用户名: 密码: 验证码:
重力热管式抽油杆柱研制及其传热特性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于原油的粘温特性,原油从井底流向井口的过程中,因散热、降温致使其粘度急剧增加,流动性变差,影响了油井正常生产。为此,需要对油井井筒进行加热以改善原油流动效果。目前广泛采用的电加热方法能耗大、存在电加热抽油杆故障、电缆故障、控制柜故障等问题,循环热流体加热井筒及加化学剂方法不仅增加生产成本,而且使采油井下作业工艺变得复杂。近年来,为了解决这些生产问题,人们提出将热管原理用于改善油井井筒的温度分布。但是,应用重力热管原理采油还有许多问题需要解决。本文针对这一现状,对重力热管式抽油杆柱开展了深入的研究:
     1.分析并指出了应用热管原理采油亟待解决的重要问题是:①液池过深,沸腾条件苛刻;②蒸汽流速过高,管径过小,携带极限小;③蒸汽流动路径过长,流动阻力过大问题。
     2.系统地分析了热管内发生的自然现象的机理和影响因素,为重力热管式抽油杆柱设计与制造提供了理论依据。
     3.进行了重力热管式抽油杆柱传热计算和热工设计研究,提出了由空心抽油杆制成的重力热管的传热计算方法。计算结果表明,由空心抽油杆制成的重力热管的传热功率大约占原油进口热焓的25-30%,大约占向地层散热量的80%,井口原油温度与井底油温之比大于70%,与文中实验结果一致,证明了本文提出的重力热管传热计算方法的正确及合理性。
     4.研制了重力热管式抽油杆柱壳体杆件。提出了重力热管壳体专用空心抽油杆的制造技术参数和加工工艺技术;成功生产了定型产品抽油杆,产品型号为FTG。通过室内实验,证明本文研制的重力热管壳体专用空心抽油杆抗拉强度达到910MPa,承载扭矩达到3785Nm,杆体强度大大提高;在≥20MPa条件下,保压5min无渗漏,密封性能好。现场试验表明:本文研制的专用杆组成的壳体杆柱断脱率明显降低,无机械强度和密封问题,正常运转时间长,可以作为优先选用的重力热管壳体专用杆件。
     5.指出了采油用重力热管式抽油杆柱传热与典型重力热管传热之间的差异是地层流出的原油既是热源又是冷源、蒸发段与冷凝段的分界点不固定、通过管壁的热流密度随所处井深不同而不同等。在此基础上形成了室内实验装置设计思路,建立了重力热管式抽油杆柱传热室内实验装置;提出了实验方法,解决了热管充液与排气等工艺和技术问题。
     6.分析比较了水和本文复配的A液两种备选工质的物性参数、沸腾条件、蒸汽流动阻力和携带极限等重要性能。结果表明,本文复配的A液优于水,确定A液可做为重力热管式抽油杆柱工质,并提出工质充液量为热管内部容积的15~20%为宜。
     7.提出了重力热管式抽油杆柱实验装置冷/热水换热实验操作和分析方法。经过实验,确定热水流量控制值为0.1kg s、冷/热水间换热量为7~10kw时,可使热水温降达到20~30°C ,可满足热管正常运行要求。
     8.传热实验结果证明,本文研制成功了重力热管式抽油杆柱,热管工作效果良好:
     ①热流体在入口处的0~4米段,温度发生了突然的下降,说明在入口段,热管内的沸腾换热极为强烈,换热强度很大,热管吸收并带走了热流体的可观的热量。
     ②热流体在温度达到最低点以后,温度出现了逐渐的回升现象,然后是平缓地下降,这与冷热水循环系统试验结果形成了鲜明对比,证明热管工作正常。
     ③之后热管内部温度也随之出现波浪型的变化,在入口段急剧下降后,又逐渐回升,并在两曲线交点处超越热流体温度,表明热管能够向热管外油管内的热流体传热。
     ④实验结果表明,热管的工质选择A液是正确、适用的,A液工质避开了常规工质(水)的一系列缺点,不会出现流动阻塞及压降过大的现象。并且经实验可知热管冷凝段与蒸发段的温度之比大于0.7,即表明油井使用热管可使井口原油温度值高于井底油温的70%以上。
     9.探讨了重力热管式抽油杆柱的实施技术。根据采油现场情况、热管制造技术和本文成功的室内实验经验,对在采油现场制作重力热管式抽油杆柱施工工艺进行了初步研究,提供了具体的操作步骤与方法。
     本文研究成果为应用热管原理采油提供了可行思路和实用技术,具有一定的应用价值和指导意义。
Due to the viscosity-temperature characteristics of crude oil, the viscosity of oil will increase rapidly as it cools down gradually caused by heat loss during its flow from down-hole to well-head, influencing the normal production of oil well. Therefore, the borehole of oil well needs to be heated. Presently, heating methods of electric, hot fluid circulation and chemical agent addition are applied widely. But there exist many problems in these methods. For electric heating, the energy consumption is tremendous and there are failures of the electric-heated rod string, the electric cable and the control cabinet, etc. The methods of hot fluid circulation or chemical agent addition not only increase the production cost, but also complicate the down-hole operation procedure of production well. In order to solve these problems, the theory of gravity heat pipe was suggested in recent years to be applied in improving the distribution of borehole temperature. But there are many problems should be studied further in order to use gravity heat pipe in oil production. According to the current situation, research work is carried out in-depth on the gravity heat pipe sucker rod string in this dissertation.
