用户名: 密码: 验证码:
热辅助微型件冲切中的若干力学问题及数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的进步,大厚径比微型件正大量应用于工业和民用产品之中,批量生产要求采用效率较高的冲切技术加工这类零件。在室温下冲切加工这类零件时的高冲切力常使模具破坏或加速其失效,而通常采用的蚀刻和电化学等非冲切加工技术则存在效率相对较低、制造成本较高或加工过程可能污染环境等缺点。作为大厚径比微型件批量冲切加工的富有前景的方法之一,热辅助微型件冲切技术近年来引起了人们强烈的关注。本文在分析国内外有关研究现状基础上,对热辅助微型件冲切的若干基本问题进行了实验、理论与数值模拟研究。主要工作和结论如下:
     (1)以LY12铝合金为研究对象进行了温升率对金属材料力学性能影响的实验研究。试验结果表明:中等温升率产生的局部热失配及局部残余应力场可引起材料强化,而高温升率引起的严重局部热失配及局部残余应力与外加热—力载荷的耦合作用可加速材料微缺陷的形核与扩展,加剧材料的损伤与性能劣化。对试件断面的SEM图分析表明:不同温升率下试件断口的金相组织具有明显的差异,从而表现出不同的宏观力学性能。低温升率下材料再结晶比例较高,呈现出韧性断裂特征,而高温升率时试件断面平整,缺陷较多,具有脆性断裂特征。
     (2)根据实验结论,基于热力学相容的简单机械模型,建立了一个计及温度、温升率、应变率和损伤的大变形弹塑性本构模型,该模型充分考虑了温度对材料参数的影响,并在材料的损伤和强化函数中计及应变、应变率、温升率和再结晶的影响。鉴于由微分型本构方程直接改为增量形式,会导致较大的计算误差,因此发展了相应的数值算法,并据此算法推导了该本构方程的增量型表达式及其有限元列式。再结晶可消除材料微结构的畸变和相应的应变强化,将基于包含温升率的变温Johnso-Mehl方程计算的再结晶转变体积分数引入强化函数,以此考虑温升率及再结晶对材料强化的影响。
     (3)根据有限元软件ABAQUS的子程序接口原理,利用Fortran语言基于本文模型编制了用户自定义材料子程序。并利用UMAT材料子程序,首先模拟了一种低碳钢试件在室温下的瞬态热力耦合墩粗过程,与实验结果的比较表明,模型能较好地描述该试件的热力耦合大变形过程。然后又分别模拟了以三种温升率加热LY12铝合金试件至450?C后的拉伸试验过程,建立的本构模型较好地描述了该材料经历不同温升率历史后的力学性能差异。
     (4)以304不锈钢、铜和LY12铝合金冲件为研究对象,选取碳化钨硬质合金和普通碳素工具钢两种模具材料,进行了六组冲件—模具材料组合下电辅助加热微型件冲切的热电耦合模拟。结果表明,电加热可在较短时间内在工件的冲切区形成合适的冲切温度,显著降低材料的破坏强度,从而可有效降低冲切力。对比同一种冲件分别和以上两种模具材料组合的模拟结果可以看出,如果模具材料的导电性能和传热性能均优于冲件材料,可避免模具中过多的热量沉积。
     (5)利用ABAQUS和基于本文模型的用户自定义材料子程序,模拟了激光辅助加热FeNi42、电辅助加热304不锈钢和LY12铝合金微型件的冲切过程。模拟结果表明,对冲件进行的辅助加热显著降低了其材料强度,在较高温度下冲切时,冲切力的有效降低可提高模具寿命并实现大厚径比微型件的冲切加工。
With the requirement of the development of science and technology, the parts with small size and large aspect ratio have been more and more extensively used in various industries and consumers. It is known that, although blanking is an efficient and environmental friendly method for mass production of micro-parts compared with etching and electrochemical micromachining, blanking of the micro-parts with larger aspect ratio remains unsolved, due to that it results in excessive tool loads, with consequent tool failure or decrease in tool life. Two parameters dominate the attempt to use large aspect ratio - the strength of the currently available tool-materials and the shear strength of the work-material. Of the two, the availability of blanking would naturally opt to reduce the latter by making use of heating-assisted technology than developing high-strength tool-materials. On the basis of the progress in the research of the heating-assisted micro-parts blanking, some fundamental problems related to micro-parts blanking are investigated in this dissertation. The main contribution of the dissertation is listed as follows:
     (1) Since a heating-assisted micro-part blanking process may involve both high temperature and large heating-rate, the effect of heating rate on the mechanical properties of work-materials should also be investigated. For LY12 aluminum alloy, experiment shows that, the local thermal inconsistency and residual stress field at moderate heating rate may result in hardening, while the severe local thermal inconsistency and residual stress field at high heating-rate may accelerate the initiation and growth of microdefects, resulting in damage and property degradation of the material. SEM observation and analysis reveal distinct difference between the metallographs of the materials undergoing different heating-rate histories. The materials undergoing higher heating-rate history appears more brittle, attributed to more damage and less recrystallization.
