用户名: 密码: 验证码:
煤热解动力学及其挥发分析出规律的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤热解是煤转化过程中(气化、液化、燃烧)的初始阶段,研究煤的热解对煤的其它转化都有很重要的意义。本论文在煤结构及煤热解的TG/DTA、TG/MS及热解红外光谱的分析基础上,详细考察了九种不同变质程度的煤,以及经过酸洗脱灰,二硫化碳、苯、三氯甲烷、四氢呋喃和吡啶单独抽提和连续抽提方法处理后霍林河和义马煤的热解动力学特征和热解气体逸出规律。主要结论如下:
     (1)不同变质程度煤的结构特征及热解特性:煤化程度高的煤有较高的芳香氢含量,较高的芳香度;煤化程度高的煤热解失重量相对较小,初始热解温度和最大失重速率温度比煤化程度低的煤较高;随升温速率的增加,各种煤的失重量没有什么变化,但特征点温度都相应升高,最大失重速率也呈线性增加;用一级分段反应模型求得各种煤的动力学参数:表观活化能和频率因子,活化能在无水无灰基碳含量81%左右达到最大,同一升温速率不同温度段活化能与频率因子呈正相关线性关
    
     太原理工大学硕士研究生学位论文
    系;煤化程度高的热效应强度比煤化程度低的煤低,对应温度
    也相应升高;高煤化程度煤的热解气体产物氧化物和CZ_3轻质
    烃类逸出量比低煤化程度煤少,C犷C:芳烃类逸出量较多,温度
    也相对较高。
     (2)酸洗脱灰处理后煤的结构特征及热解特性:酸洗脱灰
    能脱出煤中90%的矿物质,并且基本不影响煤的大分子结构;
    霍林河和义马酸洗脱灰后比原煤有较大的失重量,较高的特征
    点温度,较大的失重速率;脱灰后主要热解阶段的活化能比原
    煤较大;脱灰后所分析的各种气体产物都比原煤减少,对应温
    度比原煤提前。
     (3)抽提处理后煤的结构特征及热解特性:随溶剂极性的
    增加,抽提率逐渐增加,连续抽提率一般小于单独抽提率;经
    毗陡抽提后残煤的芳香度比原煤增大;在150一900℃范围,抽提
    后残煤的热解失重量比原煤增加,主要热解阶段的活化能除毗
    健抽提残煤较小外,其它都和原煤相近;抽提后残煤的热解气
    体产物一般比原煤少,但四氢吠喃抽提后比较特殊,有部分产
    物超过了原煤。
Coal pyrolysis is an initial process of all major coal conversion, like gasification and combustion, carbonization, therefore, research on pyrolysis is very important for coal conversion process. Based on analysis of coal structure and TG/DTA, TG/MS, Py-FTIR investigation of coal pyrolysis, the kinetics of pyrolysis and the emission of pyrolysis gases were studied on 9 kinds of different rank coals and Huolinhe, Yima coals demineralized by HF/HC1 and extracted by respective and successive ways with five kinds of solvent: CS2, Benzene, CHC13, THF and Pyridine. The main conclusions are as following:
    (1) The structure and pyrolytic characteristics of different rank coals: The higher rank coals are , the more aromatic hydrogen
    
    
    and aromaticity have they. The higher rank coals lost lower weight and have higher initial pyrolysis temperature, higher temperature at the highest weight loss rate. With increasing of the heating rate, the weight loss unchanges, the characteristic temperatures increase, the highest weight loss rates linearly increase with the heating rate. The apparent activation energies and pre-exponential factors are calculated in the different pyrolysis temperature stages by the first-order raction model. The apparent activation energy reaches the maximum value about Cdaf81% of coal. In the different stages of the same heating rate, the apparent activation energy positively relates to the pre-exponential factor. The higher rank coals have lower heat effect and higher temperature of the endothermic and exothermic peaks, lower content of C2.3 light hydrocarbons, lower content oxides, higher content C6-8 aromatic hydrocarbons than the lower rank coals, and the temperatures of the maximum value of these components are higher than the lower rank coals.
    (2) The structure and pyrolytic characteristics after demineralization: The demineralization by HF/HC1 can remove 90% minerals, and do not change the main coal structure. After
    
