用户名: 密码: 验证码:
电阻连续加热成形电—热—力耦合试验及模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统的热成形工艺由于高耗能、低材料利用率和较长的生产周期已难以满足当今社会对材料成形领域提出的节能、低耗、绿色制造的要求;另一方面,随着时代的发展,新型材料的不断产生,其成形窗口窄,对温度敏感,成形过程中相变复杂等特点也为材料成形提出了更高的要求。为了适应产业发展的需求,许多新兴的加工技术手段应运而生,不仅扩展了材料成形的领域,也改变了锻造行业落后的面貌。连续加热成形技术是将加热过程贯彻到整个成形过程的先进成形技术,它将连续加热技术和传统的锻造成形技术相结合,以保证材料始终在锻造温度内实现塑性变形,在发挥传统成形方法优势的同时,大大的降低了成形力,减少了零件的整个生产周期,减少了能量的损耗,避免了由于工件多次加热对成本和产品质量的影响,越来越受到人们的关注,其中电阻连续加热成形技术尤为引人瞩目。
     电阻连续加热成形技术是采用电阻加热方式在成形工件的工作位置对工件实行的局部或整体的加热,并在成形过程中不断的为工件加热使之始终处于高温状态。电阻加热具有热效率高、设备简单、控制方便、受模具结构影响较小等特点,是连续加热成形技术的理想热源。更为重要的是,在电阻连续加热成形过程中,工件中由电流通过而引起的电场将对金属的变形行为进行改善。但是,电阻连续加热成形技术是一个复杂的成形过程,涉及到电学、传热学、塑性成形力学、材料科学、计算机控制技术等多门学科,影响因素众多且相互之间的关系复杂,阻碍了电阻连续加热技术的进一步发展。本文在对以往连续加热成形技术的研究基础上,对电阻连续加热成形技术进行的分类,并通过自主设计的电阻连续加热成形装置对42CrMo4棒料进行了热成形试验并成功的开发了能够模拟电阻连续加热成形过程的电-热-力耦合有限元模型,为今后电阻连续加热成形的发展提供了坚实的基础。
     本文首先根据电极与成形工件的关系将电阻连续加热成形技术的模具结构分为三类,即电极不与工件直接接触、电极直接与工件接触及电极与模具、工件部分接触三类,并将电阻连续加热成形系统分为加热系统、温度控制及检测系统、成形系统、绝缘系统四个子系统。采用电极不与工件直接接触的模具结构设计了42CrMo4棒料电阻连续加热成形试验装置。将电阻连续加热成形过程分为成形前模具内加热和电阻加热情况下的成形两个部分,通过试验的方法分别研究了工艺参数、材料性能、模具结构及铝合金垫层等对加热温度、工件温度场分布、成形力和成形过程的影响,并对成形过程中产生的缺陷进行了研究,分析了缺陷产生的机理并提出了解决的方法。
     由于电阻连续加热成形过程包括了导电、导热和塑性变形的复杂非线性过程,采用试验的方法难以对其进行全面深入的研究。而目前真正的电-热-力耦合模拟还无法实现,因此本文采用将电-热耦合和热-力耦合分别计算后顺序耦合的方法,建立了电阻连续加热成形技术的电-热-力耦合有限元模型。通过模拟与试验结果的对比,在电-热耦合中建立的电阻率与接触面温度成反比关系的接触电阻模型能有效的反映加热过程中接触电阻对加热温度的影响,验证了数学模型的准确性,得到了电阻连续加热过程中温度、电流密度、应力应变及等分布,为复杂零件的电阻连续加热成形和进一步的优化参数提供了条件。
     为了使工件在电阻连续加热成形过程中温度保持恒定,在成形过程中对加热电流强度的适当控制是该方法成功与否的关键。为了得到合理的加热电流强度曲线,采用拉丁超立方抽样方法及二次多项式相应法建立了加热电流与与坯料温度之间的十元二次近似模型,并采用遗传算法对加热电流强度进行参数优化,从而得到等够在成形过程中保持坯料温度变化在12 oC左右的加热电流曲线。
The traditional hot forming technology is difficult to satisfy the real time demand because of high energy consumption, low material utilization and long production cycle. On the other hand, new material get a still higher demand on the matal forming technology because of the special properties of temperature sensitive, narrow forming range and complex phase transition during forming. The hot forming technology by continuous resistance heating is one of the advanced and filled with hopes technologies in the furture, which heats the billet in the dies during the whole forming process in order to keep the billet as the higher temperature. The troditional forming technology and the continouos heating technology has been combined. It have advantages of low forming force, low energy consumption, and can avoid the increase of produation cost due to repeated heating.
