用户名: 密码: 验证码:
热带印度洋—太平洋增暖对北半球冬季气候年代际变化的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热带海表温度(SST)异常是全球许多区域气候异常的重要热力强迫。观测事实表明,1976/77年以来热带印度洋-热带太平洋表现为显著的年代际增暖,认识这种增暖现象对北半球冬季大气环流和气候年代际变化的影响及其机理,对于理解和预测气候年代际变化具有重要的科学意义。热带印-太海盆增暖对全球气候年代际变化如何影响仍然是一个没有很好解决的重要科学问题。本文通过利用ERA-40和NCEP再分析资料的诊断分析以及设计一系列大气环流模式(CCM3/NCAR)数值试验研究了热带印度洋-热带太平洋增暖对北半球冬季气候年代际变化的影响及其机制,其中重点分析了热带印太海盆增暖对北半球冬季不同区域大气环流年代际变化的影响、对青藏高原冬季积雪及东亚冬季降水的影响以及对北太平洋和北大西洋风暴轴年代际变化的影响等。得到主要结论如下:
     一、1980年代以来,热带印度洋-太平洋增暖对北大西洋、北太平洋、欧洲、东亚、北美地区冬季气候年代际变化影响的重要性明显不同。其中,热带印度洋增暖可能是导致北大西洋涛动(NAO)正位相的年代际异常的重要原因;而热带中东太平洋增暖可能是影响北太平洋地区PNA异常型的重要原因;热带太平洋增暖和中纬度北太平洋SST负异常密切相关,两者共同作用决定了北太平洋位势高度场PNA型异常。
     1976/77年北太平洋出现了一次显著的年代际突变现象,在海洋方面,热带中东太平洋海表面温度年代际异常增高,北太平洋中部异常变冷,北美沿岸和阿拉斯加湾SST增高;在大气方面,北太平洋500hPa位势高度场明显降低,阿留申低压异常加深、东移并偏南。伴随着太平洋海表温度上述年代际振荡,热带印度洋也表现为显著地年代际增暖。本文利用CCM3模式模拟了热带印度洋、太平洋海温历史变化对北半球大气环流影响,数值试验结果表明,热带印度洋、太平洋SST变化对北大西洋、北太平洋、欧洲、东亚、北美地区的冬季气候影响的重要性明显不同。热带印度洋增暖可能是影响北大西洋涛动(NAO)正位相异常的重要因子,而热带中东太平洋增暖不能导致NAO正位相的产生。由热带印度洋增暖引起一个纬向环绕中高纬度地区的位势高度场异常,在北大西洋地区为NAO正位相异常,同时该NAO正位相一直延伸至欧洲地区。热带中东太平洋增暖可能是影响北太平洋地区PNA异常型的重要原因,而独立的北太平洋SST年代际异常对北太平洋地区PNA影响并不显著。热带印度洋增温引起了北太平洋PNA负位相异常,同时伴随着东亚急流的减弱。对于东亚地区,热带印度洋、太平洋海温变化对该地区气候的年代际变化的影响同样重要。对于加拿大和美国,热带印度洋增暖引起的NAO正位相以及由热带太平洋增暖引起的PNA正位相共同影响着该地区的环流形式。同时,北半球冬季大气环流场的异常与低层水平风场和高空急流以及降水引起的潜热释放异常关系密切。
     二、1980年代以来热带印度洋SST增加有利于青藏高原东南侧的水汽输送及该地区印缅槽的加深,是该时段高原雪深增加的重要影响因子;同时,热带印度洋SST增加有利于同时期中国南方地区冬季降水的增加。
     1970s末到1990s青藏高原冬季积雪增加,同时期中国南方地区冬季降水增加。基于热带印太海盆SST年代际变化的观测事实,利用CCM3/NCAR模式模拟研究了1950-1999年间热带印度洋-热带太平洋海域SST历史变化对青藏高原冬季雪深以及中国南方地区冬季降水的影响。结果表明,当热带印度洋海温增加时,孟加拉湾的南风异常加强,印缅槽加深。加深的印缅槽有利于北方冷空气南下,来自青藏高原南部的南风异常有利于带来更多的水汽供应。此外,东亚地区加强的上升运动也有利于青藏高原东部强降雪的产生,以及中国南方地区冬季降水的增加。因此,热带印度洋增暖可能是1980s以后青藏高原冬季雪深增加的一个重要原因。与热带印度洋SST增暖相比,热带西太平洋SST不利于青藏高原冬季积雪及中国南方冬季降水增加。
     三、热带印度洋-西太平洋(IWP)增暖可能是1980s以来北大西洋风暴轴年代际异常的一个重要原因。
     利用ERA40再分析资料分析表明:北大西洋风暴轴年代际变化表现为风暴轴气候态轴线以北强度加强,以南强度减弱。给定一个理想化的热带印度洋-西太平洋(IWP)年代际异常,利用HadAM3/UKMO和GAMIL/IAP两个大气环流模式的模拟试验表明,IWP增暖引起北大西洋地区位势高度场出现NAO正位相异常,这样的位势高度场异常加强了急流轴北部的西风异常,以及低层大气斜压性的加强,因此该地区的天气尺度活动更加活跃。然而对于北太平洋风暴轴的年代际异常,敏感试验的结果与再分析资料结果相反。IWP增暖引起一个纬向环绕中高纬度地区的位势高度场异常,表现在北太平洋地区为正的位势高度场异常,这与再分析资料中北太平洋地区负的位势高度场异常相反。IWP增暖后急流北部加强南部减弱,伴随的低层大气斜压增长率也是北部加强南部减弱,因此天气尺度活动北部活跃加强。而再分析资料中北太平洋地区风暴轴的年代际变化表现为风暴轴气候态轴线以南强度加强,北部强度减弱。因此IWP增暖对北太平洋风暴轴年代际异常起着相反的作用。
The sea surface temperature (SST) anomaly in the tropical oceans is an important thermal force that can affect climate anomalies over many regions of globe. The observational analysis suggests that the SST of the tropical Indian-Pacific oceans showed a pronounced decadal warming since the late1970s. Understanding the impact and mechanism of the warming on decadal change of Northern Hemisphere (NH) winter climate is of great scientific significance to understand and forecast decadal climate change. The impact of tropical Indian-Pacific oceans warming on decadal change of global climte change is still an open question. In this study, with the ERA-40and NCEP reanalysis data and a series of atmospheric general circulation model (CCM3/NCAR) numerical simulations, some key issues associated with the impact and mechanism of the Indian-Pacific ocean warming on decadal change of NH winter climate are investigated, in which the impact on decadal change of winter atmospheric general circulation in different regions of NH, the winter snow depth over Tibetan Plateau (TP) and the East Asian winter precipitation, and NH storm tracks is particularly emphasized. The main conclusions are as follows:
     (1) Since the1980s, the impacts of the tropical Indian-Pacific ocean warming on the decadal change of winter climate over northern Atlantic, northern Pacific, Europe, East Asia, and northern America are quite different. The tropical Indian Ocean (TIO) warming is the principal contributor to a decadal positive-phase North Atlantic oscillation (NAO) anomaly, while the tropical central-eastern Pacific (TCEP) warming is concurrent with the anomalies associated with the Pacific-North American (PNA) pattern. The tropical Pacific warming is closely associated with the northern Pacific decadal cooling, and their interaction determines the decadal anomaly of the PNA pattern.
