素的影响。降低合金的自由能是提高合金耐腐蚀性能的关键因素。
     向Fe-Al-B三元合金中加入C、Ti或V元素后,合金的组织得到了细化,并且在合金内生成了大量的弥散分布的TiC或VC颗粒,提高了合金的抗弯强度和高温力学性能。继续向合金中加入Mo、W元素后,在合金中生成了耐熔锌腐蚀性能很好的高钼高钨相(MoW)_2FeB_2,该相分布于合金的晶界处,对锌原子在合金中的扩散起到了阻碍作用,从而减缓了锌液对合金的腐蚀速度。
     对该铁基多元合金制成的内加热器在热镀锌车间进行工业化试验,试验结果表明,加热器可以在锌液中稳定工作长达半年之久,该合金材料具有耐熔锌腐蚀性能及良好的高温力学性能,完全能够满足热镀锌工业中的应用。
The metallic corrosion of molten zinc is always the most difficult problem to be solved, so ceramic zinc pot is in general use in order to reduce the corrosion of molten zinc to pot in hot-dip galvanizing industrial. But because of the poor thermal conductance, ceramic pot is unable to adapt to exterior heating. Therefore, ceramic zinc pot adopts to interior heating mostly.But now there are no ideal materials with both excellent corrosion resistance to molten zinc and mechanical behavior under high temperature to be used in outer shell of internal heater, thus, the application and generalization of interior heating technology are limited greatly. This paper researched the preparation of alloys with corrosion resistance to molten zinc based on the ferroalloy.Fe-Al-B alloys were studied in the paper, result shows that the B and Al elements have a great influence on corrosion resistance and mechanical behavior under high temperature of the materials. Through the optimization of alloying composition, the contents of B and Al in alloys are determined. Fe-Al-B alloys have a good corrosion resistance to molten zinc, the Fe-B eutectic structure hinders zinc atoms diffusing to alloy matrix, which reduces the corrosion rate of alloys.The corrosion interface of alloys in molten zinc is observed and analysed by SEM, XRD and TEM, result shows that the corrosion of alloys in molten zinc is intercrystalline corrosion, the diffusion of zinc atoms are mainly along the grain boundary. The molten zinc reacts with a-phase of Fe-Al-B alloys, and forms Fe-Zn intermetallic compound, which can easily dissolve in molten zinc under high temperature. So the Fe-B eutectic structure will breakdown and drift to molten zinc under the scouring of molten zinc.The paper analysed the thermodynamic and dynamic process of Fe-Zn reaction, result shows that the corrosion of iron base alloys in molten zinc is a spontaneous process, and the corrosion rate is influenced by multiple factor. Reducing the free energy is the key to increase the corrosion resistance of the alloys.After adding C, Ti or V, the microstructure of Fe-Al-B alloys is refined, and TiC or VC particles that disperse in matrix increase the bend strength and mechanical behavior under high temperature. Continue adding Mo, W element to alloys, there forms (MoW)_2FeB_2 phase that has
    excellent corrosion resistance to molten zinc, it disperses in grain boundary and hinders zinc atoms from diffusing to alloy matrix. So the corrosion rate of alloys slows down.Carry on the industrialized test in the hot-dip galvanizing workshop to interior heater that made of iron base complex alloys, test result shows that the heater can have worked for half years steadily in the liquid zinc. The material that has excellent corrosion resistance to molten zinc and fine mechanical behavior can meet the needs of hot-dip galvanizing industrial.