     The hot forming technology by continuous resistance heating can heating the billet to the forming temperature in the die prior forming by the resistance heating and continue heating it during forming. The resistance heating is the ideal continuous heat source for it has characters such as high heat efficiency, simple device, convenient control and so on. The more imporatant thing is which can improve the metal platstic deformation by the exist of current field. Howerer, the forming process by resistance heating is compex, which include heat transfer theory, material science, computer control technology and so on. Many influencing factors and the complex relations each other serevely obstructed the futher development of the hot forming technology by continuous resistance heating. In the paper, based on the previous studies, the die structure has been classify and the experiments of the 42CrMo4 upsetting have been contacted by the independent designed experimental system. Finally, an axis-symmetric electro-thermo-mechanical model has been developed to analyze a hot-forging process by direct resistance heating.
     The mold structure of continuous resistance heating has been dedived into four kinds: 1) Non-contact of the electrode and billet; 2) Directly contact of the electrode and billet; 3) Part-contact of the electrode and mold and billet. The mold system has four subsystems: heating, temperature control, forming and isolation system. The upsetting experiment device for 42CrMo4 bar has been designed with the first mold structure.The forming process is consist of two parts: heating inside mold before forming and forming during resistance heating.The parameter,material property,mold structure and aluminium alloy buffer,which influence temperature and temperature field distribution of billet and forming force and forming process,have been studied. And the reasons of defect have been researched and solution has been put forward.
     It is hard to further study with traditional experiments because the continuous resistance heating forming process is a nonlinear complex of electric conduction, thermal conduction and plastic deforming. The coupling simulation of electric, thermal and force can not be inplemented at present. This article separately calculate the electric-thermal coupling and thermal-force coupling and then calculate sequential coupling of them and finally build the finite element model of electric-thermal-force coupling for the continuous resistance heating forming. Comparing the results of simulation and experiments, contacting resistance model built in electric-thermal coupling effectively reflect influence of contacting resistance to temperature, in which the resistivity has an inverse relation with temperature of contact surface. The veracity of math model has been validated and the distribution of temperature, current density and stress and strain has been obtained. The results have provided contion to complicated part’s continuous resistance heating forming and further optimization. In order to keep the billet temperature constant during the continuous resistance heating process, the control of current strength is the key point which decides the results of this method. In this article, Latin hypercube sampling method and quadratic polynomial has been used to build a decimal quadric form approximate model for heating current and billet temperature, and then genetic algorithm has been used to optimize the current intensity, and finally obtained the heating current curve which could maintain the billet temperature varying within 12oC.
引文
[1]中国机械工程学会塑性工程学会.锻压手册[M].北京:机械工业出版社, 2008.
    [2]李英龙,李体彬.有色金属锻造与冲压技术[M].北京:化学工业出版社, 2008.
    [3]赵华.模具设计与制造[M].北京:清华大学出版社, 2009.
    [4]张志文.锻造工艺学[M].北京:机械工业出版社, 1983.
    [5]李春峰.板材成形新技术及发展趋势[J].机械工人, 2005, (7): 4-9.
    [6]洪慎章,模具工业的发展趋势及塑性成形技术的研究方向[J].模具制造, 2003, (12): 3-5.
    [7]洪丽华,陈永禄.中国模具工业现状和模具技术发展趋势[J].机电技术, 2007, (2): 96-99.
    [8] M. Jackson, R. J. Dashwood, L. Christodoulou, H. M. Flower. Isothermal subtransus forging of Ti–6Al–2Sn–4Zr–6Mo[J]. Journal of Light Metals, 2002, (2): 185-195.