    
    demineralization, Huolinhe and Yima coals gain more weight losses, higher characteristic temperatures, higher highest weight loss rate, higher apparent activation energy in the main pyrolysis stage than raw coal. The content of different components studied are lower than raw coal after demineralization, and the temperatures of the maximum value are lower.
    (3) The structure and pyrolysis characteristics after extraction: With increasing of the solvent polarity, the extraction yields increase, the successive extraction yields are lower than the respective, and the Pyridine extraction can cause aromaticity higher. In 15 0-900 C, the weight loss amount after extraction are more than the raw coal, and the apparent activation energy of the main pyrolysis stage is close to the raw coal except Pyridine extraction. After extration, yields of the gases are lower than the raw coal but THF extraction.
引文
1.申峻,邹岗明,王志忠,煤碳化成焦机理的研究进展,煤化工,1999,4,15~18
    2.程军,周安宁,李建伟,煤结构研究进展,煤炭转化,2001,24(4),1~7
    3.秦匡宗,郭绍辉,煤结构的新概念和煤成油机理的再认识,科学通报,1998,43(18),1912~1918
    4. Nishioka M, Evidence for the associated structure of bituminous coal, Fuel, 1992, 71, 941
    5. Cerny J, Pavlikova H, Structural Analysis of low-rank extracts and their relation to parent coals, Energy & Fuels, 1994, 8(2), 375~379
    6.谢克昌,煤的结构与反应性,北京,科学出版社,2002
    7.刘旭光,李保庆,煤热解模型的研究方向,煤炭转化,1998,21(3),42~46
    8.冯杰,李文英,谢克昌,傅立叶红外光谱法对煤结构的研究,煤炭转化,1996,19(2),1~11
    9. Advanced Fuel Research, Fuel-Devolatilization Model FG-DVC, www. turbosense.com/products/fgdvc
    10. Serio. M. A, Solomon P R, Hamblen D. G, etal, Models of tar formation during coal devolatilization, Combustion and Flame, 1988, 71: 137~146
    11. Thomas H. Fletcher, Alan R. Kerstein, etal, Achemical percolation moel for devolatilization: summary, www.face.auc.dk/courses/face9/combmodel
    12.钟蕴英,关梦嫔等,煤化学,中国矿业大学出版社,1988
    13.宋绍勇,太原理工大学硕士学位论文,2002
    14.廖洪强,李文,孙成功等人,煤热解机理研究新进展,煤炭转化,1996,19(3),1~8
    15. DonskoE. i, McElwain D. L. S, Approximate modeling of coal pyrolysis,
    
    FUEL, 1999, 78, 825~835
    16. Donskoi E, McElwain, D. L. S, Optimization of Coal Pyrolysis Modeling, Combustion and Flame, 2000, 122, 359~367
    17.朱学栋,朱子彬,张成芳,煤热失重动力学的研究,高校化学工程学报,1999,13(3),223-228
    18.李术元,化学动力学在盆地模拟生烃评价中的应用,石油大学出版社,2000
    19.张建雨,王波,颜涌捷等人,煤裂解特性研究,华东理工大学学报,2000,26(6),642~645
    20.孙林兵,张丽芳,煤的CS_2/NMP混合溶剂抽提研究进展,煤炭转化,2002,25(4),1~5
    21.叶翠平,冯杰,李文英,煤的溶剂抽提与抽提物性质的研究,煤炭转化,2002,25(3),1~5
    22.刘劲松,冯杰,李凡等,溶胀作用在煤结构与热解研究中的应用,煤炭转化,1998,21(2),1~5
    23.陈茺,高晋生,颜涌捷,环己酮抽提煤的研究,燃料化学报,1997,25(1),60~64
    24.贾燕,太原理工大学硕士学位论文,2002
    25.赵炜,太原理工大学博士学位论文,1999
    26.刘振海,热分析导论,化学工业出版社
    27.徐抗成,EXCEL数值方法及其在化学中的应用,兰州大学出版社,2000
    28.李余增,热分析,清华大学出版社,1987
    29.神户傅太郎(日),热分析
    30.陆昌伟,奚同庚,热分析质谱法
    31.朱之培,高晋生,煤化学,上海科学技术出版社,1984
    32.孙庆雷,山西煤化所博士学位论文,2003
    33.徐建国,魏兆龙,用热分析法研究煤的热解特性,燃料科学与技术,1999,5(2),175~179
    34.徐建国,唐昕,刘国强,用热重分析方法研究豫内使用的几种煤的热
    
