用户名: 密码: 验证码:
航天电连接器空间环境可靠性试验与评估的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空间环境是诱发航天产品在轨故障的主要原因。电连接器在航天领域应用范围大,数量可观,地位重要。随着航天器可靠性要求的不断提高,如东方红-4号通信卫星要求在轨寿命达到15年,对电连接器的空间环境可靠性也提出了更高的要求。由于我国目前尚未就电连接器的空间环境可靠性开展系统研究,对电连接器空间环境性能参数的变化规律尚未完全掌握、失效模式和失效机理不清、缺少相应的空间环境性能和可靠性指标,在航天器的可靠性设计中,只能基于经验或借鉴国外标准对电连接器进行可靠性分析、设计和选用,这已成为我国发展宇航级电连接器的瓶颈。本文以东方红-4号为应用背景,以型号上广泛使用且结构和材料具有代表性的Y11P型圆型低频电连接器为研究对象,研究电连接器的空间环境效应,以及电连接器空间环境可靠性的地面模拟试验评估方法,为快速评定电连接器的空间环境可靠性提供理论依据,为提高航天器的系统可靠性设计水平提供技术储备。全文共分8章,各章的主要工作如下:第1章,阐述了论文的研究背景、目的和意义,从可靠性工程、空间环境可靠性和电连接器可靠性三个方面分析了相关领域的国内外研究现状及存在的问题,提出了论文的研究思路和主要研究内容。第2章,从电连接器的结构、材料和功能,以及电连接器在轨工作时受到的应力出发,全面分析了电连接器的空间环境效应和失效模式,为建立电连接器的空间环境地面模拟试验方法、研究电连接器的空间环境效应和可靠性奠定了基础。第3章,基于电连接器的空间环境效应和失效模式分析,从现有的地面模拟试验技术出发,根据试验可激发效应的数目、可行性和系统地开展机理研究的需要,建立了电连接器的空间环境地面模拟试验方法,为系统地研究电连接器的空间环境效应和可靠性提供了地面模拟试验方面的总体思路。第4章,通过地面模拟试验和数据分析,确定了电连接器的绝缘电阻和接触电阻随气压和温度变化的规律;以此为依托,建立了研究电连接器空间环境性能特性的地面模拟试验方法和试验数据分析方法。第5章,通过地面模拟试验和数据分析,确定了接触电阻和绝缘电阻在真空-温度-通电应力作用下随时间变化的规律,确定了造成电连接器性能退化的原因;以此为依托,建立了研究电连接器空间环境性能蜕化规律的地面模拟试验方法和试验数据分析方法。第6章,分析了在真空-温度-通电应力作用下,电连接器性能退化的机理,以此为基础,建立了基于性能退化过程的电连接器热真空环境可靠性模型;以此为依托,探讨了基于性能变化机理、面向退化数据分析的电连接器空间环境可靠性建模方法。第7章,建立并验证了基于退化数据的电连接器热真空环境可靠性统计模型,建立了相应的模型参数估计方法,评估了电连接器在热真空环境下的可靠度。第8章,总结了全文的工作,提出了对进一步研究工作的建议。
Space environment is the main reason inducing failure to space product in-orbit. Electrical connector is widely used in aerospace area with large amounts and plays an important role. As reliability requirements for spacecraft continue to improve, some communication satellites, such as DFH-4, require of the in-orbit life 15 years, which proposes an even higher requirement for space environment reliability of electrical connector.Currently, as China has not yet carried out systematic research on space environment reliability of electrical connector, there is not enough knowledge about degradation rule of performance parameters; the failure modes and mechanism are unclear; and there is lack of appropriate indicators for performance and reliability in space environment. In reliability design of spacecraft, the reliability analysis, design and selection of electrical connector is mainly base on experiences or foreign standards, which has become a bottleneck restricting the development of aerospace electrical connectors in China.In this dissertation, the application background is based on DFH-4. The widely used Y11P type of round low-frequency electrical connector is taken as the research object, as its structure and material is representative. The space environment effect of electrical connector is studied, and the reliability evaluation method, using simulation tests on ground to evaluate the space environment reliability, is researched. This research provides a theoretical foundation to rapidly assess reliability of electrical connector in space environment, and technical reserves to improve the system reliability design level for spacecraft.This dissertation is divided into eight chapters, and the main work of each chapter is as follows:In Chapter 1, the research background, purpose and significance are described. The historical investigations and existed problems in related field are analyzed from the following three aspects:reliability engineering, space environment reliability and the reliability of