     (2) Based on a simple thermomechanically consistent mechanical model, a constitutive model is proposed for finite elastoplastic strain and deformation of materials. It takes into account the effects of temperature on the properties, and the effects of strain, heating-rate, strain-rate and recrystallization on the hardening and damage of materials. The incremental form of the constitutive model, the corresponding numerical algorithm and the finite element formalism are also developed. Based on variable-temperature Johnson-Mehl equation, the volume fraction transformed is calculated and it is involved in hardening function.
     (3) The user defined material subroutines of the proposed constitutive model are developed based on the subroutine interface of commercially available finite element code ABAQUS. The coupled transient thermal-mechanical processes of the upsetting of a mild steel specimen are simulated. The responses of the aluminum alloy LY12 specimens heated at different heating-rate to a prescribed temperature followed by tension until fracture are also simulated. The computed results are in satisfactory agreement with the experimental results, and the effects of the main influencing factors can be well described, demonstrating the validity of the proposed constitutive model in the analysis of heating-assisted finite elastoplastic deformation and damage processes.
     (4) The coupled thermal-electric simulations, with copper, LY12 aluminum alloy and 304 stainless steel as workpiece materials, and tungsten carbide and plain carbon tool steel as tool materials, respectively, are numerically simulated with the proposed constitutive model and the corresponding approach. The results show that the shear zone of workpiece can be heated by electrical current to an appropriate blanking temperature in a short time interval, which enables a sufficient reduction of the shear strength of the work material as well as the blanking force. Analysis also shows that, in order to avoid improper deposition of energy in a workpiece-tool system, the electrical and thermal conductivities of the tool material should be superior to that of the work-material as much as possible.
     (5) The laser-assisted and electricity-assisted heating micro-part blanking processes, with FeNi42 alloy, 304 stainless steel and LY12 aluminum alloy as workpiece materials, respectively, are numerically simulated with the proposed constitutive model and the corresponding approach. The results show that assisted heating can provide an appropriate blanking temperature in a short time interval, and sufficiently reduce the shear strength of the work material and the corresponding blanking force, to meet the requirement of the blanking with large aspect ratio and mass production.
引文
[1] University of Strathclyde, et al. Topas, Final Report [R]. BRPR-CT98-0742, EU Brite-EuRam Project Report, 2001.
    [2]王扬,路华,谭建国.板材激光加热弯曲成型的研究[J].激光技术, 2003, 27(3): 175-177.
    [3] N. H. Cheung. Pulsed Laser Heating of Thin Films [J]. J. Appl. Phys., 1991, 70 (12): 7654-7656.
    [4] B. W. Gu, T. C. Ma. Three Dimensional Numerical Model for Laser Transformation Hardening of Metals [J]. Mater. Sci. Tech., 1994, 10: 425-430.
    [5]季忠,吴诗.板料激光加热三维瞬态温度场的数值模拟[J].西北工业大学学报, 1997, 15(2): 204-207.
    [6] S. Z. Shuja, B. S. Yilbas. 3-Dimensional conjugate laser heating of a moving slab [J]. Applied Surface Science, 2000, 167: 134-148.
    [7] C. Jay, Rozzia, E. Frank, Pfefferkorn, P. Frank, Incroperab, C. Yung. Shin.Transient, three-dimensional heat transfer model for the laser assisted machining of silicon nitride: I. Comparison of predictions with measured surface temperature histories [J]. International Journal of Heat and Mass Transfer, 2000, 43: 1409-1424.
    [8] Y. Chen, S. Li. Buckling failure of the axially precompressed cylindrical shell irradiated by CW CO2 laser beam [C]. AIAA, 1992, 92: 3231.