     1. Through analysis, it is appointed out that the following problems in using gravity heat pipe theory in oil production need to be researched profoundly. (1) The liquid pool is too deep and the boiling condition is too harsh; (2) the flow rate of steam is too high, the caliber size is too small, the entrainment limit is small; (3) the steam flow path is too long, the flow resistance is too big.
     2. The mechanisms and influencing factors of the natural phenomena occurred in the heat pipe are analyzed systematically, which provides the theoretic basis for the design and manufacture of the gravity heat pipe sucker rod string.
     3. Studies on heat transfer calculation and thermal design on gravity heat pipe sucker rod string are carried out, and the method of heat transfer calculation for gravity pipe made from hollow sucker rod is put forward. The calculation results show that the heat transfer rate of the gravity heat pipe of hollow sucker rod is about 25-30% of the inlet heat enthalpy of crude oil, account for about 80% of the heat loss to the formation. The ratio of the oil temperature at well-head to the bottom-hole temperature is over 70%, consistent with the experimental results, which demonstrates the correctness and validity of the heat transfer calculation method for gravity heat pipe.
     4. The shell pipe for the gravity heat pipe sucker rod string is developed. The manufacture technical parameters and processing technique of hollow sucker rod specified for gravity heat pipe shell are put forward, and the special sucker rod is manufactured, and the type is FTG . Laboratory experimental results show the tensile strength of this sucker rod is up to 910 MPa, its torque bearing capability reaches 3785 Nm, the rod strength is enhanced greatly. Keep the rod under the pressure of≥20MPa for 5 minutes, there is no leakage, demonstrating the good sealing property. Field test show that the rate of pipe broken and thread tripping of the shell string made up by the special pipes developed in this dissertation reduced obviously; there is no problems of mechanical strength and sealing; the string has a long duration of normal operation. This pipe can be optimally used as the specific shell for the gravity heat pipe.
     5. Compared with the heat transfer of the typical heat pipe, the different characteristics of the heat transfer of the gravity heat pipe sucker rod string are: the crude oil from formation is both the heat source and the cold source; the division point between the evaporation segment and the condensation segment is not a fixed point; the heat flow density through the pipe wall is different at various well depth. On the basis of the knowledges above, the design idea of the laboratory experimental apparatus is formed; the experimental apparatus of gravity heat pipe sucker rod string is constructed; the experimental methods are put forward; the procedure and technical problems of fluid filled into and gas exhausted from heat pipe are solved.
     6. Important properties of the water and fluid A prepared in this dissertation, such as physical parameters, boiling condition, flowing resistance of steam and entrainment limit, etc. are compared. The results show that fluid A is better than water. Fluid A can be used as the working fluid of the gravity heat pipe sucker rod string, and the fill amount of working fluid should be 15-20% of the inner volume of the heat pipe.
     7. Experimental procedure and analysis method for cold/hot water heat exchange on the experimental apparatus of gravity heat pipe sucker rod string is put forward. Through experiments, it is concluded that when the flow rate is controlled at 0.1 kg/s and the heat exchange between the cold and hot water is 7-10 kw, the reduction of water temperature can reach 20-30℃, which can meet the requirements for the heat pipe to operate normally.