electrical connectors. Then, the idea and contents of this dissertation are proposed.In Chapter 2, the space environment effects and failure modes are analyzed comprehensively based on the structure, materials and functions of electrical connector and the stresses existing in-orbit. It provides a foundation to formulate a test method to simulate space environment on ground, and to research the space environment effects and reliability.In Chapter 3, on the base of space environment effects and failure modes and the existing simulation test techniques on ground, the simulation effects and feasibility of tests and the demands to carry out systematic research for mechanism are analyzed. The test method to simulate space environment on ground is formulated. It provides a general idea of test to research space environment effects and reliability of electrical connector systematically.In Chapter 4, on the base of the simulation test on ground and data analysis, the rules of insulation resistance and contact resistance varying with atmospheric pressure and temperature are determined. Then, the simulation test methods on ground and data analysis methods are formulated to research the performance characters of electrical connector in space environment.In Chapter 5, on the base of the simulation test on ground and data analysis, the rules of insulation resistance and contact resistance varying with time under the multiple stresses of vacuum-temperature-current-voltage are determined. The reasons that induce performance degradation of electrical connector are determined. Then, the simulation test methods on ground and data analysis methods are formulated to research performance degradation rules of electrical connector in space environment.In Chapter 6, the performance degradation mechanism of electrical connector under the multiple stresses of vacuum-temperature-current-voltage is analyzed. The reliability model of thermal-vacuum environment based on performance degradation process is formulated. Then, the modeling method based on performance degradation mechanism and degradation data analysis is discussed for space environment reliability of electrical connector.In Chapter 7, the reliability statistical model based on degradation data is formulated and proved for electrical connector under thermal-vacuum environment. The corresponding estimation techniques for model parameters are formulated. The reliability of electrical connector under thermal-vacuum environment is assessed.In Chapter 8, the works of this dissertation are summarized; suggestions for further research are proposed.
引文
[1]叶宗海.“神舟”四号中的空间环境研究[J].物理,2004,33(1):40-48.
    [2]黄本诚,马有礼.航天器空间环境试验技术[M].北京:国防工业出版社,2002.
    [3]邵瑞芝,范本尧.长寿命通信卫星的可靠性研究[J].中国空间科学技术,1996(4):24-33.
    [4]《可靠性维修性保障性术语集》编写组.可靠性维修性保障性术语集[M].北京:国防工业出版社,2002.
    [5]《可靠性设计大全》编撰委员会.可靠性设计大全[M].北京:中国标准出版社,2006.
    [6]张祖明.质量工程的进展:可靠性和健壮性[J].北京印刷学院学报,1995(2):1-10.
    [7]贺建明,黄英.机电产品可靠性技术[M].重庆:重庆大学出版社,1998.
    [8]杨绍文.可靠性工程的发展[J].核标准计量与质量,1997(2):51-52.
    [9] Pierschka E.. Principle of Reliability. Prentice-Hall Inc,1963.
    [10]李良巧,冯欣.可靠性工程概述[J].四川兵工学报,2003,24(2):6-10.
    [11]喻天翔,宋笔锋,万方义等.机械可靠性试验技术研究现状和展望[J].机械强度,2007,29(2):256-263.
    [12]李崇东,李德梅.网络可靠性研究综述[J].科技信息,2009(19):449-450.