     The Pacific ocean-atmosphere system coherently experienced a significant abrupt change around1976/77, which caused a warming in the tropical central-to-eastern Pacific, and a cooling in the midlatitude North Pacific, together with a strengthened Aleutian low with its position shifting southeastward, and a PNA pattern in its positive phase. Accompanied with the Pacific Decadal Oscillation (PDO), the TIO also showed a significant decadal warming. A series of atmospheric general circulation model (CCM3) experiments with prescribed SST are conducted to examine the impact of the Indian-Pacific SST change on the northern Hemisphere wintertime atmospheric circulation. The results show that the TIO SST and the tropical Pacific SST act on the decadal change of northern Atlantic, northern Pacific, Europe, East Asia, and northern America winter climate quite differently. The TIO warming is the principal contributor to a decadal positive-phase NAO anomaly over the North Atlantic, but the TCEP warming can not induce the NAO positive phase. The TIO warming gives rise to an anticyclonic anomaly over the midlatitude North Pacific and a positive-phase NAO anomaly over the North Atlantic that extends to the Europe. The TCEP warming is a key factor to cause the decadal PNA pattern, while the impact of independent northern Pacific cooling on PNA is not remarkable. The TIO warming causes a negative PNA pattern, along with a weakened East Asian jet. To East Asia, both the impact of TIO and TCEP SST change are important. The NAO positive phase caused by TIO warming and PNA positive pattern caused by Pacific SST change have great effect on decadal change of Canadian and American winter climate. Such a consistent effect on the Northern Hemisphere atmospheric circulations is closely associated with the changes in the high-level jet stream and the diabatic heating caused by the precipitation.
     (2) The tropical Indian Ocean warming can cause more moisture supply over southeast Tibetan Plateau (TP) and a deeper India-Burma trough, therefore leading to a significant decadal increase of snow depth over eastern Tibetan Plateau during the1980s-1990s. The decadal TIO warming is in favor of more winter precipitation in South China.
     The snow depth over eastern TP from the late1970s to the end of the1990s shows a pronounced increase, while the amount of winter precipitation over East Asia increased in the corresponding period. Uncoupled atmospheric general circulation model (CCM3) experiments with prescribed SST are conducted to examine the impact of different tropical oceanic basins (the Indian Ocean versus the tropical Pacific Ocean) on the wintertime snow depth and precipitation variability over TP as well as in South China. The results show that the TIO warming played a significant role in the increase of the snow depth over eastern TP from the1980s to the end of the1990s, and also has contributed to the increase of wintertime rainfall in the South China during the same period. Such an impact of TIO warming is in contrast to the impact of the tropical western Pacific warming, and is also different from the tropical central and eastern Pacific warming. It is found that the increased winter snow depth over the eastern TP after the mid-1970s is concurrent with a deeper India-Burma trough, that is beneficial to more cold air flowing southward to TP due to the warming of TIO. Additional factors for the excessive snowfall depth include more moisture supply associated with the intensification of the southerly flow over the Bay of Bengal and an increase of humidity over the Indian Ocean.
     (3) The Indian-western Pacific Ocean (IWP) warming is a key factor to cause decadal northward shift of the North Atlantic storm track since the1980s.
     The ERA-40reanalysis data shows that an increased transient eddy (TE) activity north of the climatological north Atlantic storm track axis but a reduced TE activity south of it. With40-yr integration output of two atmospheric general circulation models (GAMIL/IAP and HadAM3/UKMO) forced with identical prescribed seasonally-varying sea surface temperature, this study examines the effect of the observed IWP warming on the Northern Hemisphere storm tracks (NHSTs). Both models indicate that the observed IWP warming tends to cause both the North Pacific storm track (NPST) and the North Atlantic storm track (NAST) to move northward. The IWP warming can excite a wavelike circum-global teleconnection in the geopotential height that gives rise to an anticyclonic anomaly over the midlatitude North Pacific and a positive-phase NAO anomaly over the North Atlantic. These geopotential height anomalies tend to enhance upper-level zonal westerly winds north of the climatological jet axes and increase low-level baroclinicity and eddy growth rates, thus favoring transient eddy more active north of the climatological storm track axes, responsible for the northward shift of the both storm tracks. The IWP warming-induced northward shift of the NAST is quite similar to the observed, suggesting that the IWP warming can be a key factor to cause decadal northward shift of the NAST since the1980s. However, the IWP warming-induced northward shift of the NPST is completely opposite to the observed, implying that the observed southward shift of the NPST since the1980s would be primarily attributed to other reasons, although the IWP warming can have a cancelling effect against those reasons.
引文
Bader, J., and M. Latif,2003:The impact of decadal-scale Indian Ocean sea surface temperature anomalies on Sahelian rainfall and the North Atlantic Oscillation. Geophys. Res. Lett.,30(22) 2169, doi:10.1029/2003GL018426.
    Bader, J., and M. Latif,2005:North Atlantic Osciallation response to anomalous Indian Ocean SST in a coupled GCM. J. Clim.,18:5382-5389.
    Barnett, T. P., L. Dumenil, M. Latif, et al.,1989:The effect of Eurasian snow cover on regional and global climate variations. J. Atmos. Sci.,46(5):661-685.
    Blanford, H. F.1884:On the connection of the Himalayan snowfall with dry wind and seasons of drought in India. Proc. Roy. Soc.,37:3-22.
    Bjerknes, J.,1966:Tellus,18:820-829.
    Chan, E. K. M.,2001:GCM and observational diagnoses of the seasonal and interannual variations of the Pacific storm track during the cool season. J. Atmos. Sci.,58:1784-1800.
    Chang, E. K. M., S. Lee, and K. L. Swanson,2002:Storm track dynamics. J. Clim., 15:2163-2183.
    Chang, E. K. M., and Y. F. Fu,2002:Interdecadal variations in Northern Hemisphere winter storm track intensity. J. Clim.,15:642-658.
    Chang, C. P., Y. S. Zhang, and T. Li,2000a:Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part Ⅰ:Roles of the subtropical ridge. J. Clim.,13,4310-4325.
    Chang, C. P., and P. Zurita-Gotor,2007:Simulating the seasonal cycle of the Northern Hemisphere storm tracks using idealized nonlinear storm-track models. J. Atmo.s Sci.,64:2442-2461.
    Charney, J. G., and J. Shukla,1981:Predictability of Monsoons, Monsoon Dynamics London. Cambridge University Press,99-109.
    Deser, C., and M. L. Blackmon,1995:On the relationship between tropical and North Pacific sea surface temperature variations. J. Clim.,8,1677-1680.
    Deser C, and A. S. Phillips,2006:Simulation of the 1976/1977 climate transition over the North Pacific:Sensitivity to tropical forcing. J. Clim.,19:6170-6180.
    Falarz, M.,2002:Long-term variability in reconstructed and observed snow cover over the last 100 winter seasons in Cracow and Zakopane (southern Poland). Clim. Res.,19(3),247-256.
    Flohn, H.,1957:Large-scale aspects of the summer monsoon in the South and East Asia., J. Meteor. Soc. Japan,75,180-186.
    Geng, Q. Z., and M. Sugi,2001:Variability of the North Atlantic Cyclone Activity in Winter Analyzed from NCEP-NCAR Reanalysis Data. J. Clim.,14:3863-3873.
    Gong, D.Y., and C. H. Ho,2002:Shift in the summer rainfall over the Yangtze River valley in the late 1970s. Geophys. Res. Lett.,29, doi:10.1029/2001GL014523.
    Gu, D. F., and S. G. H. Philander,1997:Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics. Science,275,805-807.
    Gulev, S. K., O. Zolina, and S. Grigoriev,2001:Extratropical cyclone variability in the Northern Hemisphere winter from the NCEP/NCAR reanalysis data. Clim. Dyn.,17:795-809.
    Held, I. M.,1989:Transients and extratropical response to El Nino. J. Atmos. Sci., 38(2):2532-2539.
    Hoerling, M. P., J. W. Hurrell, and T. Xu,2001:Tropical origins for recent North Atlantic climate change. Science,292:90-92.
    Hoerling, M. P., T. Xu, G. T. Bates, and A. Phillips,2004:Twentieth century North Atlantic climate change. Part 2:Understangding the effect of Indian Ocean warming. Clim. Dyn.,23,391-405.
    Huang, R. H. and Y. F. Wu,1989:The influence of ENSO on the summer climate change in China and its mechanism. Adv. Atoms. Sci.,6,21-32.
    Hurrell, J. W.,1995:Decadal trends in the North Atlantic Oscillation and relationships to regional temperature and precipitation. Science,292:90-92.
    Hurrell, J. W., M. P. Horeling, A. Phillips, and T. Xu,2004:Twentieth century North Atlantic climate change. Part 1:Assessing determinism. Clim. Dyn.,23,371-389.
    Huang, R. H. and F. Y. Sun,1992:Impacts of the tropical western Pacific on the East Asian summer monsoon. J. Meteor. Soc., Japan,70,243-256.
