用户名: 密码: 验证码:
轻量化结构件弯曲成形工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轻量化是航空航天、轨道交通等行业一直追求的目标。铝合金整体壁板和镁合金复杂截面型材作为典型的轻量化结构件,在运载火箭、导弹、飞机以及汽车交通领域有着广泛的使用价值。这些行业所用的轻量化结构件为了追求整体结构的优越性能和提高气动力外形,往往需要将其弯曲成形为一定曲率外形。但是这些轻量化结构件属于典型的多筋零部件,结构形式复杂,传统弯曲成形过程中容易产生多种缺陷且成形件的几何精度差。因此,开展轻量化结构件的先进弯曲成形工艺研究十分必要。本文在分析具体轻量化结构件的基础上,提出了铝合金整体壁板的机械铣-填料辅助滚弯成形工艺和镁合金型材的温热张力绕弯成形工艺,采用理论分析、有限元数值模拟和实验相结合的方法系统研究了填料滚弯成形工艺和张力绕弯成形工艺过程。本文的主要研究内容和结论如下:
     (1)研究整体壁板和型材的弯曲成形机理。系统分析整体壁板填料辅助滚弯的成形原理,分析了筋条内置和外置两种整体壁板筋条和蒙皮的力学状态、几何关系和回弹规律;研究镁合金型材温热张力绕弯成形原理,分析了型材内外侧不同特征位置的力学状态和回弹规律;理论分析为弯曲成形数学模型的建立提供了理论依据。
     (2)采用单向拉伸试验获得材料的应力应变关系,基于MSC.Marc建立了铝合金整体壁板填料辅助滚弯成形的三维弹塑性有限元模型,分析了滚弯成形过程中整体壁板的应力应变变化和回弹规律,揭示了填料在滚弯成形过程中的机理。基于MSC.Marc建立了镁合金型材温热张力绕弯成形的三维弹塑性热力耦合有限元模型,分析了绕弯成形过程中型材的应力应变、温度、回弹和几何尺寸的变化规律。
     (3)研制滚弯成形装置,设计并开发了成形工艺参数的数据采集系统;自主研制橡胶和塑料填料,进行了填料辅助整体壁板的滚弯成形实验,研究了填料和工艺参数对整体壁板表面质量和几何精度的影响。结果表明:研制的填料满足了整体壁板滚弯成形的要求,填料改变了壁板的受力状态,使蒙皮产生均匀的塑性变形,提高了蒙皮和筋条的变形协调性。随着上辊压下量的增大,壁板弯曲半径减小。当压下量较小时,、随着压下量的增大,壁板弯曲半径急剧减小;当压下量较大时,随着压下量的增大,弯曲半径减小幅度降低;基于最小二乘法获得的经验公式表明,压下量与弯曲半径呈幂指数函数关系。
     (4)研制镁合金型材温热张力绕弯成形装置,进行镁合金型材温热张力绕弯成形实验,分析成形温度、弯曲角度和预拉伸量对型材回弹角和几何精度的影响,将实验结果与模拟结果对比分析;采用光学显微镜、X射线衍射仪和EBSD技术系统分析型材的微观组织和织构演变。结果表明:模拟结果和实验结果基本吻合,工艺参数对回弹和几何尺寸变化的影响规律一致,模拟结果可以用于指导实验。微观组织和织构变化规律表明:温热弯曲成形过程中,大量孪晶出现,改变了晶粒的初始取向,协调了晶粒c轴的应变,提高了型材的塑性变形能力。
Lightweight is the long-term goal of aerospace, rail transport and other industries. As the typical lightweight structures, the integral panel skins of aluminum alloys and complex cross-section profile of magnesium alloys have been widely used in the launch vehicles, missiles, aircrafts and automobile traffic. These lightweight structures are often bent to appearance with certain curvature in order to acquire the overall structure of superior performance and improve the aerodynamic appearance. However, these lightweight structures are typical components with multi-ribs. And because of their complex structures, lightweight structures that manufactured by traditional bending process are prone to producing various defects and have the poor geometric accuracy. Therefore, it is necessary to research the advanced bending forming process of lightweight structures. According to the analysis of specific lightweight structures, the forming processes of mechanical milling-filling roll bending of integral panel skin of aluminum alloys and warm tension-rotation bending of magnesium alloy profiles are proposed. By means of theoretical analysis, finite element numerical simulation and experiments, the filling roll bending process and warm tension-rotation bending process are researched. The main contents and results are as follows:
     (1) The bending mechanics of the integral panel skins and profiles are studied. The forming principle of integral panel skin filling aided roll bending is analyzed systematically; the mechanical state, geometrical relationship and springback rule of rib and skin of integral panel skin with rib-inward and rib-outward are researched. The forming principle of warm tension-rotation bending of magnesium alloy is studied; the mechanical state and springback rule of different feature positions on the inside and outside of the profile are investigated. The theoretical analysis provides theoretical foundations for the mathematical model of bending process.