    [13] Todinov M.T. Analysis and Optimization of Repairable Flow Networks With Complex Topology [J]. IEEE Transactions on Reliability,2011,60(1):111-124.
    [14] New York State Department of Public Service Office of Communications. Network Reliability After 9/11: A Staff White Paper on Local Telephone Exchange Network Reliability,2002,11.
    [15] Rosunally Y.Z., Stoyanov, S., Bailey C., et al. Fusion Approach for Prognostics Framework of Heritage Structure[J]. IEEE Transactions on Reliability,2011,60(1):3-13.
    [16] Yun-Yan Xing, Xiao-Yue Wu, Ping Jiang, et al. Dynamic Bayesian Evaluation Method for System Reliability Growth Based on In-Time Correction[J]. IEEE Transactions on Reliability 2010,59(2):309-312.
    [17] Kwok-Leung Tsui, Shui Yee Wong, Wei Jiang, et al. Recent Research and Developments in Temporal and Spatiotemporal Surveillance for Public Health[J]. IEEE Transactions on Reliability, 2011,60(1):49-58.
    [18] Zhenhua Wen, Hongfu Zuo, Pecht, M.G., et al. Electrostatic Monitoring of Gas Path Debris for Aero-engines[J]. IEEE Transactions on Reliability,2011,60(1):33-40.
    [19]秦锋,逄洪照,张永.基于petri网的电控发射系统可靠性评估[J].舰船电子工程,
    2008,28(10):180-182.
    [20]尹晓伟,钱文学,谢里阳.贝叶斯网络在机械系统可靠性评估中的应用[J].东北大学学报(自然科学版),2008,29(4):557-560.
    [21]徐荆州,李扬.基于GO法的复杂配电系统可靠性评估[J].电工技术学报,2007,22(1):149-153.
    [22]谢里阳,周金宇,李翠玲等.系统共因失效分析及其概率预测的离散化建模方法[J].机械工程学报,2006,42(1):62-68.
    [23] Li Jingrui, Coit D.W., Elsayed E.A.. Reliability modeling of a series system with correlated or dependent component degradation processes [C].2011 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering (ICQR2MSE),2011:388-393.
    [24] Chryssaphinou O., Limnios N., Malefaki S., et al. Multi-State Reliability Systems Under Discrete Time Semi-Markovian Hypothesis[J]. IEEE Transactions on Reliability,2011,60(1):80-87.
    [25] Yi Ding, Zuo M.J., Lisnianski A., et al. A Framework for Reliability Approximation of Multi-State Weighted k-out-of-n Systems[J]. IEEE Transactions on Reliability,2010,59(2):297-308.
    [26]陈循,陶俊勇,张春华等.可靠性强化试验与加速寿命试验综述[J].国防科技大学学报,2002,24(4):29-32.
    [27] G. K Hobbs. Accelerated Reliability Engineering:HALT and HASS [M]. Chichester:John Wiley & Sons Ltd.,2000.
    [28] W. Q. Meeker, L.A.Escobar, C. J. Lu. Accelerated Degradation Tests:Modeling and Analysis [J]. Technometrics,1998,40(2):89-99.
    [29]Pecht M.G., Kapur K. C.,康锐等.可靠性工程基础[M].北京:电子工业出版社,2011.
    [30] L. M. Klyatis, E. L. Klyatis. Accelerated quality and reliability solutions[M]. Boston:Elsevier,2006.
    [31]空间环境模拟试验[J].航天器环境工程,2008,25(3):372.
    [32]黄本诚.黄本诚文集[M].北京:中央编译出版社,2007.
    [33]柯受全.卫星环境工程和模拟试验[M].北京:中国宇航出版社,1993.
    [34]童靖宇.我国空间环境试验的现状与发展建议[J].航天器环境工程,2008,25(3):237-241.