     8. Results of heat transfer experiments show that the gravity heat pipe sucker rod string developed in this dissertation is successful, which exhibits good working effects:
     (1) For the segment of 0-4 meters at the inlet, abrupt reduction occurs to the temperature of the hot fluid, demonstrating that the boiling heat exchange is very strong at the inlet segment of the heat pipe, great amount of heat of the hot fluid is absorbed and entrained by the heat pipe.
     (2) When the temperature of the hot fluid reaches the lowest point, the temperature will rise gradually and then decrease gently, which forms a sharp contrast to the test results of cold/hot water circulation system, demonstrating the normal operation of the heat pipe.
     (3) Thereupon, the temperature inner the heat pipe appears wave-like changes, namely, decreases abruptly at the inlet segment, then rises gradually and transcends the temperature of the hot fluid at the intersect of the two curves, demonstrating that the heat pipe can transfer heat to the outside hot fluid in the tubing.
     (4) Experimental results show it is right and applicable to chose fluid A as the working fluid for the heat pipe. Working fluid A can overcome a series of drawbacks of the typical working fluid (water), phenomena of flow blocking and too big pressure drop will not occur. And it can be seen from experiments that the rate of temperature between the condensation segment and the evaporation segment is over 0.7, showing that the application of heat pipe in the oil well can obtain a temperature at the well-head being higher than 70% of the bottom-hole temperature.
     9. The implementation technology of the gravity heat pipe sucker rod string is investigated. According to the field condition of oil production, the heat pipe manufacture technology and the successful laboratory experimental experiences achieved in this dissertation, the procedure to prepare the gravity heat pipe sucker rod string on field is studied preliminarily, and the specific construction process and methods are provided.
     The research results achieved in this dissertation provide the feasibly way and practical technology for using the heat pipe principle in the oil production, having certain application value and guiding significance.
引文
[1]雅申科,帕里修克.欧亚大陆石油[J].新疆石油地质, 2006,27(3):375-382.
    [2]李美蓉,向浩,马济飞.特稠油乳化降黏机理研究[J].燃料化学学报, 2006,34(2):175-178.
    [3] Des BR IISAY CM, MUD IE DW. Pumping heavy oil with the aid of down-hole-oil-in- water emulsing [J]. J Can Pet Technol, 1989, 28 (4):81-84.
    [4]邓理周.物理法防蜡防垢降粘增油器的研究与应用[J].石油机械, 2006,34(2):33-36.
    [5]金鲁明.浅谈电缆故障产生的现象分析[J].科技经济济市场, 2006(2):26.
    [6]庄俊,张红著.热管技术及其工程应用[M].北京:化学工业出版社, 2000:1-3.
    [7]李菊香,王良虎.稠性油田井下作业的热管利用可行性探讨[J].能源研究与利用,1995(5):21-24.
    [8]王义春,张建军,王瑞君,石惠宁,丁建东.地热能自平衡加热采油过程数值模拟[J].2005(25):1-5.
    [9]吴晓东,师俊峰,竺彪.循环热流体开采稠油优化设计方法研究[J].石油钻探技术, 2006,34(6):1-3.
    [10]马春红,吴晓东.热管改善油井井筒流体温度分布的理论研究[J].石油学报, 2006,27(1):114-118.
    [11]吴晓东等.井筒重力热管传热技术在蒸汽吞吐井中的应用[J].石油钻采工艺, 2006,28(1):60-63.
    [12]张玉丰,吴晓东,李伟超.重力热管井筒伴热方式可行性分析[J].石油勘探与开发, 2007(34):483-487.
    [13]李伟超,吴晓东,师俊峰,张玉丰.重力热管伴热改善稠油井井筒传热损失的研究[J].西南石油大学学报, 2007,29(06):75-79.
    [14]张文明等.重力热管抽油杆内置溢泡管传热分析[J].大庆石油学院学报, 2007.
    [15]马同泽等编著.热管[M].北京,科学出版社, 1983,5.
    [16] [美]SW纪著.热管理论与实用[M].北京,科学出版社, 1981.
    [17]刘纪福主编.热管换热器[M].哈尔滨工业大学热工教研室, 1986.
    [18]胡爱凤,杨学忠.无吸液芯径向热管的传热机理[J].南京工业大学学报, 2005,27(1):51-56.
