用户名: 密码: 验证码:
正十二醇相变储热微/纳米胶囊的制备、表征及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球工业的高速发展,全球能源日益短缺。利用相变材料相变过程中的相变潜热来实现能量的储存和利用,有助于提高能效和开发可再生能源,但是相变材料本身存在相变过程中流动、相容性差和腐蚀性等问题。采用微/纳米胶囊化技术,制备新型相变储热复合材料,是解决上述问题的有效手段。本论文通过原位聚合法,将具有较高相变潜热、较合适相变温度的相变材料正十二醇封装在三聚氰胺-甲醛树脂内,制备了相变储热微胶囊,并用多种改性剂对其进行改性;通过细乳液聚合法,制备了以正十二醇为芯材、以聚甲基丙烯酸甲酯(PMMA)为壁材的相变储热纳米胶囊;将正十二醇相变储热微胶囊和纳米胶囊分别加入到普通石膏板和水性涂料中,制备了具有相变储热功能的复合石膏板和水性复合涂料。研究了正十二醇相变储热微胶囊和纳米胶囊的结构与性能,测试了相变储热石膏板和相变储热水性涂料的储放热特性,对其在节能领域的应用进行了探索,为其实际应用提供了技术依据。论文的研究内容和成果包括如下四点。
     第一:以相变材料正十二醇为包封对象,以三聚氰胺和甲醛为单体,通过原位聚合法,制备了以三聚氰胺-甲醛树脂为壁材、以正十二醇为芯材、具有较高相变潜热、较合适相变温度、结构致密的相变储热微胶囊,应用差示扫描量热仪(DSC)、热重分析仪(TG)、扫描电子显微镜(SEM)、傅立叶红外光谱仪(FTIR)和激光散射粒度分析仪等手段,研究了乳化剂种类、乳化剂用量、相变材料极性、乳化搅拌速度以及芯材投料质量分数等对微胶囊储热性能、包封效率以及微胶囊形貌的影响,并对正十二醇相变储热微胶囊的形成机理进行了探讨。发现乳化剂的乳化分散作用和电荷效应对微胶囊的形成起到重要作用,阴离子型苯乙烯-马来酸酐共聚物(SMA)乳化剂SMA1000HNa有助于三聚氰胺-甲醛树脂对正十二醇的包封。正十二醇相变储热微胶囊最佳的制备条件是乳化搅拌速度为4500 r/min,乳化剂相对相变材料质量分数为4.8%,芯材投料质量分数为81%,所制备的微胶囊相变潜热达最高值187.5J/g,相变材料包封效率为93.1%,相变温度为21.5℃,平均粒径为30.6μm,多分散指数为1.190。
     第二:分别以亲水型纳米SiO2、氯化钠以及聚乙烯醇(PVA)等三种物质作为改性剂,对三聚氰胺-甲醛树脂进行改性,通过原位聚合法,制备了以改性三聚氰胺-甲醛树脂为壁材、正十二醇为芯材的改性相变储热微胶囊,探讨了改性剂类型和改性剂用量对微胶囊储热性能、破损率及表面形貌的影响,用DSC、SEM和FTIR等手段对其进行了表征。发现随着改性剂用量的增加,微胶囊的相变潜热都是先增加后降低的,破损率都是先降低后增加的。PVA的改性效果最佳,改性相变储热微胶囊的综合性能最好,当其用量为2%时,微胶囊相变潜热提高了16.9%,破损率降低了68.6%。
     第三,以相变材料正十二醇为包封对象,以甲基丙烯酸甲酯(MMA)为主单体,应用可聚合型乳化剂DNS-86,以正十六烷(HD)为助乳化剂,通过细乳液聚合法,制备了以PMMA为壁材、以正十二醇为芯材、具有较高相变潜热、较合适相变温度、形态规整度高的相变储热纳米胶囊,采用DSC、TG、FTIR、透射电子显微镜(TEM)以及激光粒度分析仪等手段,研究了乳化剂、助乳化剂、引发剂、共聚单体以及芯材投料质量分数等对纳米胶囊结构与性能的影响,探讨了正十二醇相变储热纳米胶囊的形成机理。发现助乳化剂HD的使用,并采取加入水相液的方式,有助于PMMA对相变材料正十二醇的包封。PMMA-正十二醇纳米胶囊最佳的制备条件是乳化剂DNS-86用量(相对油相液质量分数)为3%,助乳化剂正十六烷用量(相对油相液质量分数)为2%,油溶性引发剂偶氮二异丁腈(AIBN)用量(相对单体质量分数)为2%,芯材正十二醇投料质量分数为48%,制备的纳米胶囊相变潜热及相变材料包封效率分别为98.8J/g和82.2%,相变温度为18.2℃,粒径主要分布在50nm到100nm的范围内。亲水共聚单体丙烯酰胺(AM)和丙烯酸(AA)的加入,有助于对相变材料正十二醇的包封。当AM用量(相对单体总质量)为4%时,胶囊相变潜热及相变材料包封效率增加至最高值,分别为109.3J/g和91.6%。
     第四,将正十二醇相变储热微胶囊和纳米胶囊分别加入普通石膏板和水性丙烯酸酯涂料中,制备了具有储热功能的复合石膏板和水性丙烯酸酯复合涂料,研究了储热胶囊对其储热性能、调温性能、隔热性能等的影响,用石膏板建立了建筑物房间模型,模拟在碘钨灯照射下模型内部温度的变化情况,测试了相变储热石膏板和相变储热水性丙烯酸酯涂料在模型上的应用效果。发现相变储热石膏板和相变储热水性丙烯酸酯涂料的相变潜热和储热效果随相变储热胶囊含量增加而增加。当相变储热石膏板中微胶囊含量为30wt%时,其相变潜热为45.6J/g,从10℃升温到48℃所需时间增加了130%,从48℃降温到10℃所需时间增加了120%,其建筑物模型内部温度比普通石膏板模型低4℃。当相变储热水性丙烯酸酯涂料中纳米胶囊含量为50wt%时,其相变潜热为54.3J/g,涂层温度比不含储热胶囊的涂层低2.5℃,相变储热涂层石膏板模型内部温度比普通石膏板模型低2.5℃。
With the rapid development of global industry, the energy sources in the world are missing day by day. Phase change materials (PCM) can be used for energy storage and utilization through the phase change latent heat during their phase change process, which is helpful to improve energy efficiency and develop new renewable energy. However, PCM have many disadvantages, such as flowing during the phase change process, bad compatibility and corrosion. Microcapsule or nanocapsule technology can be used to fabricate new phase change thermal storage composite materials, which is an effective method to solve those problems. In this work, n-dodecanol with high phase change latent heat and suitable phase change temperature was encapsulated as core by in-situ polymerization with melamine-formaldehyde (MF) resin as shell, and the microcapsules containing phase change material (microPCMs) synthesized were modified by different kinds of modifiers. The phase change thermal storage nanocapsules with n-dodecanol as core and polymethyl methacrylate (PMMA) as shell were prepared through miniemulsion polymerization. Phase change thermal storage composite gypsum board and waterborne composite coating were prepared by incorporating phase change thermal storage microcapsules and nanocapsules containing n-dodecanol into ordinary gypsum board and waterborne coating. The structure and properties of phase change thermal storage microcapsules and nanocapsules containing n-dodecanol were studied. The thermal energy absorbing and releasing performances of phase change thermal storage composite gypsum board and waterborne composite coating were studied and their applications in the fields of energy saving were explored, which provide technical basis for the practical application. The main research contents and achievements are listed as following:
     Firstly, n-dodecanol was used to be encapsulated by in-situ polymerization with monomers of melamine and formaldehyde, and microPCMs with high phase change latent heat, suitable phase change temperature and compact structure were prepared with MF resin as shell and n-dodecanol as core. The influence of emulsifier type, emulsifier amount, PCM polarity, emulsification stirring speed and feeding mass fraction of n-dodecanol on the thermal storage properties, encapsulation efficiency and morphology of microPCMs were studied by using DSC, TG, SEM, FTIR, and laser particle diameter analyzer and the formation mechanism of microPCMs were discussed. It’s found that the dispersion and charge effect of emulsifiers have great influence on the formation of MicroPCMs and anionic styrene-maleic anhydride copolymer (SMA) emulsifier is helpful for the encapsulation of n-dodecanol with MF resin. The optimal preparation condition of MicroPCMs containing n-dodecanol is that emulsification stirring speed is 4500 r/min, mass ratio of emulsifier to n-dodecanol is 4.8%, and the feeding mass fraction of n-dodecanol is 81%. MicroPCMs with the maximum phase change latent heat of 187.5J/g, encapsulation efficiency of 93.1%, phase change temperature of 21.5℃, mean diameter of 30.6μm and polydispersity index of 1.190 are obtained.
     Secondly, three kinds of modifiers hydrophilic nano-SiO2, sodium chloride (NaCl) and polyvinyl alcohol (PVA) were used to modify MF resin, respectively, and modified microPCMs were prepared by in-situ polymerization with modified MF resin as shell and n-dodecanol as core. The influence of modifier type and modifier amount on the thermal storage properties, cracking ratios and morphology of modified microPCMs were studied by using DSC, SEM and FTIR. It’s found that the phase change latents of modified microcapsules increase firstly and decrease subsequently with the increasing of the amount of modifier, while the cracking ratios decrease firstly and increase subsequently. PVA is the best modifier, by which microPCMs modified possess the optimal comprehensive performances. When the mass ratio of PVA to shell material is 2%, the phase change latent heat of modified microPCM increases by 16.9% and the cracking ratio deceases by 68.6%.
     Thirdly, n-dodecanol was used to be encapsulated by miniemulsion polymerization with main monomers of MMA, co-emulsifier of n-hexadecane (HD) and polymerisable emulsifier of DNS-86, and uniform phase change thermal storage nanocapsules with high phase change latent heat and suitable phase change temperature were prepared with PMMA as shell and n-dodecanol as core. The influence of emulsifier, co-emulsifier, initiator, co-monomer and feeding mass fraction of n-dodecanol on the structure and properties of nanocapsules were studied by using DSC, TG, TEM, FTIR, and laser particle diameter analyzer and the formation mechanism of nanocapsules were discussed. It’s found that application of co-emulsifier n-hexadecane with the way of adding into water phase is helpful for the encapsulation of n-dodecanol with PMMA. The optimal preparation condition of PMMA nanocapsules containing n-dodecanol is that the mass ratio of polymerisable anion emulsifier DNS-86 to oil phase is 3%, the mass ratio of co-emulsifier n-hexadecane to oil phase is 2%, the mass ratio of oil-soluble initiator azobisisobutyronitrile (AIBN) to total monomer is 2%, and the feeding mass fraction of n-dodecanol is 48%. Under the condition, nanocapsules with the phase change latent heat of 98.8J/g, phase change temperature of 18.2℃, encapsulation efficiency of 82.2% and main diameter range of 50-100nm are obtained. Hydrophilic co-monomer acrylamine (AM) and acrylic acid (AA) is helpful for encapsulation of PCM n-dodecanol. When mass ratio of AM to total monomer is 4%, the phase change latent heat of nanocapsule and encapsulation efficiency of n-dodecanol reach to the highest value of 109.3J/g and 91.6%, respectively.
