用户名: 密码: 验证码:
合金元素对粉末冶金低合金钢性能和组织的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文基于前人研究Ni元素添加对Fe基体的影响,确立了以Fe-2Ni为基体,向其中分别添加Cr、Mo元素来研究这两种元素对Fe-2Ni合金的影响,并最终期望获得一种综合性能较优的合金。
     用注射成形方法(MIM)制备Fe-2Ni-xCr(x=0.5,1,3)合金研究表明:随着Cr含量的增加,合金密度降低,孔隙增多且变大。合金烧结态强度和硬度增加,延伸率和冲击功下降。合金的断口形貌由韧窝向河流花纹状的解理形貌转变。烧结态合金的微观组织为珠光体+很少量的铁素体,Fe-2Ni-3Cr合金中出现Ni的富集区;热处理态合金的微观组织加入Cr后变为回火屈氏体,且在Fe-2Ni-3Cr合金中出现网状的渗碳体。
     烧结温度的高低和烧结时间的长短直接影响着合金的扩散和孔隙的变化。本论文对Fe(CS)-2Ni-1Cr+0.3C合金分别在1120℃、1250℃、1336℃三种温度下烧结研究发现,随着烧结温度的提高,Fe(CS)-2Ni-1Cr+0.3C合金的密度逐渐提高,抗拉强度、硬度和延伸率也逐渐提高。我们引入扩散函数f(t,T)反映烧结过程中能量的输入,可用其来预测合金性能,用扩散函数f(t,T)预测Fe(CS)-2Ni-1Cr+0.3C合金性能抗拉强度和硬度的公式分别为σ=0.5015f(t,T)+329.91和硬度=0.0545f(t,T)+53.71。
     用粉末冶金模压方法(P/M)制备Fe-2Ni-xMo+yC(y=0.3时x=0.5,1,2,5;x=1时y=0.3,0.5,0.8)合金研究表明:随着Mo含量的增加,合金烧结态的强度和硬度明显提高,延伸率下降。合金热处理强度、硬度和延伸率变化有着同样的规律。随着Mo的加入,合金显微结构由铁素体组织向贝氏体和马氏体转变。Fe-2Ni-1Mo+0.8C合金显微组织已全为贝氏体+马氏体组织了。Fe-2Ni-5Mo+0.3C合金烧结样品中出现了Mo元素的明显富集。四种合金物质均以Fe的合金固溶体为主。Fe-2Ni-5Mo+0.3C合金衍射图谱中还出现了Fe_3Mo_3C物相,有助于提高合金强度和硬度。
     基于前面Cr、Mo元素添加对Fe-2Ni合金性能影响的研究,我们同时添加Cr、Mo元素,添加量取以上研究得出的最合适的元素含量(Cr元素取1%;Mo元素取2%),以期获得一种性能优良的合金。同时与4650合金(Fe-2Ni-0.5Cr-0.5Mo)比较性能。结果表
    
    中南大学硕士学位论文
    摘要
    明:Fe一ZNi一1 Cr-ZMo合金相比Fe一ZNi一o.SMo一O.SCu合金最终烧结密
    度低得多。Fe一ZNi一0 .SMo一0.SCu合金孔隙少且孔隙细小。Fe一ZNi-
    ICr-ZMo合金烧结态的强度比Fe一ZNi一0.SMo一0.SCu合金高出
    200Mpa,达到867 Mpa,延伸率相当。前者低温回火热处理态与后
    者中温回火热处理态的性能接近。
In the article, based on the former studies about the effect of Ni addition to Fe, Fe-2Ni was chosen to be the base. The effect of the amount of Cr and Mo addition on the mechanical properties of Fe-2Ni alloys by sintering and by heat treatment was respectively studied to expect to attain an alloy with excellent properties.
    Fe-2Ni-xCr (x=0.5,1,3) alloy prepared by MIM were investigated. The results show that with Cr increasing, the density of alloys reduce, the amount of pores increases and the pores are larger; the intensity and the hardness of sintered Fe-Ni-Cr alloy increase, the elongation and the impact energy of sintered Fe-Ni-Cr alloy reduce. The fractures of the alloys change from dimple to cleavage fracture with river pattern. The microstructures of sintered alloys are pearlite and little ferrite. There are the enrichment areas of Ni in Fe-2Ni-3Cr alloy. The microstructures of alloy with Cr addition after heat treatment change to temper troostite and there occur meshy secondary cementite in Fe-2Ni-3Cr alloy.
    During the process of sintering, the sintering temperature and time directly influence the diffusion of alloys and the change of pores. In the article, Fe(CS)-2Ni-lCr+0.3C alloy is respectively sintered in 1120℃ 1250℃ 1336℃ and the results show that with the sintering temperature increasing, the density of alloys increases, the intensity, the hardness and ductility of sintered Fe-Ni-Cr alloy gradually increase. Diffusion function f (t, T) is used to reflect the input of the energy during the process of sintering and predict the properties of the alloy. The prediction results of intensity and hardness of Fe (CS)-2Ni-lCr+0.3C alloy by f (t, T) are respectively G=0.5015f(t,T)+329.91and hardness=0.0545f(t,T)+53.71
    Fe-2Ni-xMo+yC ( When y=0.3, x=0.5,1,2,5 ; when x=1,y=0.3,0.5,0.8) alloy prepared by P/M were investigated. The results show that with Mo increasing, the intensity and the hardness of sintered alloy increase, the elongation of sintered alloy reduce. The changes of the intensity, the hardness and the elongation of alloy after heat treatment have the analogic results. With Mo added, the microstructures of alloys
    