    Hyvarinen, V.,2003:Trends and characteristics of hydrological time series in Finland. Nord. Hydrol,34(1-2),71-90.
    Inatsu, M., H. Mukougawa, and S. P. Xie,2003:Atmospheric response to zonal variations in midlatitude SST:transient and stationary eddies and their feedback. J. Clim.,16:3314-3329.
    Jin, F. F., M. Kimoto, and X. C. Wang,2001:A model of decadal ocean2atmosphere interaction in the North Pacific basin. Geophys. Res. Lett.,28,1531-1534.
    Khandekar, M. L.1991:Eurasian snow cover, Indian monsoon and EINino Southern Oscillation——A synthesis. Atmosphere Ocean,29 (4):636-647.
    Keshavamurty, R. N.,1982:Response of the atmosphere to sea surface temperature anomalies over the equatorial Pacific and the teleconnections of the Southern Oscillation. J. Atmos. Sci.,39:1241-1259.
    King, M. P., K. Fred, M. Franco,2010:The Roles of External Forcings and Internal Variabilities in the Northern Hemisphere Atmospheric Circulation Change from the 1960s to the 1990s. J. Clim.,23:6200-6220.
    Kleeman, R., J. P. McCreary, and B. A. Klinger,1999:A mechanism for generating ENSO decadal variability. Geophys. Res. Lett,26,1743-1746.
    Latif, M., and T. P. Barnett,1996:Decadal climate variability over the North Pacific and North America:dynamics and predictability. J. Clim.,9,2407-2423.
    Lau, K. M. and H. Y. Weng,2001:Coherent modes of global SST and summer rainfall over China:An assessment of the regional impacts of the 1997-98 EINino. J. Clim.,14,1294-1308.
    Lau, N. C., and B. Wang,2006:Interaction between the Asian Monsoon and EINino/Southern Oscillation. In:The Asian Monsoon. Ed. by Bin Wang, Praxis Publishing Ltd., Chichester, UK,479-512.
    Li, C., and M. Yanai,1996:The onset and international variability of the Asian summer monsoon in relation to land-sea thermal contrast. J. Clim.,9,358-375.
    Lu, R. Y,2001:Interannual variability of the summertime western North Pacific subtropical high and its relation to atmospheric convection over the warm pool. J. Meteor. Soc., Japan,79,771-783.
    Lee, S. S., J. Y. Lee, B. Wang, and co-authors,2012:Interdecadal changes in the storm track activity over the North Pacific and North Atlantic. Clim. Dyn., doi: 10.1007/s00382-011-1188-9.
    Li, H., A. Dai, T. J. Zhou, and J. Lu,2010:Responses of East Asian summer monsoon to historical SST and atmospheric forcing during 1950-2000. Clim. Dyn., 34:501-514.
    Lu, R. Y. and B. Dong,2001:Western extension of North Pacific subtropical high in summer. J. Meteor. Soc., Japan,79,1229-1241.
    Luo, H., and M. Yanai,1983:The large-scale circulation and heat sources over the Tibetan Plateau and surrounding areas during the early summer of 1979. Part I: Precipitation and kinematic analyses. Mon. Wea. Rev., 111,922-944.
    Lysne, J., P. Chang, and B. Giese,1997:Impact of the extratropical Pacific on equatorial variability. Geophys. Res. Lett.,24,2589-2592.
    Magnusdottir, G., C. Deser, and R. Saravanan,2004:the effect of North Atlantic SST and sea ice anomalies on the winter circulation in CCM3:Part I:Main feature and storm track characteristics of the response. J. Clim.,17(5):857-876.
    Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis,1997:A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc.,78,1069-1079.
    McCabe, G. J., Clark, M. P., and M. C. Sereze,2001:Trends in Northern Hemisphere surface cyclone frequency and intensity. J. Clim.,14:2763-2768.
    Meehl, G. A., L. Goddard, J. Murrphy, et al.,2009:Decadal prediction. BAMS, 1467-1485. DOI:10.1175/2009BAMS2778.1.
    Mesquita, M. D. S., G. K. Nils, S. Asgeir, E. A. David,2008:Climatological properties of summertime extra-tropical storm tracks in the Northern Hemisphere. Tellus,60A:557-569.
    Nakamura, H.,1992:Midwinter suppression of baroclinic wave activity in the Pacific. J. Atmos. Sci.,49:1629-1642.
    Nakamura, H., T. Izumi, and T. Sampe,2002:Interannual and decadal modulations recently observed in the Pacific storm track activity and East Asian winter monsoon. J. Clim.,15:1855-1874.
    Nitta, T.,1987:Convection activities in the tropical western Pacific and their impact on the Northern Hemisphere circulation, J. Meteor. Soc, Japan,67,375-383
    Nitta, T., and S. Yamada,1989:Recent warming of tropical sea surface temperature and its relationship to the Northern Hemisphere circulation. J. Meteor. Soc, Japan, 67,375-383.
    Nitta, T., and Z. Hu,1996:Summer climate variability in China and its association with 500hpa height and tropical convection. J. Clim.,74,425-445.
    Norris, J. R.,2000:Interannual and interdecadal variability in the storm track, cloudiness, and sea surface temperature over the summertime North Pacific. J. Clim.,13:422-430.
    Orlanski, I.,2005:A new look at the Pacific storm track variability:sensitivity to tropical SSTs and to upstream seeding. J. Clim.,18:1367-1390.
    Paciorek, J. C., J. S. Risbey, V. Ventura, and R. D. Rosen,2002:Multiple indices of Northern Hemisphere cyclone activity, winters 1949-99.J. Clim.,15:1573-1590.
    Qin, D., S. Liu, and P. Li,2006:Snow cover distribution, variability, and response to climate change in Western China. J. Clim.,19,1820-1833.
    Quinn, W. H. and V. T. Neal,1984:Recent climate change and the 1982-1983 El Nino. Proc. Eighth Annual Climate Diagnostic Workshop, Downsville,1984,148-154.
    Raible, C.C., and R. Blender,2004:Northern Hemisphere midlatitude cyclone variability in GCM simulations with different ocean representations. Clim. Dyn., 22:239-248.
    Ren, X.J., Y. C. Zhang, and Y. Xiang,2008:Connections between wintertime jet stream variability, oceanic surface heating, and transient eddy activity in the North Pacific. J. Geophys. Res.,113, D21119, doi:10.1029/2007JD009464.
    Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata,1999:A dipole mode in the tropical Indian Ocean. Nature,401:360-363.
    Scherrer, S.C., C. Appenzeller, and M. Laternser,2004:Trends in Swiss alpine snow days-the role of local and large scale climate variability. Geophys. Res. Lett.,31, L13215, doi:10.1029/2004GL020255.
    Simmonds, I., and K. Keay,2000:Variability of Southern Hemisphere extratropical cyclone behavior 1958-97.J. Clim.,13:550-561.
    Selten, F. M., G W. Branstator, H. A. Dijkstra, and M. Kliphuis,2004:Tropical origins for recent and future Northern Hemisphere climate change. Geophys. Res. Lett.,31, L21205, doi:10.1029/2004GL020739.
    Tao, S. Y, and Y. H. Ding,1981:Observational evidence of the influence of the Qinghai-Xizang (Tibet) Plateau on the Occurrence of heavy rain and severe convective storms in China. Bull. Amer. Meteor. Soc.,62(1),23-30.
    Trenberth, K. E.,1990:Recent observed interdecadal climate changes in the Northern Hemisphere. Bull. Amer. Meteor. Soc.,71,988-993.
    Trenberth, K. E., and J. W. Hurrell,1994:Decadal atmosphere-ocean variations in the Pacific. Clim. Dyn.,9,303-319.
    Ulbrich, U., G C. Leckebusch, and J. G. Pinto,2009:Extra-tropical cyclones in the present and future climate:a review. Theor. Appl. Clim.,96:117-131.
    Vojtek, M., P. Fasko, and P. St'astny,2003:Some selected snow climate trends in Slovakia with respect to altitude. Acta Meteorologica Universitatis Comenianae, 32,17-27.