     Finally, composite gypsum board and waterborne acrylate composite coating with the function of phase change thermal storage were prepared by incorporating microcapsules and nanocapsules containing n-dodecanol into ordinary gypsum board and waterborne acrylate coating, respectively. The influence of phase change thermal storage microcapsules and nanocapsules on the thermal storage properties, temperature adjusting performance, and heat-insulating ability of composite gypsum board and waterborne acrylate composite coating were studied. Architecture model was made with gypsum boards to stimulate the variation of indoor temperature of the model under the light of iodine tungsten lamp and test the application effect of phase change thermal storage gypsum board and waterborne acrylate coating. With the increasing of the contents of phase change thermal storage microcapsules and nanocapsules, the phase change latent heat and thermal storage effect of phase change thermal storage gypsum board and phase change thermal storage waterborne acrylate coating increase. When the mass content of microcapsules in gypsum board is 30%, the phase change latent heat of composite gypsum board is 45.6J/g, the time of temperature increasing from 10℃to 48℃increases by 130% and the time of temperature decreasing from 48℃to 10℃increases by 120%, and the indoor temperature of model with composite gypsum board is 4℃lower than that of model with ordinary gypsum board. When the mass content of nanocapsules in waterborne acrylate coating is 50%, the phase change latent heat of waterborne acrylate composite coating is 54.3J/g, the temperature of composite acrylate coating is 2.5℃lower than that of coating without thermal storage nanocapsules, and the indoor temperature of model with waterborne acrylate composite coating-gypsum board is 2.5℃lower than that of model with ordinary gypsum board.
引文
[1]崔海亭,杨锋.蓄热技术及其应用[M].北京:化学工业出版社,2004:3.
    [2]郭茶秀,魏新利.热能存储技术与应用[M].北京:化学工业出版社,2005:3.
    [3]姚伟龙,邢涛.中国能源状况与发展对策分析[J].能源研究与信息,2006,22(4):187-193.
    [4] Sharma S D, Sagara K. Latent heat storage materials and systems: A review [J]. International Journal of Green Energy, 2005, 2 (1): 1-56.
    [5] Zalba B, Marin J M, Cabeza L F, et al. Review on thermal storage with phase change: materials, heat transfer analysis and applications [J]. Applied Thermal Engineering, 2003, 23 (3): 251-283.
    [6] Shukla A, Buddhi D, Sawhney R L. Solar water heaters with phase change material thermal storage medium: A review [J]. Renewable and Sustainable Energy Reviews, 2009, 13 (8): 2119-2125.
    [7]张正国,文磊,方晓明等.复合相变储热材料的研究与发展[J].化工进展,2003,22(4):462-465.
    [8] Regin A F, Solanki S C, Saini J S. Heat transfer characteristics of thermal storage system using PCM capsules: A review [J]. Renewable and Sustainable Energy Reviews, 2008, 12 (9): 2438-2458.
    [9] Pasupathya A, Velraja R, Seeniraj R V. Phase change material-based building architecture for thermal management in residential and commercial establishments [J]. Renewable and Sustainable Energy Reviews, 2008, 12 (1): 39-64.
    [10]尚燕,张雄.相变储能材料应用研究[J].西华大学学报(自然科学版),2005,24(12):87-90.
    [11] Sharma A, Tyagi V V, Chen C R, et al. Review on thermal storage with phase change materials and applications [J]. Renewable and Sustainable Energy Reviews, 2009, 13 (2): 318-345.
    [12] Baran G, Sari A. Phase change and heat transfer characteristics of a eutectic mixture of palmitic and stearic acids as PCM in a latent heat storage system [J]. Energy Conversion and Management, 2003, 44 (20): 3227-3246.
    [13] Shim H, McCullough E A, Jones B W. Using phase change materials in clothing [J]. Textile Research Journal, 2001, 71 (6): 495-502.
    [14] Sari A. Thermal reliability test of some fatty acids as PCMs used for solar thermal latentheat storage applications [J]. Energy Conversion and Management, 2003, 44 (17): 2277-2287.
    [15]邓安仲,李胜波,沈小东等.相变温控混凝土相变储热性能试验研究[J].后勤工程学院学报,2007,23(2):88-91.
    [16] He B, Martin V, Setterwall F. Liquid–solid phase equilibrium study of tetradecane and hexadecane binary mixtures as phase change materials (PCMs) for comfort cooling storage [J]. Fluid Phase Equilibria, 2003, 212 (1-2): 97-109.
    [17]李志广,黄红军,张敏等.低温相变材料十二醇-脂肪酸二元体系相变温度的研究[J].化工新型材料,2007,35(11):55-57.
    [18]樊耀峰,张兴祥.有机固一固相变材料的研究进展[J].材料导报,2003,17(7):50-54.
    [19]武克忠,王新东,刘晓地等.多元醇PG-TAM二元体系相图[J].高等化学工程学报,2005,19(4):541-545.
    [20] Nakada H, Kubota M, Watanabe F, et al. Estimation of melting point/latent heat of binary mixtures of phase change material of erythritol and polyalcohol [J]. Kagaku Kogaku Ronbunshu, 2006, 32 (5): 429-434.
    [21] Wang X W, Lu E R, Lin W X, et al. Micromechanism of heat storage in a binary system of two kinds of polyalcohols as a solid-solid phase change material [J]. Energy Conversion and Management, 2000, 41 (2): 135-144.
    [22] Meng Q H, Hu J L. A poly (ethylene glycol)-based smart phase change material [J].Solar energy Materials and Solar Cells, 2008, 92 (10): 1260-1268.
    [23] Su J C, Liu P S. A novel solid-solid phase change heat storage material with polyurethane block copolymer structure [J].Energy Conversion and Management, 2006, 47 (18-19): 3185-3191.
    [24] Hu J, Yu H, Chen Y M, et al. Study on phase-change characteristics of PET-PEG copolymers [J]. Journal of Macromolecular Science Part B-Physics, 2006, 45 (4): 615-621.
    [25] Farid M M, Khudhair A M, Razack S A K, et al. A review on phase change energy storage: materials and applications [J]. Energy Conversion and Management, 2004, 45 (9-10): 1597-1615.
    [26]蔡洪兵,税安泽,曾令可等.新型相变材料的研究及展望[J].陶瓷学报,2008,29(4):379-383.