    [19]李亭寒等编著.热管设计与应用[M],北京,化学工业出版社, 1987.
    [20]屠传经,洪荣华,王鹏举编.重力热管式换热器及其在余热利用中的应用[M].杭州:浙江大学出版社, 1989.
    [21] Grover G.M., Cotter T.P. and Erikson G.F. Structure of very high thermal conductance.J.Appl.Phys. 1964, 35(6):215-220.
    [22]由宏君.热管技术的应用进展[J].四川化工, 2005,8(3):47-51.
    [23] Tien C.L.,Chung K.S. Entrainment limits in heat pipes. AIAA paper No.78-382, 1970.
    [24] Negishi K, Kim Y.K. A correlation for the critical heat transfer rate in an inclined two-phase closed thermosyphon. Int.J.Heat Mass Transfer. 1983, 26(8):1207-1213.
    [25]陈家琅主编.水力学.北京:石油工业出版社, 1980.
    [26] Cotter T.P .Theory of heat pipes.Los Alamos Scientific Lab: Report No.LA-3246-MS, 1965.
    [27] Cengie Yilde,Yasar Bicer,Dursun Pehlivan.Heat transfer and pressure drop in a heat exchanger wit h a helical pipe containing inside springs ,Energy convers, 1997, 38 (6):619-624.
    [28] Xiao Ping Wu,Peter Johnson.Application of heat pipe heat exchangers to humidity control in air - conditioning systems, Applied Thermal Engineering,1997,17 (6) :561 -568.
    [29] A. R. Lukiaobudi,A. Akbsriadeh,P. W. Tohnson.Design construction and testing of a thermosyphon heat exchanger for medium temperature heat recovery in bakeries, Heat Recovery Systems ,1995 ,15 (5) :481-491.
    [30] Feng Yang, Xiugan Yuan,Guiping Lin ,Waste heat recovery using heat pipe heat exchanger for heating automobile using exhaust gas, Applied Thermal Engineering ,2003 ,23 :367-372.
    [31] Joudi Khalid A ,Witw it A M.Improvements of gravity assisted wickless heat pipes[J].Energy Conversion and Management, 2000,41: 2041-2061.
    [32] Cotter T.P .Pricipies and Prospects of Micro heat pipes .Proc.5th Int.Heat Pipe Conf..Tsukuba, Japan:1984.
    [33] Ma T.Z., Jiang Z.Y. Heat Pipe Reaearch and Development in China. Proc.5th Int.Heat Pipe Conf.. Tsukuba, Japan:1984.
    [34]勒明聪,陈远国.热管及热管换热器.重庆:重庆大学出版社, 1986.
    [35]罗蛰潭主编.油层物理.北京:地质出版社, 1985.
    [36]沈忠等编著.胶体于表面化学(第三版),北京:化学工业出版社, 2004.
    [37] Adamson A.M.表面的物理化学(上,下册),顾惕人译,北京:科学出版社, 1984及1985.
    [38]陈家琅,刘永建,岳湘安编著.钻井液流动原理[M].北京:石油工业出版社, 1997.
    [39]王致清主编.粘性流体动力学[M].哈尔滨:哈尔滨工业大学出版社, 1990.
    [40] Th.Spendel.Laminar Film Condensation Heat Transfer in Closed Two-Phase Thermosyphons, Proceedings of the 5th International Heat Pipe Conference, Part1. Tsukuba, Japan:1984.
    [41] R.A.Seban and J.A.Hodgson. Laminar Film Condensation in a Tube with Upward Vapor Flow. Int.J.Heat Mass Transfer. 1982, 25(9),1291-1300.
    [42]卫红,马同泽.两相闭式热虹吸管内凝结换热的研究[J].工程热物理学报, 1990.11(2),182-186.
    [43] Wageman W.E., Guevara F.A. Fluid Flow through a porous Channel.Phys. Fluids. 1960,3(6),115-120.
    [44] Bezrodnyi,M.K. The Upper Limit of Maximum Heat Transfer Capacity of Evaporative Thermosyphons, Teploenegetika, 1978,25(8),63-66.
    [45] Wallis,G..B., One-dimensional Two-Phase Flow, McGraw-Hill, New York,1969.
    [46]朱华,屠传经.校核重力式热管携带极限的方法[J].能源工程,1986,6(5),43-46.