    Wallace, J. M., and M. L. Blackmon,1983:Observation of low-frequency atmosphere variability large-scale dynamical processes in the atmosphere. Ed by B. J. Hoskins and R. Pearce. Academic press.55-94.
    Webster, P. J., A. Moore, J. Loschnig, and M. Leban,1999:Coupled ocean-atmosphere dynamics in the Indian Ocean during 1997-98. Nature,401: 356-360.
    Wu, G. X., and Y. Zhang,1998:Tibetan Plateau forcing and the timing of the monsoon onset over South Asia and the South China Sea. Mon. Wea. Rev.,126, 913-927.
    Yeh, D. H.,1981:Some characteristics of the summer circulation over the Qinghai-Xizang (Tibet) Plateau and its neighborhood. Bull. Amer. Meteor. Soc.,62, 14-19.
    Zhang, X., J. Walsh, J. Zhang, U. Bhatt, and M. Ikeda,2004:Climatology and interannual variability of arctic cyclone activity:1948-2002. J.Clim.,17: 2300-2317.
    Zhang, Y, J. M. Wallace, and D. S. Battisti,1997:ENSO-like interdecadal variability: 1900-93. J. Clim.,10,1004-1020.
    Zhang, Y. S., T. Li, B. Wang,2004:Decadal Change of the Spring Snow Depth over the Tibetan Plateau:The Associated Circulation and Influence on the East Asian Summer Monsoon. J. Clim.,17,2780-2793.
    Zhou, T.J., R. C. Yu, H. M. Li, and B. Wang,2008:Ocean forcing to changes in global monsoon precipitation over the recent half century. J. Clim.,21:3833-3852.
    Zhou, T. J., R. C. Yu, J. Zhang, H. Drange, C. Cassou, C. Deser, D. L. R. Hodson, E. Sanchez-Gomez, J. Li, N. Keenlyside, X. G. Xin, and Y. Okumura,2009a:Why the western Pacific subtropical high has extended westward since the late 1970s. J. Clim.,22:2199-2215.
    Zhao, S. S., T. J. Zhou, X. Q. Yang, et al.,2011:Interdecadal change of the relationship between the tropical Indian Ocean dipole mode and the summer climate anomaly in China. Acta. Meteorologica Sinica.,25(2):129-141.
    Zhou, T. J. and R. C. Yu,2005:Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China. J. Geophysi. Res.,110, D08104, doi:10.1029/2004JD005413.
    肖子牛,李崇银,1992,大气对外强迫低频遥响应的数值模拟,I:对赤道懂太平洋SSTA的响应,大气科学,16:707-717.
    杨修群,朱益民,谢倩,任雪娟,徐桂玉,2004:太平洋年代际振荡的研究进展, 大气科学,28(6):979-992.
    晏红明、肖子牛,2000, 印度洋海温异常对亚洲季风区天气气候影响的数值模拟研究,热带气象学报,16(1),18-27.
    邓兴秀,孙照渤,1994,北半球风暴轴的时间演变特征,南京气象学院院报,17(2):165-170.
    朱伟军,孙照渤,2000,冬季北太平洋风暴轴的年际变化及其与500hpa高度以及热带北太平洋海温的联系,气象学报,58(3):309-320.
    刘青春,秦宁生,李栋梁等,2005,印度洋海温的偶极振荡与高原汛期降水和温度的关系,高原气象,24(3):350-356.
    徐兴奎,陈红,周广庆,2005,青藏高原地表特征时空分布,气候与环境研究 10(3):409—421.
    陈栋,陈忠明,张驹等,2006,利用NSIDC雪盖资料和ERA-40资料对比分析青藏高原积雪的时空分布特征,四川气象26(3):4—7.
    薛峰,2008,强Lanina背景下的东亚夏季风异常与1989年和1999年中国夏季降水的对比分析,大气科学,32:423-431.
    肖子牛,晏红明,李崇银,2002,印度洋地区异常海温的偶极振荡与中国降水及温度的关系,热带气象学报,18(4):335-341.
    周长艳,李跃清,李薇等,2005,青藏高原东部及临近地区水汽输送的气候特征,高原气象,24(6):880-888.
    柯长青,李培基,1998,用EOF方法研究青藏高原积雪深度分布与变化,冰川冻土,20(1),64-67.
    韦志刚,2001,青藏高原积雪异常的持续性研究,冰川冻土,23(3):225-230.
    高文良,刘宣飞,管兆勇,2002,青藏高原积雪时空分布变化特征的对比分析,四川气象,22(3):8-11.
    韦志刚,黄荣辉,陈文,董文杰,2002,青藏高原地面站积雪的空间分布和年代际变化特征,大气科学26(4),496-508.
    朱玉祥,丁一汇,2007,青藏高原积雪对气候影响的研究进展和问题,气象科技,35(1):1-8.
    陈烈庭,闫志新,1981,青藏高原冬春季异常雪盖影响初夏季风的统计分析,中国长期水文气象预报文集(II),北京:水利电力出版社,133-141.
    柯长青,李培基,1998,青藏高原积雪分布与变化特征,地理学报,53(3):209-215.
    李万彪、周春平,1999,热带西太平洋暖池对中国降水和沿海自然灾害的影响,北京大学学报,35(5):674-681.
    黄荣辉,孙凤英,1994,热带西太平洋暖池的热状态及其上空的对流活动对东亚夏季异常的影响,大气科学,18(2):141-151.
    黄荣辉,孙凤英,1994,热带西太平洋暖池上空对流活动对东亚夏季风季节内变化的影响,大气科学,18(4):456-465.
    叶笃正,高由禧,1979,青藏高原气象学,北京:科学出版社,278.
    吴国雄,张永生,1998,青藏高原的热力和机械强迫作用以及亚洲季风的爆发,Ⅰ:爆发地点,大气科学,22:825-837.
    穆明权,李崇银,2000,大气环流的年代际变化,Ⅰ:观测资料的分析,气候与环境研究,5(3):233-213.
    李崇银,穆明权,毕训强,2000,大气环流的年代际变化,Ⅱ: GCM数值模拟研究,大气科学,24(6):739-748.
    Saji, N.H., B.N. Goswami, P.N. Vinayachandran, and T. Yamagata,1999:A dipole mode in the tropical Indian Ocean. Nature,401:360-363.
    Rasmusson, E.M., and T.H. Carpenter,1982:Variations in tropical sea surface temperature and surface wind fields associated wit h t he Sout h ern Oscillation/E1 Ni.no[J]. Mon Wea Rev.,110 (5):354-384.
    黄荣辉,1990:ENSO及热带海气相互作用动力学研究的新进展,大气科学,14(2):234-242.
    周天军,宇如聪,李微等,2001:20世纪印度洋气候变率特征,气象学报,59(3):831-840.
    殷永红,史历,倪允琪,2001:近20年来热带印度洋与热带太平洋海气系统相互作用特征的诊断研究,大气科学,25(3):355-371.
    赵珊珊,杨修群,2003,中等复杂程度全球热带海洋模式模拟的热带印度洋海表温度变率,南京大学学报,39(3):358-369.
    谭言科,张人和,何金海,2003:热带印度洋海温的年际异常及其海气耦合特征,大气科学,27(1):53-66.
    周天军,俞永强,宇如聪等,2004:印度洋对ENSO事件的响应:观测和模拟,大气科学,28(3):357-373.
    孙旭光,杨修群,2005:EL Nino演变不同阶段东亚大气环流年际异常型的数值模拟,地球物理学报,48(3):501-510.
    杨修群,朱益民,谢倩,任雪娟,徐桂玉,2004:太平洋年代际振荡的研究进展,大气科学,28(6):979-992.
    倪允琪,邹力,刘颖,1998:ENSO和西太平洋暖池对我国气候影响的诊断分析研究,大气科学,22(4):481-490.
    巢纪平,2002:ENSO-热带海洋和大气中和谐的海气相互作用现象,海洋科学进展,20(3)1-8.
    李崇银,穆明权,1999:厄尔尼诺的发生与赤道西太平洋暖池次表层海温异常,大气科学,23:513-521.