    [27]章学来,盛青青,葛轶群.十二水磷酸氢二钠相变性能改进研究[J].化学工程,2009,37(5):53-56.
    [28]满亚辉,吴文健,郭志强.水合无机盐相变潜热影响因素的研究[J].化工新型材料,2009,37(6):9-11.
    [29] Wang X, Zhang Y P, Xiao W, et al. Review on thermal performance of phase change energy storage building envelope [J]. Chinese Science Bulletin, 2009, 54 (6): 920-928.
    [30] Amar M K, Mohammed M F. A review on energy conservation in building applications with thermal storage by latent heat using phase change materials [J]. Energy Conversion and Management.2004, 45 (2): 263-275.
    [31]张东,康韡,李凯莉.复合相变材料研究进展[J].功能材料,2007,38(12):1936-1940.
    [32]庄秋虹,张正国,方晓明.微/纳米胶囊相变材料的制备及应用进展[J].化工进展,2006,25(4):388-391.
    [33]叶四化,郭元强,吕社辉等.微胶囊相变材料及其应用[J].高分子材料科学与工程,2004,20(5):6-9.
    [34] Sari A, Karaipekli A. Thermal conductivity and latent heat thermal storage characteristics of paraffin/expanded graphite composite as phase change material [J]. Applied Thermal Engineering, 2007, 27 (8-9): 1271-1277.
    [35] Zhang Z, Fang X. Study on paraffin/expanded graphite composite phase change thermal storage material [J]. Energy Conversion and Management, 2006, 47 (3): 303-310.
    [36]张正国,王学泽,方晓明.石蜡/膨胀石墨复合相变材料的结构与热性能[J].华南理工大学学报(自然科学版),2006,34(3):1-5.
    [37]施韬,孙伟,王倩楠.膨胀石墨微结构表征及其储能复合材料的制备[J].东南大学学报(自然科学版),2009,39(3):598-601.
    [38] Fang X, Zhang Z, Chen Z. Study on preparation of montmorillonite-based composite phase change materials and their applications in thermal storage building materials [J]. Energy Conversation and Management, 2008, 49 (4): 718-723.
    [39]陈中华,肖春香.十二醇/蒙脱土复合相变储能材料的制备及性能研究[J].功能材料,2008,(4):629-631.
    [40] Wang L Y, Tsai P S, Yang Y M. Preparation of silica microspheres encapsulating phase-change material by sol-gel method in O/W emulsion [J]. Journal of Microencapsulation, 2006, 23 (1): 3-14.
    [41]邹光龙.溶胶-凝胶法制备SiO2/脂肪酸复合相变材料[J].化工新型材料,2009,37(6):45-47.
    [42] Li W D, Ding E Y. Preparation and characterization of cross-linking PEG/MDI/PE copolymer as solid–solid phase change heat storage material [J]. Solar Energy Materials and Solar Cells, 2007, 91(9): 764-768.
    [43]张梅,那莹,姜振华.接枝共聚法制备聚乙二醇(PEG)/聚乙烯醇(PVA)高分子固-固相变材料性能研究[J].高等学校化学学报,2005,26(1):170-174.
    [44] Boh B, Knez E, Staresinic M. Microencapsulation of higher hydrocarbon phase change materials by in situ polymerization [J]. Journal of Microencapsulation, 2005, 22 (7): 715–735.
    [45] Taguchi Y, Yokoyama H, Kado H, et al. Preparation of PCM microcapsules by using oil absorbable polymer particles [J].Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 301 (1): 41-47.
    [46] Chang C C, Tsai Y L, Chiu J J, et al. Preparation of Phase Change Materials Microcapsules by Using PMMA Network-Silica Hybrid Shell Via Sol-Gel Process [J]. Journal of Applied Polymer Science, 2009, 112 (3): 1850–1857.
    [47] Sánchez L, Sánchez P, Carmona M, et al. Influence of operation conditions on the microencapsulation of PCMs by means of suspension-like polymerization [J]. Colloid & Polymer Science, 2008, 286 (8-9): 1019-1027.
    [48] Sánchez L, Sánchez P, Lucas A D, et al. Microencapsulation of PCMs with a polystyrene shell [J]. Colloid & Polymer Science, 2007, 285 (12): 1377-1385.
    [49] Sánchez L, Lacasa E, Carmona M, et al. Applying an experimental design to improve the characteristics of microcapsules containing phase change materials for fabric uses [J]. Industrial & Engineering Chemistry Research, 2008, 47 (23): 9783-9790.
    [50] Zhang H, Wang X. Fabrication and performances of microencapsulated phase change materials based on n-octadecane core and resorcinol-modified melamine–formaldehyde shell [J]. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2009, 332 (2-3): 129-138.
    [51] Su J, Ren L, Wang L. Preparation and mechanical properties of thermal storage microcapsules [J]. Colloid & Polymer Science, 2005, 284 (2): 224–228.
    [52]苏峻峰,王立新,任丽.相变储热微胶囊储热调温效果的研究[J].太阳能学报,2005,26(3):327-331.
    [53] Su J F, Wang L X, Ren L. Fabrication and Thermal Properties of MicroPCMs: Used Melamine-Formaldehyde Resin as Shell Material [J]. Journal of Applied Polymer Science, 2006, 101 (3): 1522-1528.
    [54] Su J F, Wang L X, Ren L. Preparation and Characterization of Double-MF Shell MicroPCMs Used in Building Materials [J]. Journal of Applied Polymer Science, 2005, 97 (5): 1755-1762.
    [55] Su J F, Wang L X, Ren L, et al. Mechanical Properties and Thermal Stability of Double-Shell Thermal-Energy-Storage Microcapsules [J]. Journal of Applied Polymer Science, 2007, 103 (2): 1295-1302.
    [56] Su J F, Huang Z, Ren L. High compact melamine-formaldehyde microPCMs containing n-octadecane fabricated by a two-step coacervation method [J]. Colloid & Polymer Science, 2007, 285 (14): 1581–1591.