    [9]张津.钛合金及应用[M].北京:化学工业出版社, 2003.
    [10]周建华,庞克昌,王晓英.航天用钛合金等温锻件的研制[J].上海航天, 2003, (6): 15-20.
    [11]王乐安.难变形合金锻件生产技术[M].北京:国防工业出版社, 2005.
    [12]章争荣,孙有松等.气门毛坯终锻成形过程的理论分析[J].模具工业, 2002, (11): 10-12.
    [13] Nakada M, shilhara Y, Flemings M C. Effect of high density electric pulse on the as-cast structure of hypereutectic 90Sn10Pb alloy[J]. ISIJ Inter, 1990, 30(1): 27-43.
    [14]路新瀛,梁开明,顾守仁,等.材料在电场中的行为[J].机械工程材料, 1995, 19(3): 1-3.
    [15]沈以赴,郭晓楠,张坤,等.脉冲电流对金属材料的作用及其研究进展[J].材料科学与工程, 1998, 16(3): 4-7.
    [16] Conrad H, White J, Cao W D, Lu X P, Sprecher A F. Effect of electric current pulses on fatigue characteristics of polycrystalline copper [J]. Mater. Sci. Eng, 1991, (145): 1-12.
    [17]张恒大.月球车钛合金轮圈的热旋压成形工艺研究[D].哈尔滨:哈尔滨工业大学, 2006.
    [18] F. H. Osman, E. Meerygold, Effect of differential heating on modes of plastic deformation in forging process[J]. Proc. 5th Int. Conference on technolog of plasticity, 1977: 295-298.
    [19] Kayatürk. K, A. Kurt, U. Weidig, K. Steinhoff, A. E. Tekkaya. Simultaneous cold and hot forginig in a single forming step-principle, possibilities and limitations in slovenian tool and die development centre [J]. International Conference on Industrial Tools. 2001: 2111-2119.
    [20]鲁世强,王高潮,熊洪淼.零件近净成形新工艺-差温无模锻造的热力耦合有限元模拟分析[J].南昌航空工业学院学报(自然科学版), 2002, 116(2): 49-53.
    [21] Merrygold, E. F. H. Osman. Forging of complex geometries with differential heating [J]. Journal of Materials Processing Technology, 1998, 80(1): 179-183.
    [22] K. Mori, S. Maki, Y. Tanaka. Warm and hot stamping of ultra high tensile strength steel sheets using resistance heating[J]. CIRP Annals Manufacturing Technology, 2005, 54(1): 209-212.
    [23] A. Fosbury, Shoukai Wang, Y. E. Pin, D. D. L. Chung. The interlaminar interface of a carbon fiber polymer-matrix composite as a resistance heating element[J]. Composites Part A: Applied Science and Manufacturing, 2003, 34(10): 933-940.
    [24]祖国胤,于九明,温景林.在线高频电阻加热工艺对碳钢/铝复合带组织与力学性能的影响[J].中国有色金属学报, 2004, 14(8): 1431-1436.
    [25]肖楠,陈还耿,孙世刚.高频电阻加热-轧制复合板温度场的数值模拟[J].金属学报, 2006, 42(9): 989-992.
    [26]刘介人.工频集肤电热开采高凝稠油的理论研究与实践[J].石油钻探工艺, 1994, 16(4): 74-78.
    [27]姚启明,李双寿,李而立.客车镁合金管材电阻加热弯曲工艺[J].轻合金加工技术, 2005, 33(8): 58-51.
    [28]喻祖建,李刚,李建辉,镁合金拉深成形模具结构研究[J],热加工工艺, 2010, 3: 122-124.
    [29]程永奇,陈振华,傅定发.镁合金拉深工艺的研发与进展[J].热加工工艺, 2004, 11: 52-55.
    [30] D. B. Shan, Z. Wang, Y. Lu, K. M. Xue. Study on isothermal precision forging technology for a cylindrical aluminium-alloy housing[J]. Journal of Materials Processing Technology, 1997, 72: 403–406.