     (2) The stress-strain curves are gained through uniaxial tensile tests. The three-dimensional elasto-plastic finite element model of aluminum alloy integral panel skin filling aided roll bending is established based on MSC.Marc package. The changes of stress and strain and springback law of integral panel skin during roll bending process are analyzed. The role of filler in bending process is revealed. The three-dimensional elasto-plastic thermo-mechanical coupled finite element model of magnesium alloy profile warm tension-rotation bending is established. The evolution rules of stress, strain, temperature, springback and geometric dimensions of the profile during warm tension-rotation bending process are sumarized.
     (3) A roll bending equipment and data acquisition system for forming technical parameter are developed. The rubber and plastic filler are fabricated, and filling aided roll bending experiments are carried out in order to investigate the influence of filler and process parameters on surface quality and geometry accuracy of integral panel skins. The results indicate that the filler can meet the need of integral panel skins during roll bending process. Filler can change stress state of panel which generates uniform plastic deformation and improves the deformation harmonization between rib and skin. The radius of integral panel skin increases with increasing the top-roller reduction. When the reduction is small, the radius decreases sharply and the decrease amplitude is big. However, the decreasing trend becomes slower with the reduction increases. The empirical formula based on the Least Squares Regression shows the relationship between bending radius and reduction is the power exponential function.
     (4) A tension-rotation bending equipment for magnesium alloy profiles is developed, and some warm tension-rotation bending experiments are conducted on it. The effects of forming temperature, bending angle and pre-tension amount on springback angle and geometric accuracy are analyzed. Moreover, the comparison between experimental results and simulation results is'conducted. Microstructure and microtexture of the profile are investigated by using an optical microscopy, X-rays diffraction and EBSD analysis system. The results show that the simulation results agree well with the experimental results. The effects of process parameters on springback and geometric dimension are coincident for both methods. Therefore, the simulation results can be used to conduct experiments. The evolution of microstructure and texture shows that during the warm tension-rotation bending process, a big number of twins emerge, which changes the initial orientations of grains, accommodates deformation of the c-axis and improves the plastic property of the profile.
引文
[1]杨合,李落星,王渠东,等.轻合金成形领域科学技术发展研究.机械工程学报,2010,46(12):31-42.
    [2]Kleiner M, Geiger M, Klaus A. Manufacturing of lightweight components by metal forming. CIRP Annals-Manufacturing Technology,2003,52(2):521-542.
    [3]刘劲松,张士宏,肖寒,等.MSC.MARC在材料加工工程中的应用.北京:中国水利水电出版社,2010.
    [4]胡朝辉,成艾国,钟志华.多学科优化设计在热成形车架轻量化中的应用.中国机械工程,2010,21(6):728-732.
    [5]吕毅宁,吕振华.基于等刚度条件的薄壁结构的一种材料替代轻量化设计分析方法.机械工程学报,2009,45(12):289-294.
    [6]张勇,李光耀,钟志华.基于可靠性的多学科设计优化在薄壁梁轻量化设计中的应用研究.中国机械工程,2009,20(15):1885-1889.
    [7]朱宏敏.汽车轻量化关键技术的应用及发展.应用能源技术,2009,(2):10-12.
    [8]左铁镛.21世纪的轻质结构材料——镁及镁合金发展.新材料产业,2007,(12):22-26.
    [9]张士宏,王忠堂,周丽新,等.镁合金板材温热成形技术的几个新进展.材料导报,2006,20(8):114-118.
    [10]Vollertsen F, Sprenger A, Kraus J, et al. Extrusion, channel, and profile bending:a review. Journal of Materials Processing Technology,1999,87(1-3):1-27.