    [35]黄本诚,童靖宇.空间环境工程学[M].北京:中国科学技术出版社,2010.
    [36]邵永哲,杨健,李小将等.航天器近地空间环境效应综述[J].航天器环境工程,2009,26(5):419-423.
    [37]Mazur J. E., Fennell J. F., O'Brien P.. The Space Environment And Its Effects On Space Systems[C]// Drews ME, Culp RD. Advances In the Astronautical Sciences,2008,131:219-230.
    [38]朱光武,李保权.空间环境对航天器的影响及其对策研究[J].上海航天,2002(4):1-7.
    [39]朱光武,李保权.空间环境对航天器的影响及其对策研究(续)[J].上海航天,2002(5):9-16.
    [40]赵晶.空间环境对航天器影响的统计分析[J].环模技术,1998(4):41-53.
    [41]艾伦·c·特里布尔[著].唐贤明[译].空间环境[M].北京:中国宇航出版社,2009.
    [42]陈必忠.空间环境对卫星的联合效应[J].环模技术,1994(1):60-62.
    [43] Garrett H.B., Kokorowski M.I, Evans R.W.. Comparisons of planetary space radiation environments and effects-A review [C]//Aerospace Nuclear Science and Technology Division (ANSTD), Aerospace Nuclear Science Trinity Section, American Institute of Aeronautics and Astronautics (AIAA). Nuclear and Emerging Technologies for Space 2011. American Nuclear Society,2011:178-185.
    [44] Neudeck Philip G.. Prokop Norman F., Greer III Lawrence C. Low earth orbit space environment testing of extreme temperature 6H-SiC JFETs on the international space station[C]//AIXTRON, DOW CORNING, BIRKELAND INNOVATION, centrotherm, CREE Inc.. Silicon Carbide and Related Materials 2010. Trans Tech Publications Ltd,2010:579-582.
    [45] Ezaldeen Safeen Yaseen. the Effect Of Space Environments Factors On Spacecraft Structure[C]//GilLafuente AM, Merigo JM. World Scientific Proceedings Series on Computer Engineering and Information Science,2010,3:621-630.
    [46]航空航天工业部第五研究院,国防科学技术工业委员会.GJB1027-90卫星环境试验要求[S].北京:国防工业出版社,1990.
    [47]王英鉴.空间环境对漫反射板的影响[J].空间科学学报,2002,22(1):53-57.
    [48] Gibson Marc A., Sanzi James, Ljubanovic Damir. Experimental studies of NaK in a simulated space environment[C]//Aerospace Nuclear Science and Technology Division (ANSTD), Aerospace Nuclear Science Trinity Section, American Institute of Aeronautics and Astronautics (AIAA). Nuclear and Emerging Technologies for Space 2011. American Nuclear Society,2011:337-346.
    [49] Hall David J., Holland Andrew. Space radiation environment effects on X-ray CCD background [J]. Nuclear Instruments & Methods In Physics Research Section A-Accelerators Spectrometers Detectors And Associated Equipment,2010,612(2):320-327.
    [50]曾一兵,熊春晓,王慧等.防静电白色热控涂层的空间环境性能试验[J].中国空间科学技术,2002(2):63-66.
    [51]刘宇明.空间环境中S781和SR107性能退化研究[J].航天器环境工程,2008,25(5):435-437.
    [52]魏强,杨贤金,何世禹等.质子辐照对石英玻璃光学性能的影响[J].航天器环境工程,2007,24(3):178-181.
    [53]杜吉灿.电池盖片粘接硅橡胶的空间环境效应研究[D].哈尔滨:哈尔滨工业大学.
    [54] Sharma Ashok, Teverovsky Alexander. Effect of vacuum environments on performance and reliability of electronic components and packages for space applications[C]//Bi KY, Li M.8th International Conference on Electronics Packaging Technology,2007:688-689.