    
    
    
    change from ferrite to bainite and martensite . The microstructures of Fe-2Ni-lMo+0.8C are all bainite and martensite. There occur the enrichment areas of Mo in Fe-2Ni-5Mo+0.3C alloy. The results of X-ray test of four alloys show that the alloys are almost composed of Fe solid solution. In addition, there occurs Fe3Mo3C in Fe-2Ni-5Mo+0.3C alloy which helps to increase the intensity and hardness.
    Based on anterior respective studies about the effect of adding Cr and Mo to Fe-2Ni, the alloy that Cr and Mo were together added to Fe-2Ni in the appropriate amount was investigated to expect an alloy with good properties and compared to Fe-2Ni-0.5Cr-0.5Mo alloy. The results show that the density of Fe-2Ni-1Cr-2Mo alloy is much lower than that of Fe-2Ni-0.5Cr-0.5Mo alloy. The amount of pores of Fe-2Ni-0.5Cr-0.5Mo alloy is a few and the pores are small. The intensity of sintered Fe-2Ni-lCr-2Mo alloy is 867MPa, 200MPa higher than that of Fe-2Ni-0.5Cr-0.5Mo alloy, while their elongation is close. The properties of Fe-2Ni-1Cr-2Mo alloy after low temperature tempering is equivalence to those of Fe-2Ni-0.5Cr-0.5Mo alloy after middle temperature tempering expect impact energy.
引文
[1] Tracey V A. Nickel sintered steel: developments, status and prospects. Capus J M, German R M, eds. Advances in Powder Metallurgy & Particulate Materials-1992, Princeton: MPIF, 1992, v5:303-313
    [2] Trudel Y. QMP Expands Capacity and Product Range. Metal Powder Report, 1995, 50(11): 32-36
    [3] Mc Dermott M J. P/M Parts Fabrication experience with ANCORBOND (Binder Treated) Premixes. Andreotti E. R., McGeehan P. J., eds. Advances in Powder Metallurgy, Princeton: MPIF, 1990. v1: 209
    [4] Narasimhan K S V L, Tengzelius J. P/M Low-Alloy Steel-Alloying Methods and continuous Improvement. Capus J M, German R M, eds. Advances in Powder Metallurgy & Particulate Materials-1992. Princeton: MPIF, 1992, v5: 153
    [5] Brian James W, CO' Brien R. High Performance Ferrous PM Materials: The Effect of Alloying Method on Dynamic Properties. Metal Powder Report, 1984,(4): 251-260
    [6] Kawasaki's New Alloyed steel Powders. Metal Powder Report, 1988, 43(5): 326-327
    [7] Yamato N, Dgura K. Cr-Alloyed powders with Low O_2 content Made by Vacuum Annealing. Metal Powder Report, 1989, 44(1): 46-49
    [8] 杨家媛.粉末冶金合金钢材料和制品的开发.国外金属材料,1989,(2):26-33
    [9] 唐华生.粉末冶金用金属粉的生产动态.世界机电技术,1991,(12):15-17
    [10] 邵国强译.汽车用高性能铁基粉冶材料.粉末冶金工业,1992,2(1):30-34
    [11] Toshiyuki Minegishi. Mechanical properties of sintered compacts made from low-oxygen Cr-alloyed steel powder. Capus J M, German R M, eds. Advances in Powder Metallurgy & Particulate Materials-1992, Princeton: MPIF, 1992. v5: 53-64
    [12] Hwang K S, Hsiao M Y. Mechanical properties of Fe-Ni injection molded parts
    