    [9]陈裕泽等.激光辐射结构的热动力失效[C].激光的热和力学效应学术会议论文集, 1993, 127-137.
    [10]黄珍媛等. IT制件精密级进模关键技术的现状与发展[J].锻压技术, 2005, 5: 98-100.
    [11]傅裕寿,王春奎,方慧英.电子束控制放电CO2激光器及其应用[J].兵器激光, 1984, 4: 8-13.
    [12]王春奎,方慧英,李淑英.强脉冲CO2激光与靶的相互作用[J].国防科技大学学报, 1987, 4: 66-75.
    [13]刘亚飞.微波技术在先进陶瓷材料研究中的应用[J]. Advanced Materials Industry, 2005, 8: 65-69.
    [14]王春奎,刘小苹,郑融. LY-12铝高温屈服强度的测量[J].强激光与粒子束, 1991, 3(1): 57-64.
    [15]王春奎,刘小苹. LY-1铝高温凝聚态动力学性质研究-高温弹性模量的测定[J].高压物理学报, 1991, 5(1): 27-34.
    [16]王春奎,刘小苹,郑融. LY-12铝高温凝聚态动力学性质研究—高温冲塞剪切破坏强度的测量[J].高压物理学报, 1992, 6(2): 108-115.
    [17]王春奎. LF-6及LY-12铝高温凝聚态动力学性质质研究—高温剪切模量的测量[J].高压物理学报, 1994, 8(3): 213-219.
    [18] Y. Zhou, Z. Duan, C. Wang. The analytical study on the laser induced reverse-plugging effect by using the classical elastic plate theory(I)-temperature fields [J]. Applied Mathematics and Mechanics, 1995, 16(10): 913-924.
    [19]王春奎等.温升率和应变率对30CrMnSi拉伸强度的影响[J].金属学报, 1995, 31(10): 475-478.
    [20]刘宗德等.冲击大电流高加热率实验装置研究[J].爆炸与冲击, 1995, 15(4): 315-321.
    [21]刘宗德,丰树平,张宁,韩铭宝,孙承纬.三种合金在短时高温下的热软化研究[J].爆炸与冲击, 1996, 16(2): 97-104.
    [22]韩铭宝,刘宗德,刘怡光.热冲击下A3钢力学性能的研究[J].爆炸与冲击, 1999, 19(1): 20-26.
    [23]刘宗德,刘怡光,韩铭宝.不同热冲击速率和预应力下A3钢的力学性能[J].材料研究学报, 2000, 14(1): 24-28.
    [24]刘宗德等.金属快速加热的非弹性热软化研究[J].金属学报, 1995, 31(7): 229-335.
    [25]刘宗德,杨昆等. 30Cr2MoV钢的短时高温力学性能研究[J].华北电力大学学报, 1999, 26(1): 70-74.
    [26] Z. Liu, S. L. Bai, K. Yang, M. Han. Experimental studies on yield behavior of steel under rapid heating [J]. International Journal of Plasticity, 2001, 17: 691-701.
    [27] J. W. Nichols, S. Mail. The fracture behavior of thin 6061 T-6 aluminum at rapid heating rates [J]. Engineering Fracture Mechanics, 1989, 32(5): 787-794.
    [28] L. Rosa, P. Amaral, C. Anjinho, J. Fernandes and N. Shohoji. Fracture toughness of solar-sintered WC with Co additive [J]. Ceramics International, 2002, 28(3): 345-348.
    [29] S. Eliezer, I. Gilath and T. Bar-Noy. Laser-induced spall in metals [J]. Experiment and simulation. J. Appl. Phps., 1990, 67(2): 715-724.
    [30] M. Boustie and F. Cottet. Experimental and numerical study of laser induced spallation into aluminum and copper targets [J]. J. Appl. Phys., 1991, 69(11): 7533-7538.
    [31] A. D. Zweig. A thermo-mechanical model for laser ablation [J]. J. Appl. Phys., 1991, 70(3): 1684-1691.
    [32] S. S. Cohen, J. B. Bernstein and P. W. Wyatt. The effect of multiple laser pulses on damage to thin metallic films [J]. J. Appl. Phys., 1992, 71(2): 630-637.