    [11]仲昕.柔性滚弯技术的实验和理论研究:(硕士学位论文).南京:南京航空航天大学,2000.
    [12]Dix A F, Parkin R. Titanium metal fabrications in areo engines. The Science, Technology and Application of Titanium,1970.
    [13]鲁世红,于长生,恽君璧.柔性滚弯技术在国外的应用进展.新技术新工艺,2006,(3):31-34.
    [14]曹振中,左敦稳,闫静,等.双轴柔性滚弯机床机械系统的设计.机械研究与应用,2003,16(4):40-41.
    [15]孙卫祥,左敦稳,曹振中.双轴柔性滚弯数控系统的研究与开发.机械制造与自动化,2002,(5):26-28.
    [16]左敦稳,王珉,刘奎,等.双轴柔性滚弯技术的实验研究.南京航空航天大学学报,1998,30(5):473-479.
    [17]闫静,左敦稳,王珉.双轴柔性滚弯过程中工件回弹的理论分析.兵工学报,2003,24(3):381-384.
    [18]闫静,左敦稳,王珉.塑性精确理论在双轴柔性滚弯技术中的应用.中国机械工程,2005,16(12):1124-1127.
    [19]闫静,左敦稳,王珉.双轴柔性滚弯技术的有限元分析.机械科学与技术,2003,22(2):203-205.
    [20]王静,鲁世红,于长生,等.神经网络和有限元方法在两轴柔性滚弯中的应用.机械科学与技术,2006,25(9):1056-1058.
    [21]屈晓敏,周云飞.双轴滚弯成形机成形过程与设计.洪都科技,2003,(1):9-15.
    [22]屈晓敏.双轴滚弯成形机的研制:(硕士学位论文).武汉:华中科技大学,2004.
    [23]Roggendorff S, Haeusler J. Plate bending:three rolls and four rolls compared. Welding and Metal Fabrication,1979,47(6):353-357.
    [24]上海市造船公司国外资料编译组.国外造船设备选辑.上海:上海科学技术情报研究所,1974.
    [25]莫施宁.弯卷机和矫正机.北京:机械工业出版社,1958.
    [26]格罗莫娃.成批生产中板材和型材零件的制造.北京:国防工业出版社,1964.
    [27]Bassett M B, Johnson J. The bending of plate using a three-roll pyramid type plate bending machine. The Journal of Strain Analysis for Engineering Design,1966,1(5):398-414.
    [28]Hansen N E, Jannerup O. Modelling of elastic-plastic bending of beams using a roller bending machine. Transactions of the ASME, Journal of Engineering for Industry,1979,101(3):304-310.
    [29]Gandhi A H, Raval H K. Analytical and empirical modeling of top roller position for three-roller cylindrical bending of plates and its experimental verification. Journal of Materials Processing Technology,2008,197(1-3):268-278.
    [30]Gandhi A H, Shaikh A A, Raval H K. Formulation of springback and machine setting parameters for multi-pass three-roller cone frustum bending with change of flexural modulus. International Journal of Material Forming,2009,2(1):45-57.
    [31]陈毓勋.板材与型材弯曲回弹控制原理与方法.北京:国防工业出版社,1990.
    [32]胡卫龙.板材弯卷变形的理论分析与实验研究:(博士学位论文).哈尔滨:哈尔滨工业大学,1992.
    [33]徐辅仁.飞机蒙皮壁板三轴滚弯成型力及中心辊进给量的计算.航空学报,1991,12(7):401-410.
    [34]徐辅仁.船体板成形后曲率与三辊弯板机中心辊进给量的关系.中国造船,1991,(1):87-102.
    [35]顾佩芝,徐辅仁.减小大型火箭外壳板滚弯直线度误差的途径.中国空间科学技术,1995,15(6):49-61.
    [36]Xu F R. Determination of the radii of the improved type rollers of the bender for rolling missile hull plates.上海理工大学学报,2001,23(2):146-152.
    [37]茅云生.板材滚弯成形理论和基于视觉测量自动控制的研究:(博士学位论文).武汉:武汉理工大学,2000.
    [38]茅云生,向胜,邵天芬.板材滚弯成形理论及自动控制的研究进展.船海工程,2001,(6):28-31.
    [39]茅云生,侯磊,王呈方.板材滚弯成形的理论计算与自动控制模型.中国造船,2003,44(2):76-82.