    made from composite powders. Booker P, Gaspervich J, German R M, eds. Powder Injection Molding Symposium-1992. Princeton: MPIF, 1992:53-66
    [13]郁建明,姜建国,陆汝恒.粉末冶金结构零件常用压形方法与设备选择.粉末冶金工业,1994,4(1):19-23
    [14] Osamu Furukimi, Koji Yano, Shigeaki Takajo. New composite-type alloyed 2%Ni-1%Mo steel powder for ultrahigh-strength sintered components. Pease Ⅲ L F, Sansoucy R J, eds. Advances in Powder Metallurgy & Particulate Materials-1991, Princeton: MPIF, 1991, v5:59-67
    [15] 李益民,黄伯云,曲选辉等.金属注射成形技术进展.稀有金属材料与工程,25(1):1-4
    [16] 李益民,黄伯云,曲选辉.当代金属注射成形技术.粉末冶金工业,10(1):14-19
    [17] 李笃信,黄伯云.金属注射成形的研究现状.材料科学与工程,20(1):136-139
    [18] 戴涛,范蜀晋.注射成形工业及其应用.粉末冶金工业,1997,7(6):17-19
    [19] Blmacher M, Weinand D, Schwarz M, et al. Sintering of injection molded low alloy steel. Lanley A, Swanson A, eds. Advances in Powder Metallurgy & Particulate Materials-1993, Princeton: MPIF, 1993, v5:73-89
    [20] 韩凤麟.ANCORDENSE~(TM)温压工艺特性.粉末冶金技术,1995,13(4):294-302
    [21] 元家钟.铁基材料高密度温压工艺.粉末冶金工业,1996,6(2):14-18
    [22] Rutz H G. Warm compaction offers high density at low cost. Int. J. Powder Met., 1995, 31(1): 9-17
    [23] Capus J et al. Hoeganaes offers higher density at low cost. MPR, 1994, 49(7/8): 22-24
    [24] Schaeffier D J, Lawley A, Causton R J. Low carbon P/M alloy steels. Capus J M, German R M, eds. Advances in Powder Metallurgy & Particulate Materials-1992, Princeton: MPIF, 1992, v5:93-106
    [25] Madan D S, German R M, James W B. Iron-Boron Enhanced Sintering. Progress in Powder Metallurgy, 1986(42): 267-283
    
    
    [26] Tandon R, German R M. Sintering and mechanical properties of a boron-doped austenitic stainless steel. The International Journal of Powder Metallurgy, 1998, 34(1): 40-49
    [27] Liu Jianxin, German R M, Cardamone A, et al. Boron-enhanced sintering of iron-molybdenum steels. The International Journal of Powder Metallurgy, 2001, 37(5): 39-46
    [28] Baczewska J K, Rosso M. Effect of boron on microstructure and mechanical properties of P/M sintered and nitrided steels. Powder Metallurgy, 2001, 44(3): 221-227
    [29] Toennes C, Ernst P, Meyer G, et al. Full density sintering by boron addition in a martensitic stainless steel. Capus J M, German R M, eds. Advances in Powder Metallurgy & Particulate Materials-1992, Princeton: MPIF 1992. v3:371-381
    [30] Madan D S, German R M. Structure-property relationship in iron powder compacts alloyed with boron. Gasbarre T G, Jandeska W F, eds. Advances in Powder Metallurgy, Princeton: MPIF, 1989, v1: 147-161
    [31] 邓至谦,周善初编.金属材料及热处理.长沙:中南工业大学出版社,1994:184
    [32] 曲选辉.铁基粉末冶金结构材料的强化合金化技术.汽车工艺与材料,1994,1:25-26
    [33] Hiroyuki Jinushi, Hideki Kyogoku, Kazumitsu Shinohara. Behavior of Carbon and Oxygen during Sintering Process in Fe-Ni Alloy Compacts Made by Injection molding. Gasbarre T G, Jandeska W F, eds. Advances in Powder Metallurgy, Princeton: MPIF, 1989, 19: 63-70.
    [34] 王文东,章三红,贺信菜.硼在铁基及镍基合金中的扩散.金属学报,1995,31(2):56-63
    [35] 元家钟.高强度烧结钢.钢铁研究学报,1994,6(2):90-92
    [36] 曾德麟编.粉末冶金材料.北京:冶金工业出版社,1989
    [37] 徐玉秀.Fe-P烧结合金脆性的防止.粉末冶金工业,1995,5(1):37-39
    [38] Christophe N D, Griffo A. Effect of sintering parameters on the mechanical
    