    [33]尹益辉,陈裕泽,彭向和.金属力学性能的温升率效应研究概述[J].强激光与粒子束,2006, 18(12): 1964-1968.
    [34] A. Q. Alam.短时高温实验[Μ] .北京:国防工业出版社, 1963.
    [35]陈海滔等.受拉铝板对连续波CO2激光的机械效应[J].强激光与粒子束, 1992, 4(1): 1-54.
    [36]陈裕泽,李恩忠,张光军.连续波CO2激光作用下受拉铝板的瞬态破坏效应研究[J].强激光与粒子束, 1995, 7(2): 245-251.
    [37]孙承伟.强激光引起材料和结构破坏的机理分析[C].上海嘉定. 1991年激光的热和力学效应学术会议论文集.中国科学院上海光学精密机械研究所主编. 1991: 1.
    [38]刘仓理,刘绪发,张宁等. CW / COIL激光热效应实验综述[C].长沙. 1993年激光的热和力学效应学术会议论文集.国防科技大学光子对杭研究中心主编. 1993: 373.
    [39]刘绪发.铝合金柱壳、板的8KW CW CO2激光热一力耦合破坏演示[C].绵阳. 1992年激光的热和力学效应学术会议论文集.中国工程物理研究院流体物理研究所主编. 1992: 1.
    [40]黄晨光.材料本构关系和激光辐照下结构热-力耦合的变形与破坏[D].北京:中国科学院力学研究所, 1996.
    [41] Y. Han-Ho, K. Doh-Yeon. Effect of heating rate on the exaggerated grain growth during the sintering of Sr-hexaferrite [J]. Materials Letters, 1994, 20(5-6): 293-297.
    [42] S. Rhee, J. Lee and D. Kim. Effect of heating rate on the exaggerated grain growth behavior ofβ-Si3N4 [J]. Materials Letters, 1997, 32(2-3): 115-120.
    [43] D. Basak, W. J. Boettinger, D. Josell, S. R. Coriell, J. L. McClure, S. Krishnan and A. Cezairliyan. Effect of heating rate and grain size on the melting behavior of the alloy Nb–47 mass% Ti in pulse-heating experiments [J]. Acta Materialia, 1999, 47(11): 3147-3158.
    [44] C. Zhang, E. Narimatsu, K. Komeya, J. Tatami and T. Meguro. Control of grain morphology in Ca-αsialon ceramics by changing the heating rate [J]. Materials Letters, 2000, 43(5-6): 315-319.
    [45] Q. Xia, J. N. Wang, Y. Wang and J. Yang. Effect of heating rate on the grain refinement of a TiAl alloy by cyclic heat treatment [J]. Materials Science and Engineering A, 2001, 300(1-2): 309-311.
    [46] S. J. Beckett and R. Morton. Mortality of Rhyzopertha dominica (F.) (Coleoptera: Bostrychidae) at grain temperatures ranging from 50°C to 60°C obtained at different rates of heating in a spouted bed [J]. Journal of Stored Products Research, 2003, 39(3): 313-332.
    [47] A. Danon, C. Servant, A. Alamo and J. C. Brachet. Heterogeneous austenite grain growth in 9Cr martensitic steels: influence of the heating rate and the austenitization temperature [J]. Materials Science and Engineering A, 2003, 348(1-2):122-132.
    [48] R. Karmouch, J. F. Mercure, Y. Anahory and F. Schiettekatte. Damage annealing process in implanted poly-silicon studied by nanocalorimetry: Effects of heating rate and beam flux [J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2005, 241(1-4): 341-345.
    [49] J. G. Lee and K. N. Subramanian. Effects of TMF heating rates on damage accumulation and resultant mechanical behavior of Sn–Ag based solder joints [J]. Microelectronics and Reliability, 2007, 47(1): 118-131.
    [50] T. J. P. Silva, M. W. Orcutt, J. C. Forrest, C. E. Bracker and M. D. Judge Effect of heating rate on shortening, ultrastructure, and fracture behavior of prerigor beef muscle [J]. Meat Science, 1993, 33(1): 1-24.
    [51] L. C. Klein and T. A. Gallo. Densification of sol-gel silica: Constant rate heating, isothermal and step heat treatments [J]. Journal of Non-Crystalline Solids, 1990, 121(1-3): 119-123.