    [40]茅云生,侯磊,王呈方.计算机视觉测量在板材滚弯成形中的应用研究.船舶工程,2003,25(2):46-48.
    [41]闫祥安,肖聚亮,曹玉平.上辊万能式卷板机数控系统的研究与开发.锻压机械,2002,37(5):56-58.
    [42]王国栋,李佳,贾安东,等.三轴不对称卷板的数学模型.重型机械,2002,(2):40-43.
    [43]王金桥,闫祥安,王国栋.基于COM技术的开放式卷板数控系统的研究与开发.制造业自动化,2003,25(9):43-45.
    [44]孟凡净,周哲波.大型卷板机的力学模型.煤矿机械,2006,27(5):769-771.
    [45]汪永强,郭宝宝,方庆.大型卷板机主参数的力学设计模型及应用.煤矿机械,2006,27(8):10-11.
    [46]杜鹏,张德华,潘晓光.三辊对称卷板机参数的计算模型与运动仿真.太原科技大学学报,2006,27(1):15-19.
    [47]李强,高耀东,尚珂.对称式三辊卷板机的受力及驱动功率计算分析.锻压技术,2007,32(4):67-69.
    [48]苏猛,张维斌.卷板机三辊力学状态分析.煤炭技术,2008,27(1):6-7.
    [49]杨建鸣,夏玉龙,边明杰.基于有限元分析的金属板材在卷板机上成形的接触与弹塑性分析研究.锻压装备与制造技术,2008,43(1):54-56.
    [50]高耀东,何雪.卷板机卷板过程的动态模拟研究.中国重型装备,2010,(2):4-7.
    [51]赵丽娟.型材滚弯及其在线检测系统.模具技术,2003,(1):29-31.
    [52]Hua M, Sansome D H, Rao K P, et al. Continuous four-roll plate bending process:its bending mechanism and influential parameters. Journal of Materials Processing Technology,1994,45(1-4): 181-186.
    [53]Hua M, Baines K, Cole I M. Bending mechanisms, experimental techniques and preliminary tests for the continuous four-roll plate bending process. Journal of Materials Processing Technology,1995, 48(1-4):159-172.
    [54]Hua M, Cole I M, Baines K, et al. A formulation for determining the single-pass mechanics of the continuous four-roll thin plate bending process. Journal of Materials Processing Technology,1997, 67(1-3):189-194.
    [55]Hua M, Lin Y H. Large deflection analysis of elastoplastic plate in steady continuous four-roll bending process. International Journal of Mechanical Sciences,1999,41(12):1461-1483.
    [56]Lin Y H, Hua M. Influence of strain hardening on continuous plate roll-bending process. International Journal of Non-Linear Mechanics,2000,35(5):883-896.
    [57]林逸汉,许教明.应变硬化薄板夹持型滚弯成形过程分析.力学季刊,2000,21(2):197-203.
    [58]林逸汉,李凡,张迪.四辊轮多次弯板成形过程的刚性夹持模型.复旦学报(自然科学版),2002,41(5):495-500.
    [59]周养萍.型材滚弯成形研究:(硕士学位论文).西安:西安理工大学,2007.
    [60]周养萍.变曲率型材数控滚弯加工的实现.锻压装备与制造技术,2008,43(1):85-88.
    [61]周养萍.型材滚弯加工现状与展望.锻压装备与制造技术,2010,45(3):14-18.
    [62]孙卫东.数控四轴型材滚弯机应用研究:(硕士学位论文).西安:西北工业大学,2001.
    [63]刘劲松,张士宏,王忠堂,等.整体壁板增量压弯试验与模拟.金属成形工艺,2003,21(6):23-25.
    [64]Liu J S, Zhang S H, Zeng Y S, et al. Determination of Feature Line Equation for Self-adapting Incremental Press Bending. Journal of Materials Science & Technology,2004,20(6):739-742.
    [65]刘劲松,许沂,张士宏,等.整体壁板增量压弯过程应力应变模拟.塑性工程学报,2003,10(5):42-45.
    [66]刘劲松,张士宏,曾元松,等.网格式整体壁板增量成形有限元模拟.材料科学与工艺,2004,12(5):515-517.
    [67]张新华,曾元松,吴为,等.某型火箭整体壁板增量压弯成形试验.航空制造技术,2004,(2):92-94.
