用户名: 密码: 验证码:
聚氨酯/多壁碳纳米管定向微纳纤维丝压敏特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在生物体中,普遍存在着一种类毛发状机械刺激感知系统,我们称之为微纤毛感受器。不同的纤毛感受器,对环境震动、声音震动、微弱接触、生物生存环境中的空气或者水的流动以及重力等等,具有卓越的感知能力。鉴于自然界纤维毛感受器的广泛功用、灵敏的检测能力以及精巧的尺寸,模拟生物微纤毛感知系统的人工微纤毛感知器的研究,近年来已成为了一个研究热点。本文的研究的目的就是要制备出一种高长径比、柔性的、压阻敏感特性优异的人造纤维毛传感器。
     本研究利用热塑性聚氨酯(TPU)和多壁碳纳米管(MWNTs)采用静电纺丝技术制备了TPU/MWNT复合材料定向微纳纤维丝。纤维丝的定向分布是通过一对平行电极板实现的。TPU/MWNT复合材料膜也被制备出来用以与纤维进行对比实验。通过透射电子显微镜和扫描电子显微镜等图像观测手段,分析了MWNTs在聚氨酯基体中的分布形态,证实了MWNTs在纤维丝中主要沿其轴向分布,而在膜内随机杂乱分布。并阐述了不同的分布形态对压阻特性的影响。
     同时,针对电导率的测量和压阻敏感特性的检测,设计了相应的实验方案,搭建了相关的实验平台。通过实验和理论结合的方法,确定了TPU/MWNT复合材料的逾渗阈值,并得到了拉伸应变下电阻与应变的关系曲线,解释了压阻效应的形成机理。探明了TPU/MWNT复合材料表现出最佳敏感特性时,碳纳米管和聚氨酯的掺杂优化比例。
     最后,对拉伸应变中可能影响TPU/MWNT复合材料纤维丝电阻率变化的各项参数进行了分析,例如:微结构的改变、体积分数的变化、MWNTs分布角度的变化对材料导电性能的影响等等。研究结果显示拉伸应变中纤维丝体积的变化是影响电阻变化的主要原因。在此基础上,结合前人的研究成果,构建了适用于该复合材料纤维丝电阻相对变化量的理论计算模型,能够很好的预测电阻相对变化量随拉伸应变的变化趋势,为理论分析提供了有效的依据。
As a mechano-receptive sensing system, haircell receptors widely exist in organisms. These kind of receptors are able to respond to flow in the air or water, vibration of environment, touch, acoustic vibration and gravitation. As the natural haircell receptors have the properties of wide range of applications, sensitive detection capability, and tiny size, the research of artificial hair sensor to simulate the natural haircell sensing system has attracted much attention. The purpose of this paper is focused to fabricate artificial haircell sensor with high length diameter ratio, flexibility and outstanding piezoresistive properties.
     The TPU/MWNT composite oriented micronano fibers have been prepared by electrostatic spinning technology with the use of thermoplastic polyurethane elastomer (TPU) and multi-walled carbon nanotubes (MWNTs). Pair of parallel plate electrodes have been used to realize the directional distribution of fibers and TPU/MWNT composite membranes have also been fabricated for comparison experiment. Scanning electron microscope (SEM) and transmission electron microscope (TEM) have been employed to analyze the distribution pattern of MWNTs in TPU. It is clearly showed that MWNTs are along with the axial direction in fibers and randomly distributed in membranes. Different distribution patterns which influences the piezoresistive properties have been discussed.
     A test bench has been designed to measure fiber conductivity and piezoresistive properties. Through experimental and theoretical methods, the percolation threshold and the relationship between resistance and tensile strain have been abtained. The mechanism of piezoresistive effect has been explained and the ratio of MWNTs and TPU for the best sensitivity is achieved.
     Finnaly, the parameters that may affect the resistance of TPU/MWNT composite consisted by oriented micronano fibers in tensile status have been analyzed, such as the change of microstructures, volume ratio of conductive particles, and distributed angles of MWNTs, which lead us to conclude that volume ratio of conductive particles is the main reason for the variation of resistance. A theoretical calculation model which is able to predict the change of resistance with strain has also been proposed.
引文
[1]Engelmann J, Hanke W, Mogdans J and Bleckmann H. Hydrodynamic stimuli and the fish lateral line [J]. Nature,2000,408:51-52.
    [2]Engelmann J, Hanke W and Bleckmann H. Lateral line reception in still-and running water [J]. Compar Physiol,2002,188(7):513-526.
    [3]Liao J C, Beal D N, Lauder G V and Triantafyllou M S.2003 Fish exploiting vortices decrease muscle activity [J]. Science,2003,302:1566-1569.
    [4]Delcomyn F. Foundations of Neurobiology (New York:Freeman) [M].1996.
    [5]Dallos P and Evans B. High-frequency motility of outer hair cells and the cochlear amplifier [J]. Science,1995,267:2006-2009.
    [6]Bathellier B, Barth F G, Albert J T and Humphrey J A C. Viscosity-mediated motion coupling between pairs of trichobothria on the leg of the spider Cupiennius Salei [J]. Compar Physiol,2005,191:733-746.
    [7]Ghosh S, Sood A K and Kumar N. Carbon nanotube flow sensors [J]. Science. 2003,299:1042-1044.
    [8]Svensson L, Plaza J A, Benitez M A. Esteve J and Lora-Tamayo E. Surface micromachining technology applied to the fabrication of a FET pressure sensor [J]. Micromech Microeng,1996,6:80-83.
    [9]Wur D R, Davidson J L, Kang W P and Kinser D L. Polycrystalline diamond pressure sensor [J]. Microelectromech Syst,1995,4:34-41.
    [10]Wang L, Wold R A, Wang Y, Deng K K, Zou L, Davis R J and Trolier-McKinstry. Design, fabrication, and measurement of high-sensitivity piezoelectric microelectromechanical systems accelerometers [J]. Microelectromech Syst,2003,12:433-439.
    [11]Bernstein J, Miller R, Kelley W and Ward P. Low-noise MEMS vibration sensor for geophysical applications [J]. Microelectromech Syst,1999,8:433-438.
    [12]Liu C. Foundations of MEMS (Englewood Cliffs, NJ:Prentice-