引文
[1] 化工部化工机械研究院.腐蚀与防护手册.北京:化学工业出版社,1989
    [2] Oldfield J. W. Electrochemical theory of galvanic corrosion. Galvanic Corrosion, ASTM 978, Hack H. P. Ed., 1988: 5
    [3] Takamrua H., Kondou N. History and recent aspect of precoated galvanized sheets in Japan (Technical review). Special issue on "surface treatment for steel", Tetsu-to-Hagane, 66 (1980) 7: 875
    [4] 依藤征司郎.表面设计基础讲座(第一讲):总论,有色金属材料,1995 (2):113
    [5] 张鹏.钢—铝液固相轧制复合工艺及机理研究,东北大学博士论文,1998
    [6] Vickers, C. W., Commercial Hot Dip Galvanizing. Materials Protection. 2 (1962) 30
    [7] H.巴布利克.热镀锌理论与工艺.北京:冶金工业出版社.1959:384-385
    [8] 陈厚载.热镀锌技术(1000例).上海:上海交通大学出版社.1994:57
    [9] Ritchie J. G. Application of Galvanized High Strength Bolts to Steel Structures in Australia, Proceedings of the 9th International Conference on Hot Dip Galvanizing (1971): 305-309
    [10] K. N. Hewitt. The Prospects for Zinc Coatings, Lead and Zinc: Prospects to 2000. London. (1985): 60-63
    [11] Horvick. E. W. Hot Dip Galvanizing. Steel Structures Painting Manual. 1 (1982): 465-480
    [12] Hanna. F. Hot Galvanizing of Cast Iron. Corrosion and Corrosion Prevention in Industry. Baghdad Iraq. (1990) 41
    [13] 黄颖.热镀锌熔炼锅的现状和发展.机械工程材料.1990.14(2):25-27
    [14] J. Briand, etc. Latest Developments in Hot-dip Galvanizing in France, Thirteenth International Conference on Hot Dip Galvanizing, London. 38 (1982) 1
    [15] 刘铭,肖俊明,李志强,等.我国热镀锌锅的发展.金属制品.1999.25 (1):9-11
    [16] 刘经国.对热镀锌铁锅及其炉子的探讨.河南电力增刊.1989:91-93
    [17] P. H. Roebuck, etc. Electric Immersion Heater. The 14th International Galvanizing Conference. Munich. Germany. 4(1985) 3
    [18] 刘祥清.新型内加热镀锌锅直接内加热的设计探讨.金属制品.1998.24(1):17-19
    [19] A. Parent. Electric Bath Heating. The 5th International Conference on Hot Dip Galvanizing. Holland. 1958: 79-82
    [20] K. H. Fritz. Industrial Experience with Top-heated for Large Throughputs. The 6th International Galvanizing Conference. London. U. K. 1961 : 351-354
    [21] 李志平.工频感应熔锌炉应用于生产近三十年小结.金属制品.1990.6(4):47-49
    [22] V. Nicholas, Ross, et al. Induction heating of strip for galvanneal. Iron and Steel Engineer. 65 (1988) 1: 40
    [23] 顾乃健.耐火材料锌锅与节能.河南电力.1989(增刊):83-84
    [24] 易福明,迟仁贵.内加热耐火材料锌锅在钢丝热镀锌中的应用.金属制品.1998.24(3):9-11
    [25] F. Teichmann, Technical and Operating Data for Some Top-heated Baths 6th International Galvanizing Conference, London, U. K., (1961), 358-360
    [26] 张启富,刘邦津,仲海峰.热镀锌技术的最新进展.钢铁研究学报.2002.14(4):65-72
    [27] Burns. J, et al. Emersion Tube Heating-Lower Galvanizing Costs With Higher Thermal Efficiency. The 59th Annual Convention and 1989 Division Meetings. Wire Association International. P. O. Box H. 1570 Boston Post Rd., Guilford, Connecticut 06437, USA: 130-139
    [28] A. J. Vazquez. Economy of Radiant Energy in Galvanizing Bath and Improvement of Heat Transfer in Surface-heated Ceramic Galvanizing Bath, 14th International Galvanizing Conference. Munich, Germany. 4(1985) 1