    [68]张新华,曾元松,李志强,等.缘条类零件的增量成形技术.航空制造技术,2005,(1):91-93.
    [69]任丽梅,王忠堂,刘劲松,等.异型截面筋条压弯稳定性分析及数值模拟研究.塑性工程学报,2003,10(5):39-41.
    [70]岳峰丽,董浩存,刘劲松.多筋结构件弯曲过程回弹模拟.沈阳工业学院学报,2004,23(1):11-13.
    [71]原红玲,翟振辉.型材压弯变形力的计算.精密成形工程,2004,22(3):84-85.
    [72]张铮,张其林.H形截面铝合金压弯构件平面内稳定承载力的试验及理论研究.建筑结构学报,2006,27(5):9-15.
    [73]王书鹏,高锦张,贾俐俐.空腹型材压弯过程的失稳研究.模具工业,2007,33(10):33-36.
    [74]宋江腾,臧勇,崔福龙,等.非对称型材压弯过程应变规律的有限元分析.机械设计与制造,2008,(9):72-74.
    [75]宋江腾,臧勇,崔福龙,等.非对称型材压弯过程截面畸变的数值模拟.机械设计与制造,2009,(3):123-125.
    [76]Choi Y, Yeo H T, Park J H, et al. A study on press forming of automotive sub-frame parts using extruded aluminum profile. Journal of Materials Processing Technology,2007,187-188:85-88.
    [77]Asnafi N, Nilsson T, Lassl G. Tubular hydroforming of automotive side members with extruded aluminium profiles. Journal of Materials Processing Technology,2003,142(1):93-101.
    [78]藏鹏博.型材拉弯研究:(硕士学位论文)..西安:西北工业大学,2002.
    [79]Pourboghrat F, Chu E. Springback in plane strain stretch/draw sheet forming. International Journal of Mechanical Sciences,1995,36(3):327-341.
    [80]Yu T, Johnson W. Influence of axial force on the elastic-plastic bending and springback of a beam. Journal of Mechanical Working Technology,1982,6(1):5-21.
    [81]El-Domiaty A A, Shabara M A N, Al-Ansary M D. Determination of stretch-bendability of sheet-metals. International Journal of Machine Tools & Manufacture,1996,36(5):635-650.
    [82]El-Domiaty A A, Elsharkawy A A. Stretch-bending analysis of U-section beams. International Journal of Machine Tools & Manufacture,1998,38(1-2):75-95.
    [83]Elsharkawy A A, El-Domiaty A A, Shaker M. Springback and residual stresses after stretch bending of workhardening sheet metal. Journal of Materials Processing Technology,1990,24:191-200.
    [84]Elsharkawy A A, El-Domiaty A A. Determination of stretch-bendability limits and springback for T-section beams. Journal of Materials Processing Technology,2001,110(3):265-276.
    [85]Miller J E, Kyriakides S, Bastard A H. On bend-stretch forming of aluminum extruded tubes-I: experiments. International Journal of Mechanical Sciences,2001,43(5):1283-1317.
    [86]Miller J E, Kyriakides S, Corona E. On bend-stretch forming of aluminum extruded tubes-II:analysis. International Journal of Mechanical Sciences,2001,43(5):1319-1338.
    [87]Clausen A H, Hopperstad O S, Langseth M. Stretch bending of aluminium extrusions:effect of geometry and alloy. Journal of Engineering Mechanics,1999,125(4):392-400.
    [88]Clausen A H, Hopperstad O S, Langseth M. Stretch bending of aluminium extrusions:effect of tensile sequence. Journal of Engineering Mechanics,1999,125(5):521-529.
    [89]Clausen A H, Hopperstad 0 S, Langseth M. Sensitivity of model parameters in stretch bending of aluminium extrusions. International Journal of Mechanical Sciences,2001,43(2):427-453.
    [90]Clausen A H, Hopperstad 0 S, Langseth M. Stretch bending of aluminium extrusions for car bumpers. Journal of Materials Processing Technology,2000,102(1):241-248.
    [91]Clausen A H, Tryland T, Remseth S. An investigation of material properties and geometrical dimensions of aluminium extrusions. Materials and Design,2001,22(4):264-275.
    [92]Paulsen F, Welo T. Application of numerical simulation in the bending of aluminium-alloy profiles. Journal of Materials Processing Technology, 1996,58(2-3):274-285.