    properties of a Fe-2Cu-2Ni-0.9Mo-0.8C steel. The International Journal of Powder Metallurgy, 1998, 6:57-67
    [39] Moearski S, Hall D W. Master alloys to obtain premixed hardenable powder metallurgy steel. Powder Metallurgy, 1996,39(2): 130-137
    [40] Zhang Haorong, German R M. The Role of Nickel in Iron Powder Injection Molding. The Intemational Journal of Powder Metallurgy, 1991,27(3): 249-254
    [41] Zhang Haorong, German R M. Homogeneity and properties of injection molded Fe-2Ni alloys. Metallurgical Transactions A, 1992, 23 (A): 377-381
    [42] Zhang H, German R M. Processing Effect on the Mechanical Properties of an Injection Molded Fe-2%Ni alloy. Industrial Heating, 1990, 57(2):33-36
    [43] Hwang K S, Hsiao M Y. Mechanical properties of Fe-Ni injection molded parts made from composite powder. Capus J M, German R M, eds. Advances in Powder Metallurgy, 1992:53-66
    [44] Zhou G. L, Wood J V. Influence of alloying element on mechanical properties of sintered high speed steel powders diluted with highly compressible powders. Powder metallurgy, 1995,38(3): 230-236
    [45] 贺广纯,彭会霄.高强度粉末冶金烧结耐磨合金衬套的研制.河北冶金,1999,6:15-18
    [46] 张志恒,董颐,刘传习.钼在Fe-Ni-Mo-C低合金烧结钢中的作用.粉末冶金技术,1991,9(4):220-224
    [47] 邱光汉,曾舟山等.MIM Fe基合金的合金化强化.中国有色金属学报,1997,7(4):119-123
    [48] Molinari A, Straffelini, Campestrini P. Influence of microstructure on impact and wear behaviour of sintered Cr and Mo steel. Powder Metallurgy, 1999, 42(3): 235-241
    [49] 印红羽.铬对Fe-Cr-Cu-Mo-C烧结合金组织和力学性能的影响.粉末冶金技术,1991,9(3):161-166
    [50] 王才德,陈爱华等.Fe-Cr-Mo-C系粉末压坯烧结致密化机理.中南工业大学学报,1998,29(2):28-31
    