    [55] Rigaud S., Quadri G., Gilard O.. Optical MEMS reliability in Space Environment[C]//Urey H, ElFatatry A. Proceedings of The Society of Photo-Optical Instrumentation Engineers (Spie) 2006,6186:1860-1860.
    [56]党炜,孙慧中,李瑞莹等. COTS器件空间应用的可靠性保证技术研究[J].电子学报,2009,37(11):2589-2594.
    [57]张晓明,杨少华.空间用斯特林制冷机的寿命评价[J].低温工程,2007(4):56-59.
    [58]金光,冯静.长寿命卫星活动部件Bayes-Weibull可靠性评估方法[J].系统工程与电子技术,2009,31(8):2020-2023.
    [59]刘强.卫星动量轮性能可靠性建模与评估方法研究[D].长沙:国防科技大学,2006.
    [60]王凭惠,范本尧,傅惠民.卫星推力器可靠性评估和寿命预测[J].航空动力学报,2004,19(6):745-748.
    [61]郭维长.卫星电子系统可靠性评估(Bayes方法)[J].航天器工程,1997,6(1-2):27-43.
    [62]李晓阳,姜同敏.基于加速退化模型的卫星组件寿命与可靠性评估方法[J].航空学报,2007,28(增刊):S101-S103.
    [63]齐建军,刘亚杰,程志君.基于Wiener过程的航天加注泵性能可靠性评估[J].电子产品可靠性与环境试验,2011,29(1):18-21.
    [64]金光.小子样条件下航天轴承性能可靠性建模与评估[J].国防科技大学学报,2010,32(1):133-137.
    [65]林晔,喻天翔,崔为民等.航天阀门的可靠性试验方法研究[J].制造业自动化,2010,32(6):95-97.
    [66]代锋,唐德效,付永辉等.航天器电子元器件疲劳寿命分析[J].计算机辅助工程,2010,19(2):56-59.
    [67]赵婉.航天火工装置步进应力加速贮存寿命试验方法研究[J].质量与可靠性,2008(3):20-23.
    [68]徐艳丽,沈怀荣.航天产品系统可靠性评估方法及软件研究[J].指挥技术学院学报,2001,12(3):93-97.
    [69]程诚,李季,于志强等.空间行波管阴极寿命试验[J].真空电子技术,2010(5):37-43.
    [70]刘志全,李新立,遇今.长寿命航天器机构的加速寿命试验方法[J].中国空间科学技术,2008(8):65-71.
    [71]吴超,刘晓华.空间运动部件液体润滑加速寿命试验可行性分析[J].润滑与密封,2007,32(6):115-117.
    [72]郑晓泉,王立,秦晓刚.空间环境下介质的可靠性与寿命的地面评价方法研究[J].绝缘材料,2006,39(2):24-28.
    [73] Anderson WT. Semiconductor device reliability in extreme high temperature space environments [C]//. IEEE. IEEE Aerospace Conference Proceedings,2001:2457-2462.
    [74]韩明.基于无失效数据的可靠性参数估计[M].北京:中国统计出版社,2005.
    [75]冯静.基于紧缩阈值加速退化试验的长寿命产品可靠性评估[J].电子学报,2011,39(6):1253-1256.
    [76]祝耀昌.可靠性试验及其发展趋势[J].航空标准化与质量,2005(5):30-33,27.
    [77]张菊华.国外电连接器可靠性试验情况介绍[J].机电元件,1988,8(1):35-41.
    [78]林思达,潘骏,陈文华等.电连接器可靠性研究述评[J].机电元件,2009,29(4):52-57.
    [79] Neil G. Payne, Peter A. Engel. Stress relaxation in an electrical connector [C]. Proceedings of the 1988 IEEE, Southern Tier Technical Conference,1988,103-118.
    [80] Hans Seehase. A reliability model for connector contacts [J]. IEEE Transactions on Reliability, 1991,40(5):513-523.