    Bader, J. and M. Latif,2003:The impact of decadal-scale Indian Ocean sea surface temperature anomalies on Sahelian rainfall and the North Atlantic Oscillation, Geophys.Res.Lett.,30(22),2169,doi:10.1029/2003GL018426.
    Bader, J. and M. Latif,2005:North Atlantic oscillation response to anomalous Indian Ocean SST in a coupled GCM, J. Climate,18,5382-5389.
    Branstator, G.,2002:Circumglobal teleconnections, the jet stream waveguide, and the North Atlantic Oscillation. J. Climate,15,1893-1910.
    Hoerling, M. P., J. W. Hurrell, and T. Y. Xu,2001:Tropical origins for recent North Atlantic climate change, Science,292,90-92.
    Hoerling, M. P., T. Xu, G T. Bates, and A. Phillips,2004:Twentieth century North Atlantic climate change.Part 2:understanding the effect of Indian Ocean warming. Climate Dyn.,23,391-405.
    Hurrell, J. W.,1995:Decadal trends in the North Atlantic Oscillation:Regional temperatures and precipitation, Science,269,676-679.
    Hurrell, J. W., Y. Kushnir, G Ottersen, and M. Visbeck (Eds.),2003:The North Atlantic Oscillation:Climatic significance and environmental impact,279 pp., American Geophysical Union, Washington DC.
    Hurrell, J. W., M. P. Hoerling, A. Phillips, and T. Xu,2004:Twentieth century North Atlantic climate change. Part 1:Assessing determinism. Climate Dyn.,23, 371-389.
    Hoskins, B. J., and D. J. Karoly,1981:The steady and linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci,1981,38: 117921196.
    Krishnamurti, T. N.1961:The subtropical jet stream of winter. J. Meteor., 18:172-191.
    Kushnr, Y., et al.,2002:Atmospheric GCM response to extratropical SST anomalies: Synthesis and evalution. J. Climate,15:2233-2256.
    Latif, M., D. Dommenget, M. Dima, and A. Grotzner,1999:The role of Indian Ocean sea surface temperature in forcing east African rainfall anomalies during December-January 1997/98, J. Climate,12,3497-3504.
    Latif, M., K. Arpe, and E. Roeckner,2000:Oceanic Control of North Atlantic Sea Level Pressure Variability in Winter, Geophysical Res. Letters,27,727-730.
    Lu, J., R. J. Greatbatch, and A. Peterson,2004:Trend in Northern Hemisphere winter atmospheric circulation during the last half of the twentieth century. J. Climate,17, 3745-3760.
    Marshall J, Kushnir Y, Battisti D, Chang P, Czaja A, Dickson R, Hurrell J, McCartney M, Saravanan R, Visbeck M,2001:North Atlantic climate variability:phenomena, impacts and mechanisms. IntJ. Clim.,21:1863-1898.
    Martyn, P. C., and M. C. Serreze.2000:Effect of variations in East Asian snow cover on modulating atmospheric circulation over the North Pacific ocean. J. Climate, 13:3700-3710.
    Mehta V, Suarez M, Manganello JV, Delworth TD,2000:Oceanic influence on the North Atlantic Oscillation and associated Northern Hemisphere climate variations: 1959-1993. Geophys Res Lett.,21:121-124
    Peng S, Robinson WA, Li S (2003) Mechanisms for the NAO responses to the North Atlantic SST tripole. J. Clim.,15:1987-2004
    Robertson AW, Mechoso CR, Kim YJ,2000:The influence of Atlantic sea surface temperature anomalies on the North Atlantic Oscillation. J. Clim.,13:122-138
    Rowell, D. P.,2001:Teleconnections between the tropical Pacific and the Sahel, Quart. J. Roy. Meteor. Soc.,127,1683-1706.
    Rowell, D. P.,2003:The impact of Mediterranean SSTs on the Sahelian rainfall season, J. Climate,16,849-862.
    Rodwell, M. J., D. P. Rowell, and C. K. Folland,1999:Oceanic forcing of the wintertime North Atlantic Oscillation and European climate. Nature,398, 320-323.
    Sutton RT, Hodson DLR,2003:The influence of the ocean on North Atlantic climate variability 1871-1999. J. Clim.,16:3296-3313
    Sutton RT, Norton WA, Jewson SP,2001:The North Atlantic Oscillation-what role for the ocean? Atmos. Sci. Lett., doi:10.1006/asle.2000.0018
    Trenberth, K. E., G W. Branstator, D. Karoly, A. Kumar, N. C. Lau, and C. Ropelewski,1998:Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res.,103 (C7),14291-14324.
    陈烈庭,东太平洋赤道地区海水温度异常对热带大气环流及我国汛期降水的影响.
    龚道溢,周天军,王绍武,2001:北大西洋涛动变率研究进展.地球科学进展,16(3):413-420.
    吴国雄,王军,刘新等,2005:欧亚地形对不同季节大气环流影响的数值模拟研究,气象学报,63(5):603-612.
    杨修群,朱益民,谢倩,任雪娟,徐桂玉,2004:太平洋年代际振荡的研究进展,大气科学,28(6),979-992.
    Alexander, M., J. Yin, G. Branstator, A. Capotondi, C. Cassou, R. Cullather, Y. Kwon, J. Norriss, J. Scott, and I. Wainer (2006), Extratropical atmosphere-ocean variability in CCSM3, J. Clim.,19,2496-2525.
    Bader, J., and M. Latif (2003), The impact of decadal-scale Indian Ocean sea surface temperature anomalies on Sahelian rainfall and the North Atlantic Oscillation, Geophys. Res. Lett.,30(22),2169, doi:10.1029/2003GL018426
    Bamzai, A. S., and J. Shukla (1999), Relation between Eurasian snow cover, snow depth, and the Indian summer monsoon:an observational Study, J. Clim.,12, 3117-3132.
    Barnett, T. P., L. Dumenil, V. Schlese, E. Eoeckner, and M. Latif (1989), The effect of Eurasian snow cover on regional and global climate variations, J. Atmos. Sci.,46, 661-685.
    Blanford, H. F. (1884), On the connexion of Himalayan snowfall and seasons of drought in India, Proc. Roy. Soc. London,37,3-22.
    Chang, E.-C., S.-W. Yeh, S.-Y. Hong, and R. Wu (2013), Sensitivity of summer precipitation to tropical sea surface temperatures over East Asia in the GRIMs GMP, Geophys. Res. Lett.,40,1824-1831, doi:10.1002/grl.50389
    Chen, L., and R. Wu (2000), Interannual and decadal variations of snow cover over Qinghai-Xizang Plateau and their relationships to summer monsoon rainfall in China, Adv. Atmos. Sci.,17,18-30.
    Ding, Y. H. (1992), Effects of the Qinghai-Xizang (Tibetan) Plateau on the circulation features over the Plateau and its surrounding areas, Adv. Atmos. Sci.,9, 112-130.
    Dey, B., and O. S. R. U. Bhanukumar (1982), An apparent relationship between Eurasian spring snow cover and the advance period of the Indian summer monsoon, J. Appl. Meteor.,21,1929-1932.
    Dey, B., and O. S. R. U. Bhanukumar (1983), Himalayan winter snow cover area and summer monsoon rainfall over India, J. Geophys. Res.,88,5471-5474, doi: 10.1029/JC088iC09p05471.
    Foster, J., M. Owe, and A. Rango (1983), Snow cover and temperature relationships in North America and Eurasia, J. Clim. Appl. Meteor.,22,460-469.
    Gong, D. Y., and C. H. Ho (2002), Shift in the summer rainfall over the Yangtze River valley in the late 1970s, Geophys. Res. Lett.,29(10),1436, doi: 10.1029/2001GL014523.
    Hack, J. J., J. T. Kiehl, and J. W. Hurrell (1998), The hydrologic and thermodynamic characteristics of the NCAR CCM3, J. Clim.,11,1179-1206.
    Hahn, D. G., and J. Shukla (1976), An apparent relationship between the Eurasian snow cover and Indian monsoon rainfall, J. Atmos. Sci.,33,2461-2462.
    Hoskins, B. J., and D. J. Karoly (1981), The steady linear response of a shpherical atmosphere to thermal and orographic forcing, J. Atmos. Sci.,38,1179-1196.