    [93]Paulsen F, Welo T, Sovik O P. A design method for rectangular hollow sections in bending. Journal of Materials Processing Technology,2001,113(1-3):699-704.
    [94]Paulsen F, Welo T. Cross-sectional deformations of rectangular hollow sections in bending:Part Ⅰ-experiments. International Journal of Mechanical Sciences,2001,43(1):109-129.
    [95]Paulsen F, Welo T. Cross-sectional deformations of rectangular hollow sections in bending:Part Ⅱ-analytical models. International Journal of Mechanical Sciences,2001,43(1):131-152.
    [96]Paulsen F, Welo T. A design method for prediction of dimensions of rectangular hollow sections formed in stretch bending. Journal of Materials Processing Technology,2002,128(1-3):48-66.
    [97]杨亚文.钛型材热拉弯蠕变成形电参数的计算.沈阳航空工业学院学报,2002,19(4):10-12.
    [98]金淼,周贤宾,李晓星,等.大尺寸封闭截面铝型材拉弯工艺研究.塑性工程学报,2003,10(6):46-49.
    [99]刁可山,周贤宾,金朝海.铝合金型材拉弯成形研究进展.塑性工程学报,2003,10(15):38-42.
    [100]金朝海,周贤宾,刁可山,等.铝合金型材拉弯成形回弹的有限元模拟.材料科学与工艺,2004,12(4):394-397.
    [101]于成龙.型材转台式拉弯的力学分析与数值模拟:(硕士学位论文).西安:西北工业大学,2005.
    [102]王俊彪,于成龙,王永军,等.拉弯过程中预拉力对角型材零件回弹的影响规律.航空制造技术,2006,(1):98-100.
    [103]周贤宾,刁可山,李晓星,等.闭截面型材的拉弯成形性.北京航空航天大学学报,2006,32(10):1168-1173.
    [104]周贤宾,高宏志,李晓星,等.不同材料型材拉弯成形性的比较.精密成形工程,2009,1(1):7-12.
    [105]钱志平.型材拉弯的智能化控制工艺理论研究:(博士学位论文).秦皇岛:燕山大学,2009.
    [106]李小强,周贤宾,金朝海,等.基于有限元模拟的三维型材拉弯轨迹设计.航空学报,2009,30(3):544-550.
    [107]李小强,周贤宾,金朝海,等.型材拉弯数值模拟夹钳边界条件的一种等效模型.塑性工程学报,2009,16(1):64-69.
    [108]谷诤巍,蔡中义,徐虹.基于摄动法的拉弯成形工艺分析.清华大学学报(自然科学版),2009,49(5):647-651.
    [109]刘继英,李强.辊压成形在汽车轻量化中应用的关键技术及发展.汽车工艺与材料,2010,(2):18-21.
    [110]Bui Q V, Ponthot J P. Numerical simulation of cold roll-forming processes. Journal of Materials Processing Technology,2008,202(1-3):275-282.
    [111]Lindgren M, Bexell U, Wikstrom L. Roll forming of partially heated cold rolled stainless steel. Journal of Materials Processing Technology,2009,209(7):3117-3124.
    [112]刘继英,艾正青,Sedlmaier Albert.辊弯成型CAD/CAM技术的应用与发展.北方工业大学学报,1999,11(1):48-54.
    [113]韩飞,刘继英,艾正青,等.辊弯成型技术理论及应用研究现状.塑性工程学报,2010,17(5):53-60.
    [114]刘才,张乐乐,张华弟.基于OOP的辊弯成形过程全流程模拟中的新技术.机械工程学报,2002,38(6):72-74.
    [115]李大永,罗应兵,张少睿,等.辊弯成型数值研究综述及全流程仿真关键问题.机械科学与技术,2004,23(12):1466-1469.
    [116]李冰,张士宏,胡林,等.压型板辊弯成型过程数值模拟.钢铁,2004,39(8):82-85.
    [117]刘化民.不锈钢波纹顶板冷弯成形过程模拟研究.锻压装备与制造技术,2008,(2):70-72.
    [118]曾国.多道次辊弯成形冷弯型钢残余应力有限元仿真与实验研究:(博士学位论文).上海:上海交通大学,2009.
    [119]马立东.辊弯成型过程数值模拟及网络化研究:(博士学位论文).燕山:燕山大学,2009.