    [81] Apurba Choudhury, Mark Maxson, Mark Plucinski. Methodology for connector reliability analysis [C]. Electronic components and Technology Conference,1997,928-935.
    [82] A.H. Bingham, F.C.Lambert, M.R. Monashkin, et al. An accelerated performance test of electrical connectors [J]. IEEE Transactions on Power Delivery,1988,3(2):762-768.
    [83]杨奋为.军用电连接器的应用及发展[J].机电元件,2007,27(3):42-49.
    [84]杨奋为.航天用电连接器的失效分析[J].机电元件,1996(3):40-43.
    [85]杨奋为.航天用电连接器的接触可靠性研究[J].上海航天,2000(6):43-48.
    [86]杨奋为.航天电连接器的可靠性试验与预计[J].机电元件,2007,27(1):43-53.
    [87]杨奋为.航天用电连接器的可靠性研究[J].上海航天,1997(1):35-39.
    [88]薛云智,党喜龙.对电连接器绝缘电阻影响因素的研究[J].机电元件,2006,26(4):21-25.
    [89]孔宪宝.电连接器可靠性设计[J].机电元件,1996(3):32-40.
    [90]杨奋为.宇航级电连接器的材料质量控制研究[J].质量与可靠性,2010(2):15-18.
    [91]杨奋为.宇航级电连接器的材料质量控制研究(续)[J].质量与可靠性,2010(3):9-13.
    [92]陈文华.航天电连接器可靠性试验和分析的研究[D].杭州:浙江大学,1997.
    [93]崔杰.航天电连接器失效率验证试验方法的研究[D].杭州:浙江大学,2004.
    [94]刘俊俊.电连接器贮存可靠性加速寿命试验的研究[D].杭州:浙江理工大学,2010.
    [95] CHEN Wenhua, LIU Juan, GAO Liang, PAN Jun, ZHOU Shengjun. Accelerated Degradation Reliability
    Modeling and Test Data Statistical Analysis of Aerospace Electrical connector. CHINESE JOURNAL OF MECHANICAL ENGINEERING,2011,24(6):957-962.
    [96]潘骏.航天电连接器振动可靠性建模与评估[D].杭州:浙江大学,2002.
    [97]魏文.航天电连接器振动可靠性统计分析[D].杭州:浙江大学,2002.
    [98]朱海峰.环境应力作用下航天电连接器可靠性试验方案研究[D].杭州:浙江大学,2002.
    [99]靳哲峰.环境综合应力作用下航天电连接器可靠性分析与建模[D].杭州:浙江大学,2002.
    [100]李奇志.综合应力作用下航天电连接器加速寿命试验的研究[D].杭州:浙江大学,2004.
    [101]连文志.航天电连接器综合应力加速寿命试验优化设计的研究[D].杭州:浙江大学,2005.
    [102]冯红艺.航天电连接器综合应力加速寿命试验优化设计与统计分析的研究[D].杭州:浙江大学,2006.
    [103]武海军.航天电连接器综合应力可靠性建模及统计验证[D].杭州:浙江大学,2007.
    [104]方晶敏.航天电连接器综合应力可靠性评估与增长的研究[D].杭州:浙江大学,2007.
    [105]钱萍.航天电连接器综合应力加速寿命试验与统计分析的研究[D].杭州:浙江大学,2010.
    [106]吴正平.浅谈宇航级电连接器的标准和要求.机电元件,2009,19(4):51-55.
    [107] R.S. Mroczkowski[著].电连接器手册(出版者不祥).
    [108]中国科学院空间科学与应用研究中心.宇航空间环境手册[M].北京:中国科学技术出版社,2000.
    [109]赵伟.航天器微振动环境分析与测量技术的发展[J].航天器环境工程,2006,23(4):210-214.
    [110]侯增祺,胡金刚.航天器热控制技术——原理及其应用[M].北京:中国科学技术出版社,2007.
    [111]王浚,黄本诚,万才大.环境模拟技术[M].北京:国防工业出版社,1996.