    [52]彭超群,黄伯云,贺跃辉.快速加热感应热处理对TiAl基铝合金组织与性能的影响[J].材料工程,2001,12: 20-23.
    [53]彭超群,黄伯云,贺跃辉.加热速度对TiAl基合金显微组织的影响[J].中南工业大学学报, 2002, 33(1): 45-48.
    [54]周计明,齐乐华,陈国定.热成形中金属本构关系建模方法综述[J].机械科学与技术, 2005, 24(2): 212-216.
    [55] J. L. Chaboche. United constitutive laws of plastic deformation [M]. Academic Press, Inc., 1996, Chapter 1: 1-68.
    [56] N. Ohno and J. D. Wang. Transformation of a nonlinear kinematic hardening rule to a multisurface form under isothermal and nonisothermal conditions [J]. Int. J. Plast., 1992, 7: 879-891.
    [57] D. L. McDowell. A nonlinear kinematic hardening theory for cyclic thermoplasticity and thermoviscoplasticity [J]. Int. J. Plast., 1992, 8: 695-728.
    [58] S. R. Bodner, Y. Parton. A large deformation elastic-viscoplastic analysis of a thick-walled spherical shell [J]. ASME J. Appl. Mech., 1972, 39(9): 751-756.
    [59] S. R. Bodner, Y. Parton. Constitutive equations for elastic-viscoplastic strain-hardening materials [J]. ASME J. Appl. Mech., 1975, 42(1): 385-389.
    [60]黄晨光,段祝平.激光诱导变形条件下10#钢本构方程的建立[J].固体力学学报, 2001, 22(2): 120-128.
    [61] H. J. Frost, M. F. Ashby. Deformation Mechanism Maps [M]. Oxford Press, 1982.
    [62] S. B. Brown, K. H. Kim, L. Anand. An internal variable model for hot working of metals [J]. Int. J. of Plasticity, 1989, 1: 95-130.
    [63] C. Zener, J. H. Hollomom. Effect of strain rate upon plastic flow of steel [J]. J. Appl. Phys., 1944, 15: 22-23.
    [64] H. Yang, et al. Investigation on Zener-Hollomon parameter in the warm-hot deformation behavior of 20CrMnTi [J]. Journal of Zhejiang University Science A, 2006, 7(8): 1453-1460.
    [65]田村今男等著,王国栋等译.高强度低合金钢的控制轧制与控制冷却[M] .北京:冶金工业出版社, 1992.
    [66] C. M. Sellars, W. J. McG Tegart. Relation between strength and structure in hot deformation [J]. Mem. Sci. Rev. Metall., 1966, 63: 731-746.
    [67] J. J. Jonas, C. M. Sellars, W. J. McG Tegart. Strength and structure under hot working conditions [J]. Metall. Rev., 1969, 14: 1-24.
    [68] C. M. Sellars, et al. Hot workability [J]. Int. Metallurg. Rev., 1972, 17: 1-24.
    [69] F. Patrick, Kozlowski, et al. Simple constitutive equations for steel at high temperature [J]. Metallurgical Transactions A, 1992, 23A: 903-918.
    [70] G. Johnson, W. Cook, A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [C]. Proceedings of the Seventh International Symposium on Ballistics, 1983, 541–547.
    [71] F. Zerilli, R. Armstrong. Dislocation-mechanics-based constitutive relations for material dynamics calculations [J]. J. Appl. Phys., 1987, 61(5): 1816–1825.
    [72]郭扬波,唐志平,程经毅.一种基于位错机制的动态应变时效模型[J].固体力学学报, 2002, 23(3): 249-256.
    [73] T. Uehara, T. Tsujino, N. Ohno. Elasto-plastic simulation of stress evolution during garin growth using a phase field model [J]. Journal of Crystal Growth, 2007, 300: 530-537.
    [74] R. Hill. A theory of the yielding and plastic flow of anisotropic metals [J]. Proc. R. Soc. Lond., 1948, A 193: 281-297.
    [75] R.希尔著,王仁等译.塑性数学理论[M].北京:科学出版社, 1966.
    [76] R. Pearce. Some aspects of anisotropic plasticity in sheet metals [J]. International Journal of Mechanical Sciences, 1968, 10(12): 995-1004.
    [77]史艳莉,吴建军.各向异性屈服准则的发展及应用[J].锻压技术, 2006, 1: 99-103.