    Hu, Z. Z., S. Yang, and R. G. Wu (2003), Long-term climate variations in China and global warming signals, J. Geophys. Res.,108(D19),4614, doi: 10.1029/2003 JD003651.
    Hurrell, J. W., J. J. Hack, B. A. Boville, D. L. Williamson, and J. T. Kiehl (1998), The dynamical simulation of the NCAR Community Climate Model version 3 (CCM3), J. Clim.,11,1207-1236.
    Kachi, M., and T. Nitta (1997), Decadal variations of the global atmosphere-ocean system, J. Meteor. Soc., Japan,75,657-675.
    Kiehl, J. T., G. B. Bonan, B. A. Boville, B. P. Briegleb, D. L. Williamson, and P. J. Rasch (1996), Description of the NCAR Community Climate Model (CCM3), NCAR Tech. Note, NCAR/TN-4201STR,152 pp, Available from National Center for Atmospheric Research, Boulder, CO 80307.
    Kiehl, J. T., J. J. Hack, G. B. Bonan, B. A. Boville, D. L. Williamson, and P. J. Rasch (1998), The National Center for Atmospheric RearchCommunity Climate Model: CCM3*, J. Clim.,11,1131-1149.
    Kucharski, F., et al. (2009), The CLIVAR C20C Project:Skill of simulating Indian monsoon rainfall on interannual to decadal timescale. Does GHG forcing play a role? Clim. Dyn.,33,615-627, doi:10.1007/s00382-008-0462-y.
    Latif, M., and T. P. Barnett (1994), Causes of decadal climate variability over the North Pacific and North America, Science,266,634-637.
    Liu, Y. M., J. C. L. Chan, J. Y. Mao, and G. X. Wu (2002), The role of Bay of Bengal convection in the onset of the 1998 South China Sea summer monsoon, Mon. Weather Rev.,130,2731-2744.
    Lu, J. M., J. H. Ju, and J. M. Jiang (2009), Interdecadal regime shift s of regional precipitation over eastern China during the last 100 years, Chinese Journal of Atmospheric Sciences (in Chinese),33 (3),524-536.
    Mitchell, T., and P. D. Jones (2005), An improved method of constructing a database of monthly climate observations and associated high- resolution grids, Int. J. Clim., 25,693-712.
    Namias, J. (1962), Influences of abnormal surface heat sources and sinks on atmospheric behavior, in Proceedings of International Symposium on Numerical Weather Prediction in Tokyo, Meteorol. Soc. Japan,615-627.
    Namias, J. (1985), Some empirical evidence for the influence of snow cover on temperature and precipitation, Mon. Weather Rev.,113,1542-1553.
    Parthasarathy, B., and S. Yang (1995), Relationships between regional Indian summer monsoon rainfall and Eurasian snow cover, Adv. Atmos. Sci.,12,143-150.
    Qin, D. H., S. Liu and P. Li (2006), Snow cover distribution, variability, and response to climate change in Western China, J. Clim.,19,1820-1833.
    Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, A. Kaplan (2003), Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century, J. Geophys. Res.,108, D14,4407, doi:10.1029/2002JD002670.
    Ren, X. J., Y. C. Zhang, and Y. Xiang (2008), Connections between wintertime jet stream variability, oceanic surface heating, and transient eddy activity in the North Pacific, J. Geophys. Res.,113, D21119, doi:10.1029/2007JD009464.
    SanchezGomez, E., C. Cassou, D. L. R. Hodson, N. Keenlyside, Y. Okumura, and T. J. Zhou (2008), North Atlantic weather regimes response to Indian-western Pacific Ocean warming:A multi-model study, Geophys. Res., Lett.,35, L15706, doi: 10.1029/2008GL034345.
    Sellers, W. D. (1965), Physical climatology, The university of Chicago Press,272pp.
    Shukla, J. (1984), Predictability of the time average. Part Ⅱ:The influence of the boundary forcing, Problems and Prospects in Long and Medium Range Weather Forecasting,155-206, doi:10.1007/978-3-642-82132-5_6.
    Shukla, K., and D. A. Mooley (1987), Empirical prediction of the summer monsoon rainfall over India, Mon. Weather Rev.,115,695-703.
    Uppala, S. M., et al. (2005), The ERA-40 re-analysis, Q. J. R. Meteorol Soc.,131, 2961-3012.
    Wallace, J. M., and D. S. Gutzler (1981), Teleconnections in the geopotential field during the Northern Hemisphere winter. Mon. Weather Rev.,109,784-812.
    Walsh, J. E., W. H. Jasperson, and B. Ross (1985), Influences of snow cover and soil moisture on monthly air temperature, Mon. Weather Rev.,113,756-768.
    Webster.1981, Mechanisms determining the atmospheric response to sea surface temperature anomalies. J. Atmos Sci.,38(3),554-571.
    Wei, Z. G., R. H. Huang, W. Chen, and W. J. Dong (2002), Spatial distribution and interdecadal variations of the snow at the Tibetan Plateau weather stations, Chinese J. Atmos. Sci.,26(4),496-508.
    Wen, X. Y., S. W. Wang, J. H. Zhu, and D. Viner (2006), An overview of China climate change over the 20th century using UK UEA/CRU high resolution grid data, Chinese J. Atmos. Sci. (in Chinese),30,894-904.
    Wright PB,1977, The Southern Oscillation pattern and mechanisms of teleconnections and persistence. Hawaii. Inst. Geophys., Rep. HIG-77-13, 107pp.
    Wu, G. X., and Y. S. Zhang (1998), Tibetan Plateau forcing and monsoon onset in South Asia and Southern China Sea, Mon. Weather Rev.,126(4),913-927.
    Wu, T. W., and A. Z. Qian (2003), The relation between the Tibetan winter snow and the Asian summer monsoon and rainfall:an observational investigation, J. Clim., 16,2038-2051.
    Xu, X. K., H. Chen, and G. Q. Zhou (2005), The spatiotemporal distribution of land surface features in the Tibetan Plateau, Climatic and Environmental Research (in Chinese),10(3),409-420.
    Yang, S., and L. Z. Xu (1994), Linkage between Eurasian winter snow cover and regional Chinese sunner rainfall, Int. J. Climatol.,14,739-750.
    Yasunari, T., A. Kitoh, and T. Tokioka (1991), Local and remote responses to excessive snow mass over Eurasia appearing in the northern spring and summer climate-A study with MRIGCM, J. Meteor. Soc. Japan,69,473-487.
    Yeh, T. C., R. Wetherald, and S. Manabe (1983), A model study of the short-term climatic and hydrological effects of sudden snow-cover removal, Mon. Weather Rev., 111,1013-1024.
    Yulaeva, E., N. Schneider, D. W. Pierce, and T. P. Barnett (2001), Modeling of North Pacific climate variability forced by oceanic heat flux anomalies, J. Clim.,14, 4027-4046.
    Zhang, Y. S., T. Li, and B. Wang (2004), Decadal Change of the Spring Snow Depth over the Tibetan Plateau:The Associated Circulation and Influence on the East Asian Summer Monsoon, J. Clim.,17,2780-2793.
    王绍武,蔡静宁,朱锦红,龚道溢,2002,19世纪80年代到20世纪90年代中国年降水量的年代际变化,气象学报,60(5),637-639.
    吕俊梅,琚建华,江剑民,2009,近一百年中国东部区域降水的年代际跃变,大气科学,33(3):524-536.
    李培基,1995,高亚洲积雪分布,冰川冻土,17(4),297-298.
    李培基,1998,青藏高原雪灾时空分布特征,牧区雪灾的分析研究,北京:气象出版社,15-18.
    Blackmon, M. L.,1976:A climatological spectral study of the 500mb geopotential height of the Northern Hemisphere. J. Atmos. Sci.,33:1607-1623.
    Bengtsson, L., S. Hagemann, K.. I. Hodges,2004:Can climate trends be calculated from reanalysis data? J. Geophys. Res.,109, D11111, doi: 10.1029/2004 JD004536.