    [120]Marcal P V, King I P. Elasto-plastic analysis of two-dimensional stress systems by the finite element method. International Journal of Mechanical Sciences,1967, (9):143-155.
    [121]Lee C H, Kobayashi S. New solution to rigid-plastic of deformation problems using a matrix method. Transactions of the ASME, Journal of Engineering for Industry,1973,95:865-873.
    [122]Zienkiewicz O C, Godbole P N. Flow of plastic and visco-plastic solids with special reference to extrusion and forming processes. International Journal for Numerical Methods in Engineering,1974, 8(1):1-16.
    [123]周养萍,亓江文.型材变曲率滚弯过程有限元模拟.机械科学与技术,2008,27(8):1113-1115.
    [124]邵春雷,顾伯勤.利用ABAQUS/Explicit进行三辊弯板机板材成形数值模拟.石油化工设备,2006,35(2):62-65.
    [125]胡军峰,杨建国,方洪渊,等.滚弯过程的三维动态仿真模拟.塑性工程学报,2005,12(3):51-55.
    [126]胡军峰,杨建国,方洪渊,等.校平、滚弯连续加工的有限元模型与实现.塑性工程学报,2007,14(1):97-101.
    [127]杨建国,方洪渊,胡军峰,等.校平、滚弯连续工艺下大尺寸板材残余应力.哈尔滨工业大学学报,2008,40(4):593-596.
    [128]杨建国,方洪渊,万鑫,等.大尺寸板材滚弯过程应力场特点分析.材料科学与工艺,2008,16(5):684-687.
    [129]Seddeik M M, Kennedy J B. Deformations in hollow structural section (HSS) members subjected to cold-bending. International Journal of Mechanical Sciences,1987,29(3):195-212.
    [130]Yang M, Shima S. Simulation of pyramid type three-roll bending process. International Journal of Mechanical Sciences,1988,30(12):877-886.
    [131]Yang G, Mori K, Osakada K. Determination of forming path in three-roll bending using FEM simulation and fuzzy reasoning. Journal of Materials Processing Technology,1993,45:161-166.
    [132]Mori K, Yang G, Osakada K. Determination of optimal motion of tools in metal forming processes by controlled FEM simulation. International Journal of Machine Tools & Manufacture,1995,35(6): 851-859.
    [133]Gandhi A H, Gohil P P, Raval H K. Simulation of three-roller bending process using ANN:A parametric study. International Journal of Manufacturing Research,2009,4(3):265-280.
    [134]Zeng J, Liu Z, Champliaud H. FEM dynamic simulation and analysis of the roll-bending process for forming a conical tube. Journal of Materials Processing Technology,2008,198(1-3):330-343.
    [135]Feng Z, Champliaud H, Dao T. Numerical study of non-kinematical conical bending with cylindrical rolls. Simulation Modelling Practice and Theory,2009,17:1710-1722.
    [136]Spoorenberg R C, Snijder H H, Hoenderkamp J C D. Experimental investigation of residual stresses in roller bent wide flange steel sections. Journal of Constructional Steel Research,2010,66(6): 737-747.
    [137]Spoorenberg R C, Snijder H H, Hoenderkamp J C D. Finite element simulations of residual stresses in roller bent wide flange sections. Journal of Constructional Steel Research,2011,67(1):39-50.
    [138]郭刚,李雪春,徐伟力,等.帽形材换向绕弯的曲率弹复.材料科学与工艺,1998,6(4):96-98.
    [139]李春峰,李雪春,杨玉英,等.帽形型材绕弯时的弹复.哈尔滨工业大学学报,1998,30(5):98-101.
    [140]李春峰,高国峰,徐伟力,等.零件几何参数对型材张力绕弯断面形状精度的影响.塑性工程学报,1999,6(1):29-32.
    [141]Li C F, Yang Y Y, Gao G F, et al. Research on the section distortion of hat-section profiles in rotary draw bending with stretching force. Journal of Materials Processing Technology,1999,94(1):41-44.
    [142]张景辉.型材张力绕弯断面精度研究.机械工程师,2003,(3):44-45.
    [143]杨玉英,董昀,李春峰.RW400型张力自控绕弯机.锻压装备与制造技术,2003,(5):23-26.