    [78] R. Hill. Theoretical plasticity of textured aggregates [J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1979, 85: 179-191.
    [79] R. W. Logan, W. F. Hosford. Upper-bound anisotropic yield locus calculations assuming <111>-pencil glide [J]. International Journal of Mechanical Sciences, 1980, 22(7): 419-430.
    [80] R. Hill. Constitutive modeling of orthotropic plasticity in sheet metal [J]. Journal of the Mechanics Physics of Solids, 1990, 38 (3): 405-417.
    [81] R. Hill. A user-friendly theory of orthotmpic plasticity in sheet metal [J]. International Journal of Mechanical Sciences, 1993, 35(1): 19-25.
    [82] F. Barlat, J. Lian. Plastic behavior and stretchability of sheet metals, PartⅠ: A yield function for orthotropic sheet under plane stress conditions [J ]. Int. J. Plasticity, 1989, 5: 51-60.
    [83] F. Barlat, D. J. Lege, J. C. Brem. A six-component yield function for anisotropic materials [J]. Int. J. Plasticity, 1991, 7: 693-712.
    [84] A. P. Karafillis, M. C. Boyce. A general anisotropic yield criterion using bounds and a transformation weighting tensor [J]. Journal of the Mechanics and Physics of Solids, 1993, 41: 1859-1886.
    [85] F. Barlat, et al. Yielding description for solution strengthened aluminium alloys [J]. International Journal of Plasticity, 1997, 13(4): 385-401.
    [86] F. Barlat, et al. Yield function development for aluminum alloy sheets [J]. J. Mech. Phys. Solids, 1997, 45: 1927-1763.
    [87]孙成智,陈关龙等.各向异性屈服准则对铝合金板成形预测精度的影响[J].塑性工程学报, 2004, 11(3): 59-63.
    [88] D. Banabic. Limit strains in the sheet metals by using the new Hill’s yield criterion (1993) [J]. Journal of Materials Processing Technology, 1999, 92-93: 429-432.
    [89] M. C. Butuc, D. Banabic, et al. The performance of Yld96 and BBC2000 yield functions in forming limit prediction [J]. J. Mat. Proc. Tech., 2002, 125-126: 281-286.
    [90] D. Banabic, et al. An anisotropic yield criterion for sheet metals [J]. J. Mat. Proc. Tech., 2004, 1575-158: 462-465.
    [91] D. Banabic, et al. An improved analytical description of orthotropy in metallic sheets [J]. International Journal of Plasticity, 2005, 21: 493-512.
    [92] D. Green, A. Makinde, et al. Experimental determination of yield surfaces and biaxial flow of 1145aluminum sheets [R]. Research Report, 1998.
    [93]倪向贵等.用于板料成形数值模拟的各向异性本构模型研究[J].中国科学技术大学学报, 2000, 30(6): 700-706.
    [94] T. Kuwabara, A. VanBael. Measurement and analysis of yield locus of sheet aluminum alloy 6XXX [C]. In: Gerlin J ed. Proceeding of the 4th Int. Conf. on Numerical Simulation of 3-D Sheet Metal Forming Processes-Verification of Simulations with Experiments, France, 1999: 91-96.
    [95] K. C. Valanis. A theory of viscoplasticity without a yield surfaces [J]. Archives of Mechanics, 1971, 23: 517-551.
    [96] K. C. Valanis. Fundamental consequences on new inelastic time measure as a limit of theendochronic theory [J]. Archives of Mechanics, 1980, 32: 171-190.
    [97] K. C. Valanis, and J. Fan. Endochronic analysis of cyclic elastoplastic strain fields in a notched plate [J]. J. Appl., Mech., 1983, 50: 789-793.
    [98]范镜泓,高芝晖著.非线性连续介质力学基础[M].重庆:重庆大学出版社, 1987.
    [99] J. Fan. On a thermomechanical constitutive theory and its application to CDM,fatigue,fracture and conposites, Proc. IUTAM Symp. Thermomechanical Coupling in Solids [J], 1987, 223-237.
    [100] O. Watanabe, S. N. Atluri. Internal time, general internal variable, and multi-yield-surface theories of plasticity and creep: A unification of concepts [J]. 1986, 2: 37-57.
    [101] J. Fan, X. Peng. A physically based constitutive description for non-proportional cyclic plasticity [J]. J. Eng. Mater. Technol., 1991, 113 (2): 254–262.