    Carillo, A., et al.,2000:Storm tracks and zonal mean flow variability:A comparison between observed and simulated data. Clim. Dyn.,16,219-228.
    Chang, E. K. M.,2007:Assessing the increasing trend in Northern Hemisphere winter storm track activity using surface ship observations and a statistical storm track model. J. Clim.,20:5607-5628.
    Chang, E. K. M.,2005:Effects of secular changes in frequency of observations and observational errors on monthly mean MSLP summary statistics derived from ICOADS. J. Clim.,18:3623-3633.
    Chang, E. K. M. and Y. Fu,2002:Interdecadal variations in Northern Hemisphere winter storm track intensity. J. Clim.,15:642-658.
    Nakamura, H., et al.,2002:Interannual and decadal modulations recently observed in the Pacific storm track activity and East Asian winter monsoon. J. Clim.,15: 1855-1874.
    Nakamura, H.,1992:Midwinter suppression of baroclinic wave activity in the Pacific. J. Atmos. Sci.,49:1629-1642.
    Wu, B., T. Li, and T. J. Zhou,2010:Asymmetry of circulation anomalies in the western North Pacific between El Nino and La Nina and associated climate impacts. J. Clim.,23,4807-4822.
    李晓燕,翟盘茂,任福民,2005,气候标准值改变对ENSO事件划分的影响,热带气象学报,21(1):72-78.
    丁叶风,任雪娟,韩博,2006,北太平洋风暴轴的气候特征及其变化的初步研究,气象科学,26(3)237-243.
    任雪娟,杨修群,韩博,徐桂玉,2007,北太平洋风暴轴的变异特征及其与中纬度海气耦合关系分析,地球物理学报,50(1),92-100.
    朱伟军,孙照渤,2000,冬季北太平洋风暴轴的年际变化及其与500hPa高度以及热带和北太平洋海温的联系,气象学报,58(3):309-320.
    Bader J, Latif M (2003) The impact of decadal-scale Indian Ocean sea surface temperature anomalies on Sahelian rainfall and the North Atlantic Oscillation. Geophys Res Lett 30(22) 2169, doi:10.1029/2003GL018426
    Bader J, Latif M (2005) North Atlantic Osciallation response to anomalous Indian Ocean SST in a coupled GCM. J Clim 18:5382-5389
    Bengtsson L, Hagemann S, Hodges K. I (2004) Can climate trends be calculated from reanalysis data? J Geophys Res 109, D11111, doi:10.1029/2004JD004536
    Carril AF, Menendez CG, Nunez MN, Le Treut H (2002) Mean flow-transient perturbation interaction in the Southern Hemisphere:a simulation using a variable-resolution GCM. Clim Dyn 18:661-673, doi: 10.1007/s00382-001-0203-y
    Chang EKM (2001) GCM and observational diagnoses of the seasonal and interannual variations of the Pacific storm track during the cool season. J Atmos Sci 58:1784-1800
    Chang EKM, Lee S, Swanson KL (2002) Storm track dynamics. J Clim 15:2163-2183
    Chang EKM, Fu YF (2002) Interdecadal variations in Northern Hemisphere winter storm track intensity. J Clim 15:642-658
    Chang EKM, Fu YF (2003) Using mean flow change as a proxy to infer interdecadal storm track variability. J Clim 16:2178-2196
    Chang EKM (2005) Effects of secular changes in frequency of observations and observational errors on monthly mean MSLP summary statistics derived from ICOADS. J Clim 18:3623-3633
    Chang EKM, Zurita-Gotor P (2007) Simulating the seasonal cycle of the Northern Hemisphere storm tracks using idealized nonlinear storm-track models. J Atmos Sci 64:2309-2331
    Chang EKM, Guo Y (2007) Dynamics of the stationary anomalies associated with the interannual variability of the midwinter Pacific storm track-the role of tropical heating and remote eddy forcing. J Atmos Sci 64:2442-2461
    Chang EKM (2007) Assessing the increasing trend in Northern Hemisphere winter storm track activity using surface ship observations and a statistical storm track model. J Clim 20:5607-5628
    Christoph M, Ulbrich U, Speth P (1997) Midwinter suppression of Northern Hemisphere storm track activity in the real atmosphere and in GCM experiments. J Atmos Sci 54:1589-1599
    Deng Y, Mak M (2005) An idealized model study relevant to the dynamics of the midwinter minimum of the Pacific storm track. J Atmos Sci 62:1209-1225
    Deser C, Phillips AS (2006) Simulation of the 1976/1977 climate transition over the North Pacific:Sensitivity to tropical forcing. J Clim 19:6170-6180
    Fang JB, Rong XY, Yang XQ (2006) Decadal-to-interdecadal response and adjustment of the North Pacific to prescribed surface forcing in an oceanic general circulation model. Acta Oceanologica Sinica 25(3):11-24
    Fang JB, Yang XQ (2011) The relative roles of different physical processes in the unstable midlatitude ocean-atmosphere interactions. J Clim 24(5):1542-1558
    Geng QZ, Sugi M (2001) Variability of the North Atlantic cyclone activity in winter analyzed from NCEP-NCAR Reanalysis data. J Clim 14:3863-3873
    Gong DY, Ho CH (2002) Shift in the summer rainfall over the Yangtze River valley in the late 1970s. Geophys Res Lett 29 1436, doi:10.1029/2001 GL014523
    Graham NE, Diaz HF (2001) Evidence for intensification of North Pacific winter cyclones since 1948. Bull Amer Meteor Soc 82:1869-1893
    Greeves CZ, Pope VD, Stratton RA, Martin GM (2007) Representation of Northern Hemisphere winter storm tracks in climate models. Clim Dyn 28:683-702 doi: 10.1007/s00382-006-0205-x
    Gregory D, Rowntree PR (1990) A mass flux convection scheme with the representation of cloud ensemble characteristics and stability-dependent closure. Mon Wea Rev 118:1483-1506
    Gregory D, Allen S (1991) The effect of convective scale downdrafts upon NWP and climate simulations. Preprints, Ninth Conf. on Numerical Weather Prediction, Denver, CO, Amer Meteor Soc 122-123
    Gulev SK, Zolina O, Grigoriev S (2001) Extratropical cyclone variability in the Northern Hemisphere winter from the NCEP/NCAR reanalysis data. Clim Dyn 17:795-809
    Hodson DLR, Sutton RT, Cassou C, Keenlyside N, Okumura Y, Zhou T (2010) Climate impacts of recent multidecadal changes in Atlantic Ocean sea surface temperature:a multimodel comparison. Clim Dyn 34:1041-1058, doi: 10.1007/s00382-009-0571-2
    Hoerling MP, Hurrell JW, Xu T (2001) Tropical origins for recent North Atlantic climate change. Science 292:90-92
    Hoerling MP, Hurrell JW, Xu T, Bates GT, Phillips AS (2004) Twentieth century North Atlantic climate change. Part Ⅱ:Understanding the effect of Indian Ocean warming. Climate Dynamics (2004) 23:391-405, doi: 10.1007/s00382-004-0433-x
    Hoskins BJ, Valdes PJ (1990) On the existence of the storm tracks. J Atmos Sci 47: 1854-1864
    Hoskins BJ, Pearce R (1983) Large-scale dynamical processes in the atmosphere. Academic Press, London, pp 111-112
    Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation and relationships to regional temperature and precipitation. Science 292:90-92
    Hurrell JW, Hoerling MP, Philips AS, Xu T (2004) Twentieth century North Atlantic climate change. Part Ⅰ:Assessing determinism. Clim Dyn 23:371-389
    Inatsu M, Mukougawa H, Xie SP (2003) Atmospheric response to zonal variations in midlatitude SST:transient and stationary eddies and their feedback. J Clim 16: 3314-3329
    Jhun JG, Lee EJ (2004) A new east Asian winter monsoon index and associated characteristics of the winter monsoon. J Clim 17:711-726
    King MP, Fred K, Franco M (2010) The roles of external forcings and internal variabilities in the Northern Hemisphere atmospheric circulation change from the 1960s to the 1990s. J Clim 23:6200-6220
    Kucharski F, Scaife AA, Yoo JH, Folland CK, and co-authors (2009) The CLIVAR C20C project:skill of simulating Indian monsoon rainfall on interannual to decadal timescales. Does GHG forcing play a role? Clim Dyn 33:615-627