    解特性,现代电力,1999,16(1),30~34
    35.徐跃年,采用热重法研究煤热分解反应动力学特性,煤化工,1995,3,62~65
    36.聂其红,孙绍增,李争起等人,褐煤混煤燃烧特性的热重分析法研究,燃烧科学与技术,2001,7(1),72~76
    37.姚昭章,韩永霞,升温速率对煤热解动力学的影响,华东冶金学院学报,1999,16(4),318~322
    35. Stanley Badzioch and Peter G. W, Hawksley Ind. Eng, Chem Des. Develop., 1970, 9 (4), 521~530
    36.陈茺,高晋生,颜涌捷,煤有机质在化学脱灰过程中的变化,华东理工大学学报,1997,23(3),281~285
    37.陈浩侃,李保庆,张碧江,矿物质对煤热解和加氢热解含硫气体生成的影响,燃料化学学报,1999,27增刊,5~10
    38. N. A. Oztas, Y. Yurum, Pyrolysis of Turkish Zonguldak bituminous coal, part1 Effect of mineral matter, FUEL, 2000, 79, 1221~1227
    39.朱学栋,朱子彬,唐黎华等,煤的热解研究Ⅱ煤化程度对氢气气氛下热解的影响,华东理工大学学报,1998,24(3),262~266
    40.姚昭章,韩永霞,不同煤化程度煤的热解动力学参数,煤化工,1994,67(2),34~40
    41.张军,袁建伟,矿物质对煤粉热解的影响,燃烧科学与技术,1998,4(1),63~68
    42.李凡,张永发等,平朔烟煤主要显微组分结构的研究,燃料化学学报,1992,20(3):300~305
    43.朱学栋,朱子彬等,煤化程度和升温速率对热分解影响的研究,煤炭转化,1999,22(2),43~47
    44.田承圣,曾凡桂,镜煤和丝炭的X射线衍射初步分析,太原理工大学学报,2001,32(2),102~105
    45. Puente G. dela, Marban G, Fuente E, Modelling of volatile product evolution in coal pyrolysis, The role of aerial oxidation, Analytical. and Applied. Pyrolysis, 1998, 44, 205~218
    
    
    46.鲍卫仁,常丽萍,酸洗脱灰对原煤样品性能的影响研究,太原理工大学学报,2000,31(4),354~357
    47. Ceylan K, Karaca H., Qnal Y, Thermogravimetri analysis of pretreated Turkish lignites, FUEL, 1999, 78, 1109~1116
    48. G. de la Puente, E. Fuente, Reactivity of pyrolysis chars related to precursor coal chemistry, Analytical. and. Applied. Pyrolysis, 2000, 53, 81~93
    49. Iordanidis A, Georgakopoulos A, Markova K, Application of TG-DTA to the study of Amynteon lignites, northern Greece, Thermochimica Acta, 2001, 371, 137~141
    50.胡善亭,潘治贵,周春光,鸡西煤的红外光谱和差热分析研究,煤炭科学技术,1996,24(4),51~53
    51.徐君,叶菁,周师庸,不同成因类型煤的差热分析,鞍山钢铁学院院报,1995,18(3),28~32
    52. Burnham Alan K, Braun Robert L, Global Kinetic Analysis of Complex Materials, ENERRGY&FUELS, 1999, 13(1), 1~22
    53.闫金定,崔洪,热重质谱联用研究兖州煤的热解行为,中国矿业大学学报,2003,32(3),311~315
    54.闫金定,赵江红,杨建丽,热重质谱联用(TG/MS)系统的建立和应用,分析试验室,2002,21(5),20~22
    55. ArenillasA, Rubiera F, Pevida C, A comparison of different methods for predicting coal devolatilisation kinetics, Analytical. and. Applied. Pyrolysis, 2001, (58-59), 685~701
    56. Robert M, Carangelo, Peter R Solomo, Application of TG-FT-i.r. to study hydrocarbon structure and kinetics, FUEL, 1987, 66, 960~967
    57.刘生玉,田亚峻,尤先锋,高挥发分烟煤的热解燃烧特性研究,燃料化学学报,2002,30(1),41~44
    58.谢克昌,刘生玉,热解红外光谱联用技术用于热解反应的快速检测,分析化学, 2003,31(4),501~504
    59. Cui H, Yang J, Liu Z, Effects of remained catalysts and enriched coal minerals on devolatilization of residual chars from coal liquefaction,
    