    
    [51] 石德珂等.相间沉淀钢的组织与性能.钢铁,1994,29(4):50-55
    [52] James W B. Recent developments in ferrous powder metallurgy alloys. The International Journal of Powder Metallurgy, 1994, 30(2): 157-162
    [53] Berg Sigurd. Pre-alloyed chromium material with consistent properties for medium strength applications. Proceeding of 2000 Powder Metallurgy World Congress, Koji Kosuge, Hiroshi Nagai, eds. Part2(2000):939-942
    [54] Unami S, Uenosono S. Mechanical properties of Cr-Mo-V sintered steels. Proceeding of 2000 Powder Metallurgy World Congress, Koji Kosuge, Hiroshi Nagai, eds. Part2(2000): 915-918
    [55] Raghavan V. Phase Diagrams Of Ternary Iron Alloys, The Indian Institute of Metals Calcutta, 1992
    [56] 黄培云编.粉末冶金原理.北京:冶金工业出版社,1997:299
    [57] 潘金生,田民波.北京:清华大学出版社,1998:462
    [58] Vershinin V A, Kostikov V I, Egorova T G. Determination of diffusion parameters in the sintering of a mechanical mixture of iron and nickel powders. Soviet Powder Metallurgy and Metal Ceramics, 1989, 27(9): 691-696
    [59] Zhang Haorong, German R M. Homogeneity and properties of injection moulded Fe-Ni alloys. Metal Powder Report, 2001, 56(6): 18-22
    [60] Zhang Haorong, German R M. Sintering MIM Fe-Ni alloys. The International Journal of Powder Metallurgy, 2002, 38(1): 51-61
    [61] Zhang H, German R M. Structural development during sintering of injection moulded Fe-2Ni steel. Advances in Powder Metallurgy, MPIF, Princeton, NJ, 1991,2:181-194
    [62] Zhang H, et al. Sintering temperature and the mechanical properties of injection moulded Fe-2Ni steel. Powder Met. Inter.,1990:15-18
    [63] Lin S T, German R M. Some variances on the sintered properties of injection moulded Fe-2%Ni. Advances in Powder Metallurgy, MPIF, Princeton, NJ, 1990,vol.3:423-435
    [64] Jinushi H, et al. Effect of addition of carbon on sintering behavior of Fe-Ni composites shaped by injection moulding. J. Jpn Soc. Powder Powder Metal., 1995,vol.42:357-362
    [65] Kyogoku H, et al. Microstructure and mechanical properties of sintered Fe-Ni
    
    compacts by injection moulding. Advances in Powder Metallurgy and Particulate Materials, 1995, MPIF, Princeton, NJ, 1995 ,vol.2: 6.215-6.227
    [66] Chan T Y, Lin S T. Sintering of element carbonyl iron and carbonyl nickel powder mixtures. J. Materials Sci., vol.32, no.8,(1997), pp. 1963-1967
    [67] German R M. Sintering Theory and Practice,(1996), John Wiley &Sons, New York, pp. 178-190
    [68] Smithells C J, Brandes E A. Metal Reference Book,5th edn,(1997), Butterworths, London, UK, p.935
    [69] German R M, Matthew Bulger. A Model for Densification by Sintering of Bimodal Particle Size Distribution. The International Journal of Powder Metallurgy, 1992, 28(1): 301-311
    [70] Degoix C N, Griffa A, German R M. Effects of sintering parameters on the mechanical properties of A Fe-2Cu-2Ni-0.9Mo-0.8C steel. The International Journal of Powder Metallurgy, 1998, 34(6): 57-67
    [71] Marsh P, Wood J V, Moon J R. Diffusion between high speed steel and iron powders. Powder Metallurgy, 2001, 44(3): 205-210
    [72] Danninger H. Sintering of mo alloyed P/M steels prepared from elemental powders. Ⅰ. Sintering temperature and mechanical properties. Powder Metallurgy International, 1992, 24(2): 73-78
    [73] Yoo Seung-Chul, Choi Ju, Moon In-Hyung. Sintering and properties of high carbon and Mo-alloyed P/M steel. Powder Metallurgy International, 1991, 23(4): 216-220
    [74] Piotrowski A, Biallas G. Influence of sintering temperature on pore morphology, microstructure, and fatigue behaviour of MoNiCu alloyed sintered steel. Powder Metallurgy, 1998, 41(2): 109-114
    [75] Zeugin O Z, Jangg G, Danninger H. Horizons of P/M (Kaysser W A, Huppmann W J eds.) Verlag Schmid, Freiburg (1986), Part Ⅱ, 1031-1034
    [76] Schlieger G, Thuemmler F. High strength heat-treatable sintered steels containing manganese, chromium, vanadium and molybdenum. Powder Metallurgy International, 1979, 11: 172-176
    [77] Danninger H. Sintering of Mo alloyed P/M structural steels Powder Metallurgy
    
    International, 1988, 20(4): 7-11
    [78] Lindqvist B. A molybdenum-alloyed P/M steel for surface hardening. "P/M into the 1990s"-Proc.Int. Powder Met. Conf. Wembley (1990) Vol. Ⅱ, 170-177
    [79] Danninger H, Zengin O Z. Sintering and properties of Cr, Mo and W-alloyed P/M steels. Modem Dev. in Powder Met. 21 (1988): 171-182
    [80] Hales R, Dobson P S, Smallman R. Acta Materialia, 2000,48:589-623

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700