    [57]王立新,任晓亮,任丽.原位聚合法制备相变材料微胶囊及其致密性[J].复合材料学报,2006,23(2):53-58.
    [58] Zhang X X, Tao X M, Yick K L, et al. Structure and thermal stability of microencapsulated phase-change materials [J]. Colloid & Polymer Science, 2004, 282 (4): 330–336.
    [59] Zhang X X, Fan Y F, X M Tao, et al. Fabrication and properties of microcapsules and nanocapsules containing n-octadecane [J]. Materials Chemistry and Physics, 2004, 88 (2-3): 300–307.
    [60] Li W, Wang J, Wang X, et al. Effects of ammonium chloride and heat treatment on residual formaldehyde contents of melamine-formaldehyde microcapsules [J]. Colloid & Polymer Science, 2007, 285 (15): 1691-1697.
    [61] Li W, Zhang X, Wang X, et al. Preparation and characterization of microencapsulated phase change material with low remnant formaldehyde content [J]. Materials Chemistry and Physics, 2007, 106 (2-3): 437–442.
    [62]饶宇,林贵平,罗燕.应用于强化传热的相变材料微胶囊的制备及特性[J].航空动力学报,2005,20(4):651-655.
    [63] Siddhan P, Jassal M, Agrawal A K. Core Content and Stability of n-Octadecane-Containing Polyurea Microencapsules Produced by Interfacial Polymerization [J]. Journal of Applied Polymer Science, 2007, 106 (2): 786-792.
    [64] Cho J S, Kwon A, Cho C G. Microencapsulation of octadecane as a phase-change material by interfacial polymerization in an emulsion system[J]. Colloid & Polymer Science, 2002, 280 (3): 260-266.
    [65] Su J F, Wang L X, Ren L, et al. Preparation and Characterization of Polyurethane Microcapsules Containing n-Octadecane with Styrene-Maleic Anhydride as a Surfactantby Interfacial Polycondensation [J]. Journal of Applied Polymer Science, 2006, 102 (5): 4996-5006.
    [66] Su J F, Wang L X, Ren L. Synthesis of polyurethane microPCMs containing n-octadecane by interfacial polycondensation: Influence of styrene-maleic anhydride as a surfactant[J].Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 299 (1): 268-275.
    [67] Zhang H, Wang X. Synthesis and properties of microencapsulated n-octadecane with polyurea shells containing different soft segments for heat energy storage and thermal regulation [J]. Solar Energy Materials & Solar Cells, 2009, 93 (8): 1366-1376.
    [68] Zou G, Tan Z, Lan X, et al. Microencapsulation of n-Hexadecane as a phase change material in polyurea [J]. Acta Physico-Chimica Sinica, 2004, 20 (1): 90-93.
    [69] Lan X, Yang C, Tan Z, et al. Microencapsulation of n-eicosane as Energy Storage Material Synthesized by Interfacial Polymerization [J]. Acta Physico-Chimica Sinica, 2007, 23 (4): 581-584.
    [70] Chen L, Xu L, Shang H, et al. Microencapsulation of butyl stearate as a phase change material by interfacial polycondensation in a polyurea system [J]. Energy Conversion and Management, 2009, 50 (3): 723-729.
    [71] Lazko J, Popineau Y, Legrand J. Soy glycinin microcapsules by simple coacervation method [J]. Colloids and Surfaces B: Biointerfaces, 2004, 37 (1-2): 1-8.
    [72] Hawlader M N A, Uddin M S, Zhu H J. Encapsulated phase change materials for thermal storage: Experiments and simulation [J]. International Journal of Energy Research, 2002, 26 (2): 159–171.
    [73] Hawlader M N A, Uddin M S, Khin M M. Microencapsulated PCM thermal-energy storage system [J]. Applied Energy, 2003, 74 (2): 195–202.
    [74] ?zonur Y, Mazman M, Paksoy H ?, et al. Microencapsulation of coco fatty acid mixture for thermal storage with phase change material [J]. International Journal of Energy Research, 2006, 30 (10): 741-749.
    [75] Onder E, Sarier N, Cimen E. Encapsulation of phase change materials by complex coacervation to improve thermal performances of woven fabrics [J]. Thermochimica Acta, 2008, 467 (1-2): 63–72.
    [76] Teixeira M I, Andrade L R, Farina M, et al. Characterization of short chain fatty acid microcapsules produced by spray drying [J]. Materials Science and Engineering: C, 2004, 24 (5): 653-658.
    [77] Salaün F, Devaux E, Bourbigot S, et al. Polymer nanoparticles to decrease thermalconductivity of phase change materials [J]. Thermochimica Acta, 2008, 477 (1-2): 25-31.
    [78] Fan Y F, Zhang X X, Wu S Z, et al. Thermal stability and permeability of microencapsulated n-octadecane and cyclohexane [J]. Thermochimica Acta, 2005, 429 (1): 25-29.
    [79] Zhang X X, Tao X M, Yick K L, et al. Expansion Space and Thermal Stability of Microencapsulated n-Octadecane [J]. Journal of Applied Polymer Science, 2005, 97 (1): 390-396.
    [80] Fan Y F, Zhang X X, Wang X C, et al. Super-cooling prevention of microencapsulated phase change material [J]. Thermochimica Acta, 2004, 413 (1-2): 1-6.
    [81] Zhang X X, Fan Y F, Tao X M, et al. Crystallization and prevention of supercooling of microencapsulated n-alkanes [J]. Journal of Colloid and Interface Science, 2005, 281 (2): 299-306.
    [82] Song Q, Li Y, Xing J, et al. Thermal stability of composite phase change material microcapsules incorporated with silver nano-particles [J]. Polymer, 2007, 48 (11): 3317-3323.
    [83]时雨荃,蔡明健.纳米复合膜相变微胶囊的制备及性质[J].化学工业与工程,2006,23(3):224-227.