    [31] P. Cavaliere a, E. Cerri a, E. Evangelista b. Isothermal forging modelling of 2618 + 20% Al2O3p metal matrix composite[J]. Journal of Alloys and Compounds, 2004, 378: 117–122.
    [32] Rong Shean Lee, Huan Chang Lin, Process design based on the deformation mechanism for thenon-isothermal forging of Ti–6Al–4V alloy[J]. Journal of Materials Processing Technology, 1998, 79: 224–235.
    [33]杨立军.不锈钢薄板激光诱导无模成形技术的研究[D].哈尔滨:哈尔滨哈尔滨工业大学, 2007.
    [34]管延锦,孙胜,赵国群.管材激光弯曲成形有限元工艺仿真及其机理研究[J].应用激光, 2006, 26(2): 85-89.
    [35] Wenchuan Li,Y.Lawrence Yao. Laser bending of tubes: mechanism, analysis and prediction[J]. Journal of Manufacturing Science and Engineering, 2001, 123(11): 674-681.
    [36] N. Hao, L. Li. An Analytical model for laser Tube Bending[J]. Applied Surface Science, 2003, 208-209: 432-436.
    [37] G. Chen, X. Xu, C. C. Poon, A. C. Tam. Experimental and numerical studies on microscale bending of stainless steel with pulsed laser[J]. Journal of Applied Mechanics, 1999, 66(3): 772-779.
    [38]朱建伟.智能气门电墩机实时控制系统及其模糊PID控制的研究[D].广东:广东工业大学, 2005.
    [39]李帅俊.机车气门电墩、模锻工艺的数值模拟与参数优化[D].北京:中国农业大学, 2006.
    [40]汪国顺,李乾方.气门电热墩粗工艺的数值模拟[J].塑性工程学报, 2004, 11(l): 57-60.
    [41]邝卫华.气门电镦成形过程的数值模拟与试验研究[D].广州:广东工业大学, 2002.
    [42]陈剑.基于人工神经网络的气门电热镦粗工艺专家系统[D].武汉:华中科技大学, 2006.
    [43] Spitayn V I, Kopev A V, Ryzhkov V G, et a1. Flatting mill for uhrafine spring strip and tungsten, employing ultra—sound and electroplastic effect[J]. Soy. Phys. Dokl, 1977, 22(10): 598-599.
    [44] Stolyarov V V. Deformability and nanostructuring of TiNi shape-memory alloys during electroplastic rolling[J]. Materials Science and Engineering, 2009, (503A): 18-20.
    [45] Klimov K M. Novikov I I. Absence of strain hardening upon electrostimulated rolling of metals under cold conditions[J]. Doklady Physics, 2007, (527): 359-360.
    [46] Jun Yanagimoto, Ryo Izumi: Continuous electric resistance heating-Hot forming system for high-alloy metals with poor workability[J]. Journal of Materials Processing Technology, 2009, 209(6): 3060-3068.
    [47] Xu Zhuohui, Tang Guoyi, Tian Shaoquan, et a1. Re—search of electroplastic rolling of AZ31 Mg alloy strip[J]. Journal of Materials Processing Technology, 2007, (182): 128-133.
    [48] TANG Guoyi, ZHENG Mingxin, ZHU Yonghua, et al. The application of the electro plastic technique in the cold drawing[J]. Journal of Materials ProcessingTechnology, 1998, (84): 268-270.
    [49] Conrad H, Sprecher A F, et al. Electro plasticity—the effect of electricity on the mechanical properties of metals[J]. JOM, 1990, 42 (9): 28-331.
    [50] Paul S H, Thomas K. Electro migration in metals[J]. Rep Pro Phys, 1989, 52 (2): 301-348.
    [51]张伟,隋曼龄,等.高密度电脉冲下材料微观结构额演变[J].金属学报, 2003, 33(9): 1009-1018.
    [52] Wei Zhang, Man-ling Sui, et al. Eledtropulsing-induced evolution of microstructures in materials[J]. Acta Metallurgica Sinica, 2003, 33(9): 1009-1018.