    [102]彭向和,范镜泓,马鸣图.金属材料非比例循环塑性的本构描述[J].重庆大学学报, 1992, 15(3): 72-78.
    [103] X. Peng, A. R. S. Ponter. A constitutive law for a class of two-phase materials with experimental verification [J]. Int. J. Solids Struct., 1994, 31: 1099–1111.
    [104]彭向和,曾祥国,孙镇华.预蠕变塑性的本构描述及其实验验证[J].重庆大学学报(自然科学版), 1995, 18(4):1-8.
    [105] X. Peng, C. Meyer, L. Fang. A thermomechanically consistent continuum damage model for concrete materials [J]. J. Eng. Mech., 1997, 123(1): 60–69.
    [106]彭向和,曾祥国,范镜泓.一种非经典晶体塑性本构模型及其应用[J].应用数学和力学, 1998, 19(10): 897-906.
    [107] X. Peng, J. Fan. A numerical Approach for nonclassical plasticity [J]. Computers & Structures, 1993, 47(2): 313-320.
    [108] X. Peng, X. Zeng, J. Fan. A physically based description for coupled plasticity and creep deformation [J]. Int. J. Solids Structures, 1998, 35(21): 2733-2747.
    [109]曹明盛.物理冶金基础第一版[M].北京:冶金工业出版社, 1985, 336-340.
    [110]李超.金属学原理[M].哈尔滨:哈尔滨工业大学出版社, 1989, 38-62.
    [111]刘国勋.金属学原理[M].北京:冶金工业出版社, 1979, 331-338.
    [112] W. C.莱斯利著.余宗森,谢善骁译.钢的物理冶金学[M].北京:冶金工业出版社, 1988, 38-58.
    [113]余永宁.金属学原理[M].北京:冶金工业出版社, 2000, 441-453.
    [114] M. T. Todinov. A new approach to the kinetics of a phase transformation with constant radial growth rate [J]. Acta mater., 1996, 44(12): 4697-4703.
    [115] J. Vazquez, P. L. Lopez-Alemany, P. Villares, R. Jimenez-Garay. A study on non-isothermaltransformation kinetics. Application to the crystallization of Sb0.2 As0.32 Se0.48 alloy [J]. Journal of Alloys and Compounds, 1998, 270: 179-185.
    [116] S. S. Sahay, K. Krishnan. Analysis of the nonisothermal crystallization kinetics in three linear aromatic polyester systems [J]. Thermochimica Acta, 2005, 430: 23-29.
    [117] W. Sha. Application of simple practical models for early stage ageing precipitation kinetics and hardening in aluminium alloys [J]. Materials and Design, 2007, 28: 528–533.
    [118] G. Ruitenberg, E. Woldt, A. K. Petford-Long. Comparing the Johnson Mehl Avrami Kolmogorov equations for isothermal and linear heating conditions [J]. Thermochimica Acta, 2001, 378: 97-105.
    [119] F. Liu, G. C. Yang, J. N. Liu. Comparison between an analytical model and JMA kinetics for isothermally and isochronally conducted transformations [J]. Thermochimica Acta, 2005, 438: 83–89.
    [120] J. J. Li, J. C. Wang, Q. Xu, et al. Comparison of Johnson–Mehl–Avrami–Kologoromov (JMAK) kinetics with a phase field simulation for polycrystalline solidification [J]. Acta Materialia, 2007, 55: 825–832.
    [121] V. Erukhimovitch, J. Baram. Modeling recrystallization kinetics [J]. Materials Science and Engineering, 1996, A214: 78-83.
    [122] J. Kohout. Modelling of changes in properties of alloys at elevated temperatures[J]. Materials Science and Engineering A, 2007, 462: 159-163.
    [123] M. T. Todinov. On some limitations of the Johnson Mehl Avrami Kolmogorov equation [J]. Acta mater., 2000, 48: 4217-4224.
    [124] F. L. Cumbrera, F. Sanchez-Bajo. The use of the JMAYK kinetic equation for the analysis of solid-state reactions: critical considerations and recent interpretations [J]. Thermochimica Acta, 1995, 266: 315-330.
    [125] A. A. Joraid. Limitation of the Johnson-Mehl-Avrami (JMA) formula for kinetic analysis of the crystallization of a chalcogenide glass[J]. Thermochimica Acta, 2005, 436: 78-82.