    [112]高本辉,崔素言.真空物理[M].北京:科学出版社,1983.
    [113]化学工业部合成材料老化研究所.高分子材料老化与防老化[M].北京:化学工业出版社,1979.
    [114]刘景军,李效玉.高分子材料的环境行为与老化机理研究进展[J].高分子通报,2005,6:62-69.
    [115]高晓敏,何舟,杨雪海.部分高分子材料老化研究进展[J].合成材料老化与应用,2005,34(1):39-43.
    [116]复旦大学高分子科学系.高分子化学[M].上海:复旦大学出版社,1995.
    [117]吴茂英.聚合物光老化、光稳定机理与光稳定剂(上)[J].高分子通报,2006,4:76-83.
    [118]吴茂英.聚合物光老化、光稳定机理与光稳定剂(下)[J].高分子通报,2006,6:89-97.
    [119] Gijsman P, Meijers G, Vitarelli G. Comparison of the UV-degradation Chemistry of polypropylene, polyethylene, polyamide 6 and polybutylene terephthalate[J]. Polymer Degradation and Stability, 1999,65:433-441.
    [120]尹毅,屠德民,李明等.用等温电流法研究自由基清除剂的作用机理—聚合物电老化陷阱理论的
    实验验证[J].中国电机工程学报,2000,20(3):13-15,25.
    [121]张秀阁,胡起宙,田玉珍等.高分子聚合物电缆绝缘电树枝老化机理浅析[J].沈阳电力高等专科学校学报,1999,1(4):10-14.
    [122]李盛涛,郑晓泉.聚合物电树枝化[M].北京:机械工业出版社,2006.
    [123] Montanari G. C., Mazzanti G., Simoni L.. Progress in Electrothermal Life Modeling of Electrical Insulation during the Last Decades[J]. IEEE Transactions on Dielectrics and Electrical Insulation. 2002,9(5):730-744.
    [124] Montanari G. C.. Electrical Life Threshold Modes for Solid Insulating Materials Subjected to Electrical and Multiple Stresses[J]. IEEE Transactions on Electrical Insulation,1992,27(5):974-986.
    [125]傅依备.几种高分子材料的核辐射效应研究[J].材料导报,2003,17(2):4-7.
    [126]冯伟泉,丁义刚,闫德葵等.空间电子、质子和紫外综合辐照模拟试验研究[J].航天器环境工程,2005,22(2):69-72.
    [127]姜利祥,盛磊,陈平等.环氧树脂648和TDE-85的质子辐照损伤效应研究[J].航天器环境工程.2006,23(3):134-137.
    [128]哈鸿飞,吴季兰.高分子辐射化学:原理与应用[M].北京:北京大学出版社,2002.
    [129]王先锋,贺岩峰.锡须生长机理的研究进展[J].电镀与涂饰,2005,24(8):49-51.
    [130]钟伟,管俊芳,邬博义等.锡须研究的历史与现状[J].电子质量,2005(8):59-63.
    [131]穆霞英.蠕变力学[M].西安:西安交通大学出版社,1990.
    [132]严宗达,王洪礼.热应力[M].北京:高等教育出版社,1993.
    [133]王志光,金运范.金属材料中高能重粒子辐照效应的理论描述[J].原子核物理评论,2000,17(3):152-158.
    [134] Waterhouse R B.微动磨损与微动疲劳[M].周仲荣,译.成都:西南交通大学出版社,1999.
    [135] Weston D A.电磁兼容原理与应用[M].杨自佑,译.北京:机械工业出版社,2006.
    [136]徐福祥等.卫星工程概论[M].北京:中国宇航出版社,2004.
    [137]王万中.试验的设计与分析[M].北京:高等教育出版社,2004.
    [138]王静龙,梁小筠.非参数统计分析[M].北京:高等教育出版社,2006.