    FUEL, 2002, 81, 1525~1531
    60. Balek V, Matuschek G, Chemical petrographic and thermoanalytical characterization of two Northbohemian low rank coals, Therrnochimica Acta, 1995, 263, 141~157
    61. Matuschek G, Kettrup A. A, Thermal analysis/mass spectrometry as a tool for studying environmental pollution by coal gasification, Joumal Analytical and Applied Pyrolysis, 1999, 51, 223~237
    62. Chen Yong, Mori Shigekatsu, Pan Wei-Ping, Studying the mechanisms of ignition of coal particles by TG-DTA, Thermochimica Acta, 1996, 275, 149~158
    63. Podder J, Hossain T, M. Mannan Kh, An investigation into the thermal behaviour ofBangladeshi coals, Thermochimica Acta, 1995, 255, 221~226
    64. Li Chunqi, Takanohashi Toshimasa, Effect of acid treatment on thermal extraction yield in ashless coal production, FUEL, 2004, 83, 727~732
    65. Giri C. C, Sharma D. K, 2000, Kinetic studies and shrinking core model on solvolytic extraction of coal, Fuel Processing Technology, 68, 97-109
    66. Charland J. P, MacPhee J. A, Application of TG-FTIR to the determination of oxygen content of coals, Fuel Processing Technology, 2003, 81, 211~221
    67. Das T. K, Evolution characteristics of gases during pyrolysis of maceral concentrates of Russian coking coals, FUEL, 2001, 80, 489~500
    68. vanHeek K. H, Progress of coal science in the 20th century, FUEL, 2000, 79, 1-26
    69. Lazaro, Mafia-Jesus, Moliner, Non-isothermal versus isothermal technique to evaluate kinetic parameters of coal pyrolysis, Journal Analytical and Apptied Pyrolysis, 1998, 47, 111~125
    70. Mae K, Maki T, Okutsu H, Examination of relationship between coal structure and pyrolysis yields using oxidized brown coals having different macromolecular networks, FUEL, 2000, 79, 417~425
    
    
    71. Durusaoy Tulay, Tijen, Ozbas Bozdemir, Effect of Rhodococcus rhodochrous on the pyrolysis kinetics of Mengen lignite, FUEL, 1999, 78, 359~363
    72. Suelves I, Moliner R, Synergetic effects in the co-pyrolysis of coal and petroleum residues: influences of coal mineral matter and petroleum residue mass ratio, Joumal Analytical and Applied Pyrolysis, 2000, 55, 29~41
    73. Liu Quanrun, Hu Haoquan, Zhou Qiang, Effect of inorganic matter on reactivity and kinetics of coal pyrolysis, FUEL, 2004, 83, 713~718
    74. Harald Juntgen, 1984, Review of the kinetics of pyrolysis and hydropyrolysis in relation to the chemical constitution of coal, FUEL, 63, 731~737
    75. Solomon P. R, Fletcher T. H., Pugmire R. J, Progress in coal pyrolysis, FUEL, 1993, 72, 587~597
    76.E.J.霍夫曼,许晓海译,煤的转化,冶金工业出版社,1988
    77. Norman. E. Cooke, O. Maynard. Fuller, Rajendra P. gaikwad, FT-i. r. spectroscopic analysis of coals and coal extracts, FUEL, 1986, 65, 1254~1260
    78.李凡,张永发,谢克昌,矿物质对煤显微组分热解的影响,燃料化学学报,1992,20,300~305
    79.陈镜泓,李传儒,热分析及其应用,科学出版社,1985
    80.刘生玉,太原理工大学博士学位论文,2004
    81.郭德勇,韩德馨,构造煤的电子顺磁共振实验研究,中国矿业大学学报,1999,28(1),94~97
    82.秦勇,姜波,王超等,中国高煤级煤的电子顺磁共振特征,中国矿业大学学报,1997,26(2),10~14
    83.张群,庄军,丝炭和暗煤的顺磁共振特性研究,煤炭学报,1995,20(3),272~276
    84.刘国根,邱冠周,抽提对煤中自由基的影响,矿产综合利用,2001,2(1),16~19
    
    
    85. Solomon. P. R, Serio M. A, Carangelo R. M, Analysis of the Arogonne Premium Coal Samples by Thermogravimetric Fourier Transform Infrared Spectroscopy, Energy & Fuels, 1990, 4(3), 319~333
    86. Painter. P, Scaroni. A, Ionomer and the Structure of coal, Energy & FUELS, 2000, 14(2000), 1115~1118
    87. Liu Quanrun, Hu Haoquan, ZhouQiang, etal, Effect of inorganic matter on reactivity and kinetics of coal pyrolysis, Fuel, 2004, 83(2004), 713~718
    88.李海滨,房倚天,王洋等,二次反应对煤热解产品组成的影响,化学工业与工程,1997,14(4),45~62
    89.陈茺,高晋生,魏贤勇,溶剂抽提与煤的净化,煤炭转化,1995,18(2),14~20

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700