    [126]高宁.固态相变的动力学模型[J].金属热处理学报, 1998, 19(4): 38-42.
    [127] X. Peng, Y. Qin, X. Zhang. A constitutive model for the metals subjected to thermomechanical loading with fast heating during heating-assisted forming [J]. Journal of Materials Processing Technology, 2005, 167: 244–250.
    [128]黄克智,黄永刚著.固体本构关系[M].北京:清华大学出版社, 1999.
    [129]黄筑平著.连续介质力学基础[M].北京:高等教育出版社, 2003.
    [130] D. L. Mcdowell. A two-surface model for transient nonproportional cyclic plasticity [J]. J. Appl. Mech., 1985, 52: 298–308.
    [131] J. L. Chaboche. Time-independent constitutive theories for cyclic plasticity [J]. Int. J. Plast., 1986, 2: 149–188.
    [132] M. Avrami. Kinetics of Phase Change.Ⅰ. [J]. Journal of Chemical Physics, 1939, 7: 1103-1112.
    [133] M. Avrami. Kinetics of Phase Change.Ⅱ. [J]. Journal of Chemical Physics, 1940, 8: 212-224.
    [134] M. Avrami. Kinetics of Phase Change.Ⅲ. [J]. Journal of Chemical Physics, 1941, 9: 177-184.
    [135] P. Hassen. Physical Metallurgy [M]. London: Cambridge University Press, 1978.
    [136]余寿文,冯西桥著.损伤力学[M].北京:清华大学出版社, 1997.
    [137] Abaqus Documentation, version 6.4 [M]. Providence: Hibbitt Karlsson & Sorensen, Inc., 2003.
    [138]王勖成著.有限单元法[M].北京:清华大学出版社, 2003, 617-662.
    [139]匡震邦著.非线性连续介质力学[M].上海:上海交通大学, 2003, 80-97.
    [140] W. S. Farren, M. A., and G. I. Taylor. The heat developed during plastic extension of metals [J]. Mathematical and Physical Character, 1925, 107(743): 422-451.
    [141] G. I. Taylor and H. Quinney. The plastic distortion of metals [J]. Mathematical and Physical Character, 1932, 230: 323-362.
    [142] G. I. Taylor and H. Quinney. The latent energy remaining in a metals after cold working [J]. Mathematical and Physical Character, 1934, 143(849): 307-326.
    [143] H. Quinney and G. I. Taylor. The emission of the latent energy due to previous cold working when a metal is heated [J]. Mathematical and Physical Character, 1937, 163(913): 157-181.
    [144] S. Y. Lin. Upsetting of a cylindrical specimen between elastic tools [J]. Journal of Materials Processing Technology, 1999, 86: 73–80.
    [145] X. Peng, et al. Investigations to the effect of heating-rate on the mechanical properties of aluminum alloy LY12 [J]. International Journal of Solids and Structures, 2003, 40: 7385-7397.
    [146] X. Peng, Y. Qin, R. Balendra. Analysis of laser-heating methods for micro-parts blanking applications [J]. Journal of Materials Processing Technology, 2004, 150: 84–91.
    [147] D. Peckner, IM. Berstein. Handbook of stainless steel [M]. New York: McGraw-Hill Book Company, 1977.
    [148] W. F. Hosford, R. M. Caddell. Metal forming: mechanics and metallurgy [M]. Englewood Cliffs, NJ., USA: Prentice-Hall, 1983.
    [149] Metals Handbook [M]. ASME, 10th ed. New York: ASME International, 1990.
    [150] K. Lange. Handbook of metal forming [M]. New York: McGraw-Hill Book Company, 1985.
    [151] W. F. Hosforg, RM. Caddell. Metal forming: mechanics and metallurgy [M]. Englewood Cliffs, NJ., USA: Prentice-Hall Inc., 1983.
    [152] F. Rui, F. Di, X. Chen. Effects of undersized inclusions on ductile fracture behavior of FeNi42 alloy in sheet tension [J]. Journal of Iron and Steel Research, International, 2007, 14(5): 53-58.
    [153] A. Belyakov, H. Miura and T. Sakai. Dynamic recrystallization under warm deformation of a 304 type austenitic stainless steel [J]. Materials Science and Engineering, 1998, A255: 139-147.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700