    [139]吴喜之,王兆军.非参数统计方法[M].北京:高等教育出版社,1996.
    [140]陈希孺.非参数统计[M].上海:上海科学技术出版社,1989.
    [141]茆诗松.统计手册[M].北京:科学出版社,2003.
    [142] Montgomery D. C.[著].实验设计与分析[M].傅珏生等译.北京:人民邮电出版社,2009.
    [143] Box G. P., Hunter J. S., Hunter W. G.[著].试验应用统计,设计、创新和发现[M].张润楚等译.北京:机械工业出版社,2010.
    [144]陈文华,吴友义,高亮等.电连接器真空环境试验电压加载方式研究[J].机械工程学报,2009,45(7):1-6.
    [145]吴友义.航天电连接器空间环境模拟试验方法研究[D].杭州:浙江理工大学,2009.
    [146]程礼椿.电接触理论及应用[M].北京:机械工业出版社,1988.
    [147] Braunovic M., Konchits V. V., Myshkin N.K.[著].电接触理论、应用与技术[M].许良军等译.北京:机械工业出版社,2010.
    [148]H.A.豪斯,J.R.梅尔彻.电磁场和电磁能[M].江家麟等译.北京:高等教育出版社,1992.
    [149] Johnson K.L.[著].接触力学[M].徐秉业等译.北京:高等教育出版社,1992.
    [150]沃诺克F.V.,本哈姆P.P[著].固体力学和材料强度[M].江秉琛等译.北京:人民教育出版社,1982.
    [151]盛骤,谢式千.概率论与数理统计[M].北京:高等教育出版社,2008.
    [152]机械电子工业部标准化研究所,国防科学技术工业委员会.GJB1217-91电连接器试验方法[S].北京:国防工业出版社,1991.
    [153]王松桂,陈敏,陈立萍.线性统计模型[M].北京:高等教育出版社,1999.
    [154] Bates D M, Watts D G.非线性回归分析及其应用[M].北京:中国统计出版社,1997.
    [155] Ross S M[著].应用随机过程:概率模型导论(原书第10版)[M].龚光鲁等译.北京:人民邮电出版社,2011.
    [156] Meeker W. Q., Escobar L. A.. Statistical Methods for Reliability Data[M]. Canada:John Wiley & Sons, Inc,1998.
    [157] Box G. P., Jenkins G. M., Reinsel G. C. [著].时间序列分析:预测与控制(原书第4版)[M].王成璋等译.北京:机械工业出版社,2011.
    [158]龚光鲁.随机微分方程及其应用概要[M].北京:清华大学出版社,2008.
    [159]方开泰,马长兴.正交与均匀试验设计[M].北京:科学出版社,2001.
    [160]航空航天工业部第五研究院,国防科学技术工业委员会.GJB2502-95卫星热控涂层试验方法[S].北京:国防工业出版社,1995.
    [161]中国航天工业总公司七O八所,中国航天工业总公司.QJ1446A-98卫星热真空试验方法[S].北京:航空工业出版社,1998.
    [162]中国航天工业总公司七O八所,中国航天工业总公司.QJ2630.1-94卫星组件试验方法:热真空
    试验[S].北京:航空工业出版社,1994.
    [163]中国航天工业总公司七○八所,中国航天工业总公司.QJ2630.2-94卫星组件试验方法:热平衡试验[S].北京:航空工业出版社,1994.
    [164]中国航天工业总公司七○八所,中国航天工业总公司.QJ2630.3-94卫星组件试验方法:真空放电试验[S].北京:航空工业出版社,1994.
    [165]中国航天工业总公司七○八所,中国航天工业总公司.QJ2630.4-96卫星组件试验方法:磁试验[S].北京:航空工业出版社,1996.
    [166]中国航天工业总公司七○八所,中国航天工业总公司.QJ2630.5-98卫星组件试验方法:真空冷焊试验[S].北京:航空工业出版社,1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700