    [84]时雨荃,蔡明健.无机纳米粒子填充相变微胶囊壁的研究[J].高分子材料科学与工程,2006,22(6):201-206.
    [85]时雨荃,杜春霞,赵镇南等.相变微胶囊壁材结构与力学强度及密封性的关系[J].高分子材料科学与工程,2005,21(5):188-192.
    [86]刘硕,张东.纳米胶囊相变材料研究进展[J].化学通报,2008,71(12):906-911.
    [87]张洪涛,黄锦霞.乳液聚合新技术及应用[M].北京:化学工业出版社,2007:142-143.
    [88] Paiphansiri U, Tangboriboonrat P, Landfester K. Polymeric nanocapsules containing an antiseptic agent obtained by controlled nanoprecipitation onto water-in-oil miniemulsion droplets [J]. Macromolecular Bioscience, 2006, 6(1): 33-40.
    [89] Volz M, Ziener U, Salz U, et al. Preparation of protected photoinitiator nanodepots by the miniemulsion process [J]. Colloid & Polymer Science, 2007, 285 (6):687-692.
    [90] Landfester K. Miniemulsion Polymerization and the Structure of Polymer and Hybrid Nanoparticles [J]. Angewandte Chemie-International Edition, 2009, 48 (25): 4488-4507.
    [91] Oh K J, Kim D S, Lee J H, et al. Preparation of nanocapsules containing phase change materials by miniemulsion polymerization [J]. Adhesion and Interface, 2003, 4 (1): 35-42.
    [92] Luo Y, Zhou X. Nanoencapsulation of a hydrophobic compound by a miniemulsion polymerization process [J]. Journal of Polymer Science Part A: Polymer Chemistry, 2004, 42 (9): 2145-2154.
    [93] Lu F, Luo Y, Li B. A facile route to synthesize highly uniform nanocapsules: use of amphiphilic poly(acrylic acid)-block-polystyrene RAFT agents to interfacially confine miniemulsion polymerization [J]. Macromolecular Rapid Communication, 2007, 28 (7): 868–874.
    [94]倪克钒,单国荣,翁志学.小分子液滴为模板制备有机-无机杂化纳米微胶囊[J].高等学校化学学报,2005,26(5):948-951.
    [95]曹志海,崔勤敏,单国荣.N-异丙基丙烯酰胺对细乳液聚合制备纳米胶囊形态的影响[J].高分子学报,2007,(12):1116-1120.
    [96]曹志海,单国荣.有无N-异丙基丙烯酰胺制备纳米微胶囊机理的比较[J].高等学校化学学报,2008,29(1):201-205.
    [97] Fang Y, Kuang S, Gao X, et al. Preparation of nanoencapsulated phase change material as latent functionally thermal ?uid [J]. Journal of Physics D: Applied physics, 2009, 42 (1): 1-8.
    [98] Fang Y, Kuang S, Gao X, et al. Preparation and characterization of novel nanoencapsulated phase change materials [J]. Energy Conversion and Management, 2008, 49 (12): 3704-3707.
    [99]方玉堂,匡胜严,张正国等.纳米胶囊相变材料的制备[J].化工学报,2007,58(3):771-775.
    [100]方玉堂,匡胜严,张正国等.纳米胶囊相变材料研究[J].太阳能学报,2008,29(3):295-298.
    [101] Baek K H, Lee J Y, Kim J H. Core/shell structured pcm nanocapsules obtained by resin fortified emulsion process [J]. Journal of Dispersion Science and Technology, 2007, 28 (7): 1059-1065.
    [102] Alkan C, Sar? A, Karaipekli A, et al. Preparation, characterization, and thermal properties of microencapsulated phase change material for thermal storage [J]. Solar Energy Materials & Solar Cells, 2009, 93 (1): 143-147.
    [103]樊耀峰,张兴祥,王学晨等.相变材料纳米胶囊的制备与性能[J].高分子材料科学与工程,2005,21(1):288-290.
    [104]樊耀峰,张兴祥,王学晨等.热处理对相变材料纳米胶囊性能的影响[J].材料工程,2004,(4):11-16.
    [105] Schossig P, Henning H M, Gschwander S, et al. Micro-encapsulated phase-change materials integrated into construction materials [J]. Solar Energy Materials & Solar Cells, 2005, 89 (2-3): 297-306.
    [106] Cabeza L F, Castello C., Nogue M., et al. Use of microencapsulated PCM in concrete walls for energy savings [J]. Energy and Buildings, 2007, 39 (2): 113–119.
    [107] Lee S H, Yoon S J, Kim Y G, et al. Development of building materials by using micro-encapsulated phase change material [J]. Korean Journal of Chemical Engineering, 2007, 24 (2): 332-335.
    [108]胡大为,胡小芳,林丽莹.相变微囊复合建材制备及储放热研究[J].建筑材料学报,2007,12(6):664-670.
    [109] Sarier N, Onder E. The manufacture of microencapsulated phase change materials suitable for the design of thermally enhanced fabrics [J]. Thermochimica Acta, 2007, 452 (2): 149-160.
    [110] Shin Y, Yoo D I, Son K. Development of thermoregulating textile materials with microencapsulated phase change materials (PCM). II. Preparation and application of PCM microcapsules [J]. Journal of Applied Polymer Science, 2005, 96 (6): 2005-2010.
    [111] Koo K, Park Y, Choe J, et al. The application of microencapsulated phase-change materials to nylon fabric using direct dual coating method [J]. Journal of Applied Polymer Science, 2008, 108 (4): 2337-2344.
    [112] Zhang X X, Wang X C, Tao X M, et al. Energy storage polymer/MicroPCMs blended chips and thermo-regulated fibers [J]. Journal of Materials Science, 2005, 40 (14): 3729-3734.
    [113] Ying B A, Kwok Y L, Li Y, et al. Thermal regulating functional performance of PCM garments [J]. International Journal of Clothing Science and Technology, 2004, 16 (1): 84-96.