    [47] Ngugen-Chi and Groll,M.,Entrainment or flooding Limit in a Closed Two-Phase Thermosyphon,phys.Fluids.1981,25(7),93-100.
    [48]严家禄编.工程热力学,北京:人民教育出版社,1981.
    [49]杨世铭,陶文铨编著.传热学[M].北京:高等教育出版社,2006.
    [50]赵亚滨等,二相闭式热虹吸管冷凝换热规律实验研究,中国工程热物理学会第二界热管会议论文集,湖南大庸,1988,9.
    [51]张文明.重力热管抽油杆室内实验研究[D].大庆,大庆石油学院, 2008,3.
    [52]任瑛等编著.稠油与高凝油热力开采问题的理论与实践.北京,石油工业出版社,2001.2.
    [53]张琪.采油工艺原理与设计[M],东营:石油大学出版社, 2002.
    [54]张玉斌等.抽油杆的可靠性分析[J].大庆石油学院学报, 1996,20(3):65-69.
    [55]赵晓等.空心抽油杆在油井升举中的应用[J].油气田地面工程, 2006,25(7):5-7.
    [56]闫小克,唐志伟,俞昌铭.超常工业热管的研制[J].计量技术, 2003,25(4):64-65.
    [57]李诚.工业热管的适用性分析[J].化肥设计, 2003,41(5):12-18.
    [58]唐志伟,马重芳,蒋章焰.关于工业热管的回顾与展望[J].北京工业大学学报,2002,28(4):465-471.
    [59]翁锦萍,魏琪,袁朗,华威,吴志刚.两相闭式热虹吸管传热特性研究[J].节能技术, 1995,17(95):12-13.
    [60]陈彦泽,丁信伟,喻建良,周一卉.新型热管技术开发及应用[J].热能动力工程,2004,19(1):1-3.
    [61]胡爱凤,杨学忠.无吸液芯径向热管的传热机理[J].南京工业大学学报, 2005,27(1):51-55.
    [62]李菊香,杨俊,徐通明.热管换热器的设计原则与应用[J].化工设备设计, 1997,34:46-49.
    [63]赵蔚琳,庄俊,张红.钠热管的性能试验研究[J].化工装备技术,2004,25(1):25-27.
    [64]张正芳,马同泽,陈焕倬.两相闭式热虹吸管加热段内的传热特性[J].工程热物理学报, 1990,11(3):319-322.
    [65]孙曾闰,赵亚滨,张有衡.两相闭式热虹吸管冷凝换热规律的分析与计算[J].工程热物理学报, 1989,10(4):422-426.
    [66]明伟,石程名,辛明道.两相闭式热虹吸管的强化传热试验[J].工程热物理学报,1984,5(4):371-373.
    [67] J.G.科利尔.对流沸腾和凝结[M].北京:科学出版社, 1982.
    [68]杨峻,李菊香,庄俊.萘热管的极限传热性能试验与最佳充液量的研究[J].能源研究与利用,1995:3-5.
    [69]何晓峰,李淑兰,赵宝珠.热管的传热极限与热管尺寸的优化设计[J].河南科学,1997,15(4):423-428.
    [70]池田义雄等编著.实用热管技术[M],商政宋,李鹏龄译.北京:化学工业出版社,1998.
    [71] Tien C.L.. Heat pipe in Handbook of Heat Transfer, Chap.19, McGraw-Hill,NewYork, 1984.
    [72] Pan Y..Condensation heat transfer characteristics and Concept of Sub-flooding limit in a two-phase closed thermosyphon, Int.Communications in Heat and Mass.
    [73] Read J.G. and Tien C.L., Modeling of the two-phase closed thermosyphon. Trans. ASME, 1987,109,722-730.
    [74]杨士铭.传热学[M].北京:人民教育出版社, 1981.
    [75]神冶根岸.两相热虹吸管的热流体动力学.第四届热管国际会议论文,1992,8,137-147.
    [76]侯光武等.密闭式热虹吸管的传热机理研究[J].化工装备技术, 2005,26(5):50-53.
    [77]赵虎军等.重力热管冷凝段中液膜的传热分析[J].黑龙江电力技术, 1999,21(5):29-31.
    [78]庄骏,徐通明,石寿椿.热管与热管换热器[M].上海:上海交通大学出版社, 1989.5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700