    [29] 曹晓明,张培成,齐洪林,等.热镀锌内加热技术及金属加热器.金属制品.2000.26(2):1-5
    [30] 高扩家,李守荣.抗液态锌腐蚀材料综述.金属制品.2001,27(3):50-52
    [31] A. J. Stavros. Metals Handbook. 9th edition. Edited by J R Davis, Metals Park, Ohio: American Society for Metals, 1978-c1989: 432
    [32] C. Bagnall, W. F. Brehm. Metals Handbook. 9th edition. Edited by J R Davis, Metals Park, Ohio: American Society for Metals, 1978-cl 989: 432
    [33] 中国腐蚀与保护学会主编.核工业中的腐蚀与保护.北京:化学工业出版社,1993:133
    [34] 陈襄武.钢铁冶金物理化学.北京:冶金工业出版社,1990:321-326
    [35] 肖兴国,谢蕴国.冶金反应工程学基础.北京:工业出版社,1997:53-55
    [36] 邹僖.钎焊.北京:机械工业出版社,1989
    [37] Dybkov V L. Interaction of 18Cr10Ni Stainless Steel with Liquid Aluminum. Materials Science, 25 (1990) 8: 3615-3633
    [38] Niinomi M, Ueda Y. Dissolution of Ferrous Alloys into Molten. Transactions of the Japan Institute of Metals. 23 (1982) 12: 780-787
    [39] Tsao C L, Chen S W. Interfacial reaction in the liquid diffusion couples of Mg/Ni, Al/Ni and Al/(Ni)-Al_2O_3 systems. Materials Science. 30 (1995) 20: 5215-5222
    [40] Pekgueryuz M O, Gruzleski J E. Dissolution of reactive strontium-containing alloys in liquid aluminium and A356 melts. Metallurgical Transactions. 20B (1989) 6: 815-831
    [41] Hurum F. Effect of silicon carbide in the Fe-FeSi-Fe_3C system. AFS Transactions, 73 (1965): 53-64
    [42] Fredriksson H. Inoculation of iron-base alloy. Materials Science and Engineering. 65 (1984) 1: 137-144
    [43] Argyropoulos S A, Guthrie R L. The exothermic dissolution of 50wt% ferro-silicon in molten steel. Canadian Metallurgical Quarterly. 18 (1979) 3: 267-281
    [44] Argyropoulos S A, Guthrie R L. The dissolution of titanium in molten steel. Metallurgical Transactions. 1984, 15B(1): 47-58
    [45] 曾大新,苏俊义,陈勉己.固体金属在液态金属中的熔化与溶解.铸造技术.2000(1):33-36
    [46] 张承忠.金属的腐蚀与保护.北京:冶金工业出版社,1985:87
    [47] 虞觉奇,易文质,陈邦迪,等.二元合金状态图集.第一版 上海:上海科学技术出版社 1987.10:380
    [48] 曹晓明,温鸣,姜信昌.锌液对金属的腐蚀机制.钢铁研究学报.1998,10(4):54-58
    [49] 黄叔菊.金属的腐蚀与防护.西安:西安交通大学出版社,1984:127
    [50] J.C.伍德,普拉塞尔S.T.技术有限公司.耐熔锌腐蚀合金及其制造方法.CN 1083122A,1993
    [51] 冶金工业部.钢丝生产(中级本)下册.北京:冶金工业出版社,1973:121
    [52] Harding M A. The Prediction of Useful Kettle Life with Particular Reference to Pulse Fired High Velocity Galvanizing Furnaces, Intergalva 94. Seventeenth International Galvanizing Conference, Paris France, (1994), GC2/1
    [53] 徐滨士,刘世参.表面工程.北京:机械工业出版社 第一版 2000.6:85-86
    [54] Shin Nippon Seitetsu KK. Member with high corrosion resistance immersed in hot galvanizing bath. JP 60029457, 1985. 02
    [55] Liberski P, Podolski P, Gierek A, et al. Interaction of liquid zinc with non-metallic coatings on steel. Materials Science Forum, 251-254 (1997) pt2: 693-700
    [56] Seong B. G, Hwang S. Y, Kim M. C, et al. Observation on the WC-Co coating used in a zinc pot of a continuous galvanizing line. Proceedings of the International Thermal Spray Conference. 2000: 1159-1167