    [114]林鹤鸣,司琴,杨雷等.纳米相变胶囊及其整理棉织物的调温性能[J].纺织学报,2009,30(5):95-99.
    [115] Mckinney R A, Bryant Y G, Colvin D P. Method of reducing infrared viewablility of objects[P]. US: 6373058, 2002-04-16.
    [116]孙文艳,吕绪良,郑玉辉等.微胶囊相变材料制备及其在红外隐身涂料中的应用[J].解放军理工大学学报(自然科学版),2009,10(2):156-159.
    [117]孙浩,吴文健.石蜡微胶囊化及其红外伪装隐身性能研究[J].光电技术应用,2005,6(3):41-44.
    [118] Yamagishi Y, Takeuchi H, Pyatenko A T, et al. Characteristics of microencapsulated PCM slurry as a heat-transfer fluid [J]. AIChE Journal, 1999, 45 (4): 696-707.
    [119] Alvarado J L, Marsh C, Sohn C, et al. Thermal performance of microencapsulated phase change material slurry in turbulent ?ow under constant heat ?ux [J]. International Journal of Heat and Mass Transfer, 2007, 50 (9-10): 1938-1952.
    [120]林梓荣,汪双凤,张伟保等.功能热流体强化脉动热管的热输送特性[J].化工学报,2009,60(6):1373-1379.
    [121] Koca A, Oztop H F, Koyun T, et al. Energy and exergy analysis of a latent heat storage system with phase change material for a solar collector [J]. Renewable Energy, 2008, 33 (4): 567-574.
    [122] ?ztürk H H. Experimental evaluation of energy and exergy efficiency of a seasonal latent heat storage system for greenhouse heating [J]. Energy Conversion and Management, 2005, 46 (9-10): 1523-1542.
    [123] Azzouz K, Leducq D, Gobin D. Performance enhancement of a household refrigerator by addition of latent heat storage [J]. International Journal of Refrigeration, 2008, 31 (5): 892-901.
    [124] Zhang Y P, Lin K P, Yang R, et al. Preparation, thermal performance and application of shape-stabilized PCM in energy efficient buildings [J]. Energy and Buildings, 2006, 38 (10): 1262-1269.
    [125] Mondal S. Phase change materials for smart textiles - An overview [J]. Applied Thermal Engineering, 2008, 28 (11-12): 1536-1550.
    [126] Tyagi V V, Buddhi D. PCM thermal storage in buildings: A state of art [J]. Renewable and Sustainable Energy Reviews, 2007, 11 (6): 1146-1166.
    [127] Chaiyasat P, Ogino Y, Suzuki T, et al. Influence of water domain formed in hexadecane core inside cross-linked capsule particle on thermal properties for heat storage application [J]. Colloid & Polymer Science, 2008, 286 (6-7): 753-759.
    [128] Han N, Zhang X X, Wang X C. Fabrication, structures, and properties of acrylonitrile/methyl acrylate copolymers and copolymers containing microencapsulated phase change materials [J]. Journal of Applied Polymer Science, 2007, 103 (5): 2776-2781.
    [129] Rao Y, Lin G, Luo Y, et al. Preparation and thermal properties of microencapsulated phase change material for enhancing fluid flow heat transfer [J]. Heat Transfer—AsianResearch, 2007, 36 (26): 28-37.
    [130] Peng S, Fuchs A, Wirtz R A. Polymeric phase change composites for thermal storage [J]. Journal of Applied Polymer Science, 2004, 93 (3): 1240-1251.
    [131] Park S J, Shin Y S, Lee J R. Preparation and Characterization of Microcapsules Containing Lemon Oil [J]. Journal of Colloid and Interface Science, 2001, 241 (2): 502–508.
    [132] Sawada T, Korenori M, Ito K, et al. Preparation of melamine resin micro/nanocapsules by using a microreactor and telomeric surfactants [J]. Macromolecular Materials and Engineering, 2003, 288 (12): 920-924.
    [133] Salaün F, Vroman I. Influence of core materials on thermal properties of melamine-formaldehyde microcapsules [J]. European Polymer Journal, 2008, 44 (3): 849-860.
    [134] Saiter A, Devallencourt C, Saiter J M, et al. Fragility behavior of melamine formaldehyde three dimension network [J]. Materials letter, 2000, 45 (3-4): 180-185.
    [135]常伟,齐鲁.改性蜜胺树脂的研究现状及其主要应用[J].热固性树脂,2008,23(5):56-58.
    [136] Battistella M, Cascione M, Fiedler B, et al. Fracture behaviour of fumed silica/epoxy nanocomposites [J]. Composites Part A: Applied Science and Manufacturing, 2008, 39 (12): 1851-1858.
    [137]牛晓伟,徐辉波,路新城,等.脲醛树脂电子墨水微胶囊的制备与固化研究[J].功能材料,2008,39(10):1068-1071.
    [138]赵德,刘峰,慕卫,等.毒死蜱微胶囊制备中表面形貌和包封率的影响因素[J].应用化学,2007,24(5):589-592.
    [139]鄢瑛,刘剑,张会平. NaCl和分散剂对相变储能蜡微胶囊制备的影响[J].化工新型材料,2009,37(1):56-59.
    [140]李金换,王秀峰,朱宛琳,等.原位沉积法制备脉醛树脂电子墨水微胶囊[J].液晶与显示,2007,22(3):278-282.
    [141]甄朝晖,陈中豪.乳化剂对原位聚合蜜胺甲醛树脂微胶囊成囊性的机理研究[J].中国造纸学报,2006,21(1):47-51.
    [142]金日光,华幼卿.高分子物理[M].北京:化学工业出版社,2007:249-254.
    [143] Hu Y L, Ye L, Zhao X W. Synthesis of the melamine–formaldehyde polycondensate and its thermal stabilization effect on polyoxymethylene [J]. Polymer, 2006, 47 (8):2649–2659.