    [53] Zhouy Zhou, Jing-dong Guo, et al. Crack healing in a steel by using electropusing technique[J]. Materials Letters, 2004, (58): 1732-1736.
    [54]姚可夫,余鹏,郑明新,等. HoCrl7Ni6Mn3钢丝电塑性拉拔的研究[J].金属学报, 2000, 36(2): 630-633.
    [55] Roberto Orru, Roberta Licheri, Antonio Mario Locci. Consolidation/synthesis of materials by electric current activated/assisted sintering[J]. Materials Science and Engineering R, 2009, (63): 127-287.
    [56] S. Maki, Y. Harada, K. Mori. Fabrication of W-Cu composite by resistance sintering under ultra-high pressure[J]. Journal of Materials Processing Technology, 2005, 168(1): 107-111.
    [57] Z. J. Zhou, Y. S. Kwon. Fabrication and characterization of ultra-fine grained tungsten by resistance sintering under ultra-high pressure[J]. Materials Science and Engineering: A, 2009, 505( 1-2): 131-135.
    [58] Xueqiang Cao, Jiayan Li, Xinghua Zhong, et al. StoeverPreparing Mg–Ni–Si amorphous powders by mechanical alloying and consolidation by pulsed current sintering[J]. Materials Science and Engineering A, 2004, (375-377): 857-860.
    [59] Kimihiro Ozaki, Toshiyuki Nishio, Akihiro Matsumoto, et al. Microstructural characterization of W/Cu functionally graded materials produced by a one-step resistance sintering method[J]. Journal of Alloys and Compounds, 2007, 428(1-2): 146-150.
    [60] S. Maki, Y. Harada, K. Mori: Application of resistance sintering technique to fabrication of metal matrix composite[J]. Journal of Materials Processing Technology, 2001, 119(1-3): 210-215.
    [61] Seijiro Maki, Yasunori Harada, Ken-ichiro Mori, et al. Application of resistance heating technique to mushy state forming of aluminium alloy[J]. Journal of Materials Processing Technology. 2002. (125-126): 477-482.
    [62]陈定一,居德明.电接触电阻加热挤(滚)压高铬铸铁的试验研究[J].机床, 1989, (7): 26-28.
    [63]陈定一.电接触电阻加热挤压难加工材料的途径[J].机械制造, 1987, (4): 1-4.
    [64]高霖,范国强,张青来.板料电加热数控渐进成形加工方法及装置[P].中国: 200810124289, 2008.
    [65]范国强,高霖,李万军. TC4板料电辅助加热数控渐进成形时摩擦和润滑的研究[J],机械科学与技术, 2010,29(2): 201-205.
    [66]于盛睿,曾义和,冯浩.交流电场作用下铝硅共晶合金凝固组织和力学性能的变化[J].热加工工艺, 2010, (9): 47-50.
    [67]王春生,陈勇.三层不锈钢板电阻点焊温度场数值模拟[J].机械工程学报, 2004, (l): 192-194.
    [68]徐国成.弹簧钢电阻点焊最佳质量控制研究[D].吉林:吉林大学, 2000.
    [69]藤功清,晁月盛. Fe73.5Cu1Nb3Si13.5B13非晶合金电脉冲处理与等温退火的比较[J].中国有色金属学报, 2000, 10(1): 27-34.
    [70]黄金亮,曹兴国.电脉冲退火Fe73.5Cu1Nb1Mo2Si13.5B9合金的结构与磁性能[J].金属热处理学报, 1999, (20): 445-450.
    [71]樊慧军,陈国清,周文龙,等.直流匀强电场作用下镍钛合金高温变形行为研究[J].中国有色金属学报, 2006, (16): 1012-1018.
    [72] Okazki K. A Study of the electroplastic effect in metal[J]. Scripta Metal, 1978, (12):1063-1072.
    [73] Okazaki K, Kagawa M, Conrad H. Studay of the electroplastic effect in metals[J]. Scripta Metallurgica, 1978, (12): 1063-1068.
    [74]刘兵.静电场对铝合金的作用效应与机制[D].西安:西北工业大学, 2002.