    [144]杨玉英,董昀,赵立红.帽形型材绕弯件的曲率一致性.材料科学与工艺,2004,12(1):91-94.
    [145]Dong Y, Yang Y Y, Zhao L H. Research on the relationship between the number of rotary draw bendings and the shape precision of a bent hat-section profile. Journal of Materials Processing Technology,2004,151(1):307-311.
    [146]董昀,杨玉英,李春峰.绕弯机电液伺服系统的智能控制.锻压装备与制造技术,2005,(4):42-44.
    [147]唐建阳,万敏.铝合金型材张力绕弯成形几何缺陷数值模拟分析.锻压技术,2005,(1):29-32.
    [148]温彤,丰慧珍,艾百胜.管材绕弯变形的理论与实验分析.重庆大学学报(自然科学版),2006,29(12):8-12.
    [149]温彤,陈霞,裴春雷.可变管径绕弯模具弯管的理论与实验研究.中国机械工程,2010,21(9):1119-1122.
    [150]唐鼎,李大永,彭颖红.芯棒形式对铜管绕弯成形质量影响的仿真研究.中国机械工程,2006,17(S1):80-82.
    [151]赵刚要.薄壁矩形管绕弯成形失稳起皱的数值模拟:(硕士学位论文).西安:西北工业大学,2007.
    [152]刘郁丽,卢彩红,赵刚要,等.间隙对薄壁矩形管绕弯成形截面畸变影响的研究.中国机械工 程,2008,19(16):1972-1975.
    [153]Zhao G Y, Liu Y L, Yang H, et al. Three-dimensional finite-elements modeling and simulation of rotary-draw bending process for thin-walled rectangular tube. Materials Science and Engineering:A, 2009,499(1-2):257-261.
    [154]Zhao G Y, Liu Y L, Yang H, et al. Cross-sectional distortion behaviors of thin-walled rectangular tube in rotary-draw bending process. Transactions of Nonferrous Metals Society of China,2010, 20(3):484-489.
    [155]Yu Z Q, Lin Z Q. Numerical analysis of dimension precision of U-shaped aluminium profile rotary stretch bending. Transactions of Nonferrous Metals Society of China,2007,17(3):581-585.
    [156]申世军,杨合,李恒,等.薄壁管小弯曲半径数控绕弯成形芯模效用的实验研究.塑性工程学报,2007,14(4):29-34.
    [157]Wu W Y, Zhang P, Zeng X Q, et al. Bendability of the wrought magnesium alloy AM30 tubes using a rotary draw bender. Materials Science and Engineering:A,2008,486(1-2):596-601.
    [158]张津,刘郁丽,赵刚要,等.材料参数对矩形管绕弯截面变形的影响.热加工工艺,2009,38(13):1-4.
    [159]王祺,刘劲松,肖寒,等.镁合金型材绕弯成形回弹性能研究.沈阳理工大学学报,2009,28(6):31-34.
    [160]张卿卿,李大永,彭颖红,等.薄壁异形管面内绕弯过程的模拟与实验研究.上海交通大学学报,2010,44(4):452-456.
    [161]Zhang Q Q, Tang D, Li D Y, et al. Numerical and experimental study on in-plane bending of microchannel aluminum flat tube. Journal of Materials Processing Technology,2010,210(14): 1876-1884.
    [162]陈殿苹,张卿卿,唐鼎,等.扁管面内绕弯成形起皱的仿真与试验分析.塑性工程学报,2010,17(1):70-73.
    [163]Welo T, Paulsen F, Brobak T J. The behaviour of thin-walled, aluminium alloy profiles in rotary draw bending-a comparison between numerical and experimental results. Journal of Materials Processing Technology,1994,45(1-4):173-180.
    [164]Li H, Yang H, Zhan M, et al. Deformation behaviors of thin-walled tube in rotary draw bending under push assistant loading conditions. Journal of Materials Processing Technology,2010,210(1): 143-158.
    [165]陈火红,杨剑,薛小香,等.Marc有限元实例教程.北京:机械工业出版社,2007.
    [166]朱东波,孙琨,李涤尘,等.板料成形回弹问题研究新进展.塑性工程学报,2000,7(1):11-17.
    [167]张士宏,尚彦凌,郎利辉,等.用动态显式有限元法对板材成形进行计算机模拟.塑性工程学报,2001,8(1):19-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700