    [57] Seong B. G, Hwang S. Y, Kim M. C, et al. Reaction of WC-Co coating with molten zinc in a zinc pot of a continuous galvanizing line. Surface and Coatings Technology. 138 (2001) 1 : 101-110
    [58] Nippon Parkerizing Co. Ltd. Material having corrosion resistance to molten zinc. JP 56016645, 1981. 12
    [59] Taiyo Steel Co. Ltd. & Nippon ST (JP). Immersion member for hot dip galvanizing bath and method for preparing the same. US 5116431, 1992.05
    [60] 曹晓明,姜信昌,温鸣,等.耐液态锌腐蚀材料的研究和应用.金属热处理学报.1997,18(2):25-29
    [61] Cao Xiaoming, Long Yi, Wang Run. Mechanism of liquid zinc corrosion on metals. Journal of University of Science and Technology Beijing: Mineral Metallurgy Materials (Eng. Ed.). 4 (1997) 3: 22-26
    [62] 曹晓明,温鸣,姜信昌.锌液对金属的腐蚀机制.钢铁研究学报.1998,10(4):54-58
    [63] D. N. Tsipas, G. K. Triantafyllidis, J. Kipkemoi Kiplagat, et al. Degradation behavior of boronized carbon and high alloy steels in molten aluminium and zinc, Materials letter, 37(1998): 128-131
    [64] 谷志刚,刘竹风,白虹,等.渗硼低碳钢在热浸镀锌中的耐蚀性.金属热处理.1998,4:12-14
    [65] 余忠荪.稀土-硼共渗层抗腐蚀性能的研究.理化检验:物理分册.1990,2:26-30
    [66] 徐章德.稀土元素对固体渗硼催渗作用的研究.金属热处理.1989,6:21-24
    [67] 王俊,李克,疏达,等.渗硼层的制备及其在锌液中的耐蚀性.上海交通大学学报.2003,37(12):1840-1843
    [68] 王桂新,韩文祥.渗硼层耐锌液腐蚀性的研究.河北工业大学学报.2001,30(5):79-84
    [69] 刘长禄.硼稀土粉末共渗及渗层的性能.金属热处理.1989,8:32-36
    [70] 文九巴,李全安,张荥渊,等.稀土对热浸渗铝组织和耐腐蚀性影响的研究.材料热处理学报.2002,23(3):69-72
    [71] 西亮.渗透工业株式会社.镀锌装置材料.特开平7-54127.1995
    [72] 上海交通大学.用涂有非晶玻璃釉的金属钢管内加热器融化工业纯锌的方法.CN 1387017,2002.04
    [73] 上海交通大学.耐锌液腐蚀的涂层及其使用方法.CN 1449876,2003.10
    [74] Zhou M, Zhang J, Shu D, et al. Corrosion resistance of borophosphate enamels in molten zinc. British Corrosion Journal. 37 (2002) 4: 289-292
    [75] Shinohara N, Shirai S, Okamoto H, et al. Corrosion resistance of boride base materials in molten metals. Journal of the Japan Society of Powder and Powder Metallurgy. 41 (1994) 1 : 18-21
    [76] 刘金海.铸铁渗硼层在高温锌液中的耐蚀性.材料保护.1995,28(2):34-37
    [77] 黄润六.降低钢丝热镀锌锌耗的途径.金属制品.1996,22(5):43-46
    [78] Nakagawa M, Sakai J, Ohkouchi T, et al. Corrosion resistance of various materials in molten metal. Journal of the Iron and Steel Institute of Japan. 82 (1996) 3: 226-231
    [79] Nakagawa M, Sakai J, Ohkouchi T, et al. Friction and wear properties of C/C and ceramics particle dispersed C/C composites in a zinc-plating bath. Journal of the Iron and Steel Institute of Japan, 82 (1996) 8: 689-694
    [80] 邹敦叙,贾天聪,陈振兰,等.耐熔融金属腐蚀的是合金.CN 1387017,2002.12
    [81] 马永庆,王庆华,齐育红,等.Al-Si合金铸铁抗锌液腐蚀的研究.材料保护.1999,32(3):37-39
    [82] 齐育红,马永庆,张占平,等.Al铸铁抗锌液腐蚀机制研究.1999.10:23-26
    [83] Kubota Corp. Alloy excellent in corrosion resistance to molten zinc. JP 6041694, 1994. 02
    [84] Sumitomo Metal Ind Ltd. Steel having erosion resistance to molten zinc. JP 56016651, 1981. 02
    [85] Taihei Kinzoku Kogyo KK. Alloy provided with corrosion resistance to molten zinc. JP 58207358, 1983. 12