    [75]杨丽红,黄金亮,殷镖.电脉冲在现代材料制备与研究中的应用[J].热加工工艺, 2003, (3): 51-53.
    [76]沈以赴,郭晓楠,张坤,等.脉冲电流对金属材料的作用及其研究进展[J].材料科学与工程, 1998, 16(3): 4-7.
    [77] Okazaki K, Kagawa M, Conrad H. An evaluation of the contributions of skin, pinchand heating effects to the electroplstic effect in titanium[J]. Materials Science and Engineering, 1980, (45): 109-116.
    [78] Di Yang, Hans Conrad. Effect of an electric field on the plastic deformation and frature of polycrystalline NaCl[J]. Materials Science and Engineering, 1997, (A225): 173-183.
    [79] Di Yang, Hans Conrad. Influence of an electric field on the plastic deformation of polycrystalline NaCl at elevated temperatures[J]. Acta.mater, 1998, 46(6): 1963-1968.
    [80] Di Yang, Hans Conrad. Influence of an electric field on grain growth in extruded NaCl[J]. Scripta Materialia, 1998, 38(9): 1443-1448.
    [81] Di Yang, Hans Conrad. Enhancement of the ductility of polycrysralline NaCl by an electric field[J]. Script materialia, 1997, 37(6): 767-771.
    [82] Di Yang, H. Conrad. Exploratory study into the effects of an electric field and of high current density electropulsing on the plastic deformation of TiAl. Intermetallics, 2001, (9): 943-947.
    [83]王俊,孙宝德,疏达,等.材料研究中的电脉冲处理技术[J].材料导报, 1999, 13(2): 19-21.
    [84]董晓华,李尧.金属的电致塑性和电致超塑性效应[J].湖北工学院学报, 1996, (16): 1-5.
    [85]吴元峰.低碳钢电阻点焊过程的数值模拟[D].合肥:合肥工业大学, 2005.
    [86]杨黎峰.基于有限元的电阻点焊形核全过程的反问题研究[D].吉林:吉林大学, 2002.
    [87] H. S. Cho, Y. J. Cho. A study of the thermal behavior in resistance spotwelds[J]. Welding Journal, 1989, 68(6): 236-244.
    [88] D. J. Browne, J. T. Evans, J. Wen. Computer simulation of resistance spot welding in aluminum: Part I[J]. Welding Journal, 1995, 74(10): 339-344.
    [89] W. Rice. Analytical investigation of temperature distribution duringresistance spot welding[J]. Welding Journal, 1967, 46(4): 175-186.
    [90] L. Xu, J. A. Khan. The finite element modeling of axisymmetric nugget development during resistance spot welding[J]. Proceedings of 5th International Conference on Trends in Welding Research, 1998: 616-621.
    [91] Hans Gould. Modeling primary dendrite arm spacings in resistance spot welds,Part I–modeling studies[J]. Welding Journal, 1994, 73(4): 67-74.
    [92] A. L. Tslaf. A thermo-physical criterion for the weldability of electric contactmaterial in a steady-state regime[J]. IEEE Tran, 1982, 5(1): 147-152.
    [93] C. L. Tsai, W. L. Dai. Analysis and development of a real-time controlmethodology in resistance spot welding[J]. Welding Journal, 1991, 70(12): 339~350.
    [94] Z. Han, J. E. Indacochea, J.Orozco et al. Resistance spot welding:a heat transfer study[J]. Welding Journal, 1989, 68(9): 363-371.
    [95] V. A. Sundik. Simulation of resistance spot welding steels using SPOTSIM software[J]. Welding international, 1999, 13(2): 141-146.
    [96] G. M. Oreper, J. Szekely, T. W. Eager. The role of transient convection in the melting and solidification in are weldpools[J]. Metallurgical Transactions B, 1986, (10): 735-744.
    [97]曹彪.点焊熔核形成过程的有限元模型[J].机械工程学报, 1995, (4): 99-104.
    [98] Z. Feng, J. E. Gould. An incrementally coupled electrical-thermal-mechanical model for resistance spot welding[J]. Proceedings of 5th InternationalConference on Trends in Welding Research, 1998: 599-604.