    [144] Asua J M. Miniemulsion polymerization [J]. Progress in Polymer Science, 2002, 27 (7): 1283-1346.
    [145] Antonietti M, Landfester K. Polyreactions in miniemulsions [J]. Progress in Polymer Science, 2002, 27(4): 689-757.
    [146] Theisinger S, Schoeller K, Osborn B, et al. Encapsulation of a Fragrance via Miniemulsion Polymerization for Temperature-Controlled Release [J]. Macromolecular Chemistry and Physics, 2009, 210 (6): 411-420.
    [147] Romio A P, Sayer C, Araujo P H H, et al. Nanocapsules by Miniemulsion Polymerization with Biodegradable Surfactant and Hydrophobe [J]. Macromolecular Chemistry and Physics, 2009, 210 (9): 747-751.
    [148] Romio A P, Bernardy N, Senna E L, et al. Polymeric nanocapsules via miniemulsion polymerization using redox initiation [J]. Materials Science & Engineering C, 2009, 29 (2): 514-518.
    [149] Cao Z H, Shan G R. Synthesis of Polymeric Nanocapsules with a Crosslinked Shell through Interfacial Miniemulsion Polymerization [J]. Journal of Polymer Science Part A: Polymer Chemistry, 2009, 47 (6): 1522-1534.
    [150] Zhang Y, Zhu S Y, Yin L C, et al. Preparation, characterization and biocompatibility of poly(ethylene glycol)-poly(n-butyl cyanoacrylate) nanocapsules with oil core via miniemulsion polymerization[J]. European Polymer Journal, 2008, 44 (6): 1654-1661.
    [151] Koh H D, Lee J S. Polymeric nanocapsules containing nematic LCs as hydrophobes in miniemulsion polymerization [J]. Macromolecular Rapid Communications, 2007, 28 (3): 315-321.
    [152] Altinbas N, Fehmer C, Terheiden A, et al. Alkylcyanoacrylate nanocapsules prepared from mini-emulsions: A comparison with the conventional approach [J]. Journal of Microencapsulation, 2006, 23 (5): 567-581.
    [153] van Zyl A J P, Bosch R F P, McLeary J B, et al. Synthesis of styrene based liquid-filled polymeric nanocapsules by the use of RAFT-mediated polymerization in miniemulsion [J]. Polymer, 2005, 46 (11): 3607-3615.
    [154] Han M, Lee E, Kim E. Preparation and optical properties of polystyrene nanocapsules containing photochromophores [J]. Optical Materials, 2003, 21 (1-3): 579-583.
    [155] Tiarks F, Landfester K, Antonietti M. Preparation of polymeric nanocapsules by miniemulsion polymerization [J]. Langmuir, 2001, 17 (3): 908-918.
    [156] Gauthier C, Sindt O, Vigier G, et al. Reactive surfactants in heterophase polymerization.XVII. Influence of the surfactant on the mechanical properties and hydration of the films [J]. Journal of Applied Polymer Science, 2002, 84 (9):1686-1700.
    [157] Amalvy J I, Unzue M J, Schoonbrood A S, et al. Reactive Surfactants in heterophase polymerization: Colloidal properties, film-water absorption, and surfactant exudation [J]. Journal of Polymer Science Part A: Polymer Chemistry, 2002, 40 (17): 2994-3000.
    [158]周向东.聚合物/相转变材料纳米胶囊的制备[D].杭州:浙江大学,2004.
    [159] Abyaneh M K, Pasricha R, Gosavi S W, et al. Thermally assisted semiconductor-like to insulator transition in gold-poly(methyl methacrylate) nanocomposites [J]. Nanotechnology, 2006, 17 (16): 4129-4134.
    [160] Steiner G, Zimmerer C, Salzer R. Characterization of metal-supported poly(methyl methacrylate) microstructures by FTIR imaging spectroscopy [J]. Langmuir, 2006, 22 (9): 4125-4130.
    [161] Ahmad S, Ahmad S, Agnihotry S A. Synthesis and characterization of in situ prepared poly(methyl methacrylate) nanocomposites [J]. Bulletin of Materials Sciences, 2007, 30 (1): 31-35.
    [162]曾幸荣.高分子近代测试分析技术[M].广州:华南理工大学出版社,2003:76.
    [163] Ichiura H, Ohi T, Oyama H, et al. Paper–paraffin composites prepared by interfacial polymerisation reaction on paper surface and its function of thermal storage [J]. Journal of Material Science, 2008, 43 (4): 1486-1491.
    [164] You M, Zhang X X, Li W, et al. Effects of MicroPCMs on the fabrication of MicroPCMs/polyurethane composite foams [J]. Thermochimica Acta, 2008, 472 (1-2): 20-24.
    [165] Alawadhi E M. Thermal analysis of a building brick containing phase change material [J]. Energy and Buildings, 2008, 40 (3): 351-357.
    [166] Li J L, Xue P, He H, et al. Preparation and application effects of a novel form-stable phase change material as the thermal storage layer of an electric floor heating system [J]. Energy and Buildings, 2009, 41 (8): 871-880.
    [167] Ahmad M, Bontemps A, Sallee H, et al. Thermal testing and numerical simulation of a prototype cell using light wallboards coupling vacuum isolation panels and phase change material [J]. Energy and Buildings, 2006, 38 (6): 673–681.
    [168] Zhang Y P, Lin K P, Yang R, et al. Preparation, thermal performance and application of shape-stabilized PCM in energy efficient buildings [J]. Energy and Buildings, 2006, 38 (10): 1262-1269.
    [169]陈中华,姜疆,张贵军等.复合型建筑隔热涂料的研制[J].太阳能学报,2008,29(3):257-262.
    [170] Fang X, Zhang Z, Chen Z. Study on preparation of montmorillonite-based composite phase change materials and their applications in thermal storage building materials [J]. Energy Conversion and Management, 2008, 49 (4): 718–723.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700