    [86] Nippon Chuzo KK. Alloy steel with molten zinc resistance. JP 7278754, 1995. 10
    [87] JFE Steel KK. Steel material superior in corrosion resistance and embrittlement resistance to molten zinc. JP 2003231942, 2003. 08
    [88] Mitsubishi Metal Corp. Co alloy with superior erosion resistance to molten zinc. JP 56156736, 1981. 12
    [89] Zhang K, Tang N. Y. Reactions of Co based and Fe based superalloys with a molten Zn-Al alloy. Materials Science and Technology. 20 (2004) 6: 739-746
    [90] Zhang K. Wear of cobalt-based alloys siding in molten zinc. Wear. 255 (2003): 545-555
    [91] Zhang K, Battiston L. Friction and wear characterization of some cobalt- and iron- based superalloys in zinc alloy baths. Wear. 252 (2002): 332-344
    [92] Wang Xibao. Corrosion of Co-Cr-W alloy in liquid zinc. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science. 34 (2003) 6: 881-886
    [93] Wang Xibao, Liang Yong. Corrosive wear of the Co-Cr-W alloy in liquid zinc. Journal of Materials Research. 16 (2001) 6: 1585-1592
    [94] Tamas Torok, The Corrosion and Abrasion Attack of Molten Zinc on the Bath Wall During Hot Dipping, 10th International Congress on Metallic Corrosion, Vol. 4: Sessions 14-19, Madras India, (1987), 3433-3438
    [95] Nakaqawa M, Sakai J, Ohkouehi T, et al. Corrosion, friction and wear properties of various materials in molten zinc. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan. 81 (1995) 10: 989
    [96] 彭解.Mo-30W合金材料在热镀锌工艺装备上的应用.金属制品.1988,14(2):44-47
    [97] 王国佐.钢的化学热处理.北京:中国铁道出版社,第一版.1980.3:28
    [98] 程兰征,章燕豪.物理化学.上海:上海科学技术出版社,第二版.1998.2:207-208
    [99] 傅献彩,沈文霞,姚天扬.物理化学.北京:高等教育出版社.第四版.2001.4:949-957
    [100] 闻立时.固体材料界面研究的物理基础.北京:科学出版社,第一版.1991.5:150-157
    [101] 戚正风.固态金属中的扩散与相变.北京:机械工业出版社,第一版.1998.7:82-89
    [102] 宋余九.金属的晶界与强度.西安:西安交通大学出版社,第一版.1987.9:77-79
    [103] Fisher J. C. Journal of Application Physics, 22(1951): 74
    [104] 黄继华.金属及合金中的扩散.北京:冶金工业山版社,第一版.1996.8:58-63
    [105] 徐瑞,荆天辅.材料热力学与动力学.哈尔滨:哈尔滨工业大学出版社.第一版.2003.8:178-180
    [106] 刘秀晨,安成强.金属腐蚀学.北京:国防工业出版社,第一版.2002.9:17-21
    [107] A. R. Marder. The metallurgy of zinc-coated steel. Progress in Materials Science 45 (2000): 191-271
    [108] Culcasi J. D., Sere P. R., Elsner C. I., et al. Control of the growth of zinc-iron phases in the hot-dip galvanizing process. Surface and Coatings Technology. 122 (1999) 1 : 21-23
    [109] Adachi Yoshitaka, Arai Masahiro. Transformation of Fe-Al phase to Fe-Zn phase on pure iron during galvanizing. Materials Science and Engineering: A. 254 (1998) 1-2: 305-310
    [110] Bai Kewu, Wu Ping. Assessment of the Zn-Fe-Al system for kinetic study of galvanizing. Journal of Alloys and Compounds. 347 (2002) 1-2: 156-164
    [111] 许志宏,王乐珊.无机热化学数据库.北京:科学出版社,第一版.1987.9:139-140,145

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700