    [99] Wenqi Zhang, Niels Bay. Finite element modeling aided process design inresistance welding[J]. Computer Technology in Welding, 1998: 153-163.
    [100]吴丰顺.直流电阻对焊过程数值模拟[D].西安:西安交通大学, 1996.
    [101]章争荣,孙友松,邝卫华.电镦成形过程电热力耦合有限元模拟若干关键技术的处理[J].塑性工程学报, 2003, 10(3): 37-40.
    [102] Wenqi Zhang and Niels Bay. Finite element modeling aided proeess design resistance Welding[J], Computer Technology in Welding, 1998: 153-163.
    [103] N. Biba, A. Lishnij, A. Vlasov. Simulation of coupled problem of electric upsetting[J]. Journal of Materials Processing Technology, 1998, 80-81: 184-187.
    [104]陈勇.不锈钢三层板和非等厚板电阻点焊数值模拟[D].吉林:吉林工业大学, 2003.
    [105] D. J. Browne, J. T. Evans and J. Wen. Computer simulation of resistance spotwelding in aluminum: Part I[J]. Welding Journal, 1995, 74(10): 339-344.
    [106]彭颖红.金属塑性成形仿真技术[M].上海:上海交通大学出版社, 1999.
    [107]谢水生,王祖唐.金属塑性成形工步的有限元数值模拟[M].北京:冶金工业出版社, 1997.
    [108]吕丽萍.有限元法及其在锻压工程中的应用[M].西安:西北工业大学出版社, 1989.
    [109]汪大年.金属塑性成形原理[M].北京:机械工业出版社, 1982.
    [110] Lee CH, Kobayashi S. New solution to rigid plastic deformation problems using a matrix method [J]. Trans ASME J Engin, 1973, 95:865-878.
    [111]杨世铭,陶文铨.传热学[M].北京:高等教育出版社, 2001.
    [112]陈如欣,胡忠民.塑性有限元及其在金属成形中的应用[M].重庆:重庆大学出版社, 1989.
    [113]汪凌云,刘静安.计算金属成形力学及应用[M].重庆:重庆大学出版社, 1991.
    [114]肖景容,李尚健.塑性成形模拟理论[M].武汉:华中理工大学出版社, 1994.
    [115]石亦平,周玉蓉. ABAQUS有限元分析实例详解[M].北京:机械工业出版社, 2006.
    [116]庄茁壮. ABAQUS有限元软件6.4版入门指南[M].北京:清华大学出版社, 1997.
    [117]杨德.实验设计与分析[M].北京:中国农业出版社, 2002.
    [118] RONG Qi-en, CHENG Cui-wei. Latin hypercube sampling in ultimate strength reliability of ship hull grider[J]. Journal of Ship Mechanics, 2002, (3): 52-57.
    [119] Meckesheimer, M., Barton, R. R., Simpson, T. W., et al. Metamodeling of Combined Discrete/Continuous Responses[C]. AIAA, 2001, (39): 1950-1959.
    [120]石磊,王学仁,孙文爽.实验设计基础[M].重庆:重庆大学出版社, 1997.
    [121] Kurkova, K. Kolmogorov's Theorem. The Handbook of Brain Theory and Neural Networks, ed. M. A. Arbib, MIT Press, 1995: 501-502.
    [122] Ghaboussi, J. D. & Sidarta, E. New nested adaptive neural networks constitutive modeling[J], Computer and Geotechnics, l998, (1): 29-52.
    [123] Sin, R., Chen, W. & Simpson, T. W. Comparative Studies of Metamodeling Techniques under Multiple Modeling Criteria[J]. Journal of Structural and Multidisciplinary Optimization, 2001, (1): 1-13.
    [124]李敏强,寇纪淞,林丹等.遗传算法的基本原理与应用[M].北京:科学出版社, 2003.
    [125]潘正君,康立山,陈毓屏.演化计算[M].北京:清华大学出版社, 1998.
    [126] Srinivas, N. & Deb, K. Multi-objective function optimization using non-dominated sorting genetic algorithms[J]. Evolutionary Computation, 1995, (3): 221-248.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700