    Lee S-S, J-Y Lee, B Wang, and co-authors (2012) Interdecadal changes in the storm track activity over the North Pacific and North Atlantic. Clim Dyn doi:10.1007/s00382-011-1188-9
    Li J, and Wang JXL (2003) A modified zonal index and its physical sense. Geophys Res Lett 30(12) 1632, doi:10.1029/2003GL017441
    Li L, Wang B, Zhou T (2007) Contributions of natural and anthropogenic forcings to the summer cooling over eastern China:An AGCM study. Geophys Res Lett 34, L18807,doi:10.1029/2007GL030541
    Li L, Wang Y, Wang B, Zhou T (2008) Sensitivity of the grid-point atmospheric model of IAP LASG (GAMIL 1.1.0) climate simulations to cloud droplet effective radius and liquid water path. Adv Atmos Sci 25(4):529-540
    Li H, Dai A, Zhou T, Lu J (2010) Responses of East Asian summer monsoon to historical SST and atmospheric forcing during 1950-2000. Clim Dyn 34:501-514
    Lindzen RS, Farrell B (1980) A simple approximate result for the maximum growth rate of baroclinic instability. J Atmos Sci 37:1648-1654
    Lunkeit F, Fraedrich K, Bauer SE (1998) Storm track in a warmer climate:Sensitivity studies with a simplified global circulation model. Clim Dyn 14:813-826
    Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. Bull Amer Meteor Soc 78: 1069-1079
    McCabe GJ, Clark MP, Sereze MC (2001) Trends in Northern Hemisphere surface cyclone frequency and intensity. J Clim 14:2763-2768
    Mcguffie K, Henderson-Sellers A (2001) Forty years of numerical climate modeling. Int J Climatol 21:1067-1109, doi:10.1002/joc.632
    Mesquita MDS, Nils GK, Asgeir S, David EA (2008) Climatological properties of summertime extra-tropical storm tracks in the Northern Hemisphere. Tellus 60A: 557-569
    Murakami M (1979) Larger scale aspects of deep convective activity over the GATE area. Mon Wea Rev 107:994-1031
    Nakamura H (1992) Midwinter suppression of baroclinic wave activity in the Pacific. J Atmos Sci 49:1629-1642
    Nakamura H, Izumi T, and Sampe T (2002):Interannual and decadal modulations recently observed in the Pacific storm track activity and East Asian winter monsoon. J Clim 15:1855-1874
    Nakamura H, and Sampe T (2002) Trapping of synoptic-scale disturbances into the North-Pacific subtropical jet core in midwinter. Geophys Res Lett 29,1761, doi: 10.1029/2002GL015535
    Norris JR (2000) Interannual and interdecadal variability in the storm track, cloudiness, and sea surface temperature over the summertime North Pacific. J Clim 13:422-430
    Orlanski I (2005) A new look at the Pacific storm track variability:sensitivity to tropical SSTs and to upstream seeding. J Clim 18:1367-1390
    Paciorek JC, Risbey JS, Ventura V, Rosen RD (2002) Multiple indices of Northern Hemisphere cyclone activity, winters 1949-99. J Clim 15:1573-1590
    Penny S, Gerard HR, David SB (2010) The source of the midwinter suppression in storminess over the North Pacific. J Clim 23:634-648
    Pope VD, Gallani ML, Rowntree PR, et al. (2000) The impact of new physical parameterizations in the Hadley Centre climate model:HadAM3. Clim Dyn 16: 123-146
    Raible CC, Blender R (2004) Northern Hemisphere midlatitude cyclone variability in GCM simulations with different ocean representations. Clim Dyn 22:239-248
    Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14), 4407, doi:10.1029/2002JD002670
    Ren X, Zhang Y, Xiang Y (2008) Connections between wintertime jet stream variability, oceanic surface heating, and transient eddy activity in the North Pacific. J Geophys Res 113, D21119, doi:10.1029/2007JD009464
    Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401:360-363
    SanchezGomez E, Cassou C, Hodson DLR, Keenlyside N, Okumura Y, Zhou T (2008) North Atlantic weather regimes response to Indian-western Pacific Ocean warming:A multi-model study. Geophys Res Lett 35, L15706, doi: 10.1029/2008GL034345
    Scaife AA, Kucharski F, Folland CK, Kinter J, and co-authors (2009) The CLIVAR C20C Project:selected twentieth century climate events. Clim Dyn 33:603-614
    Selten FM, Branstator GW, Dijkstra HA, Kliphuis M (2004) Tropical origins for recent and future Northern Hemisphere climate change. Geophys Res Lett 31, L21205,doi:10.1029/2004GL020739
    Simmonds I, Keay K (2000) Variability of Southern Hemisphere extratropical cyclone behavior 1958-97. J Clim 13:550-561
    Son SW, Ting M, Polvani LM (2009) The Effect of Topography on Storm-Track Intensity in a Relatively Simple General circulation model. J Atmos Sci 66:393-411
    Ulbrich U, Leckebusch GC, Pinto JG (2009) Extra-tropical cyclones in the present and future climate:a review. Theor Appl Climatol 96:117-131
    Uppala SM, and Coauthors (2005) The ERA-40 re-analysis. Quart J Roy Meteor Soc 131:2961-3012
    Webster PJ, Moore A, Loschnig J, Leban M (1999) Coupled ocean-atmosphere dynamics in the Indian Ocean during 1997-98. Nature 401:356-360
    Wu GX., and Coauthors (2007) The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate. J Hydrometeor 8:770-789
    Xiang Y, Yang XQ (2012) The effect of transient eddy on interannual meridional displacement of summer east Asian subtropical jet. Adv Atmos Sci 29(3):484-492
    Yang S, Lau KM, Kim KM (2002) Variation of the East Asian jet stream and Asian-Pacific-American winter climate anomalies. J Clim 15:306-32Zhang GJ, McFarlane NA (1995) Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmos Ocean 33:407-446
    Zhang X, Walsh J, Zhang J, Bhatt U, Ikeda M (2004) Climatology and interannual variability of arctic cyclone activity:1948-2002. J Clim 17:2300-2317
    Zhang YQ, Held IM (1999) A linear stochastic model of a GCM's midlatitude storm track. J Atmos Sci 56:3416-3435
    Zhao SS, Zhou TJ, Yang XQ, et al. (2011) Interdecadal change of the relationship between the tropical Indian Ocean dipole mode and the summer climate anomaly in China. Acta Meteorologica Sinica 25(2):129-141
    Zhou T, Yu R, Li H, Wang B (2008) Ocean forcing to changes in global monsoon precipitation over the recent half century. J Clim 21:3833-3852
    Zhou T, Yu R, Zhang J, Drange H, Cassou C, Deser C, Hodson DLR, Sanchez-Gomez E, Li J, Keenlyside N, Xin X, Okumura Y (2009a) Why the western Pacific subtropical high has extended westward since the late 1970s. J Clim 22: 2199-2215
    Zhou T, Wu B, Scaife AA, Bronnimann S et al (2009b) The CLIVAR C20C Project: Which components of the Asian-Australian Monsoon circulation variations are forced and reproducible? Clim Dyn 33:1051-1068
    Zhou T, Wu B, Wang B (2009c) How well do Atmospheric General Circulation Models capture the leading modes of the interannual variability of Asian-Australian Monsoon? J Clim 22:1159-1173
    Zhu YM, Yang XQ (2003) Joint propagating patterns of SST and SLP anomalies in the North Pacific on bidecadal and pentadecadal timescales. Adv Atmos Sci 20(5): 694-710
    Zhu YM, Yang XQ, Xie Q, Yu YQ (2008a) Covarying modes of the Pacific SST and northern hemispheric midlatitude atmospheric circulation anomalies during winter. Progress in Natural Science 18:1261-1270
    Zhu YM, Yang XQ, Yu YQ, et al. (2008b) Decadal variability in the North Pacific as simulated by FGOALS-g fast coupled climate model. Chinese Journal of Geophysics-Chinese Edition 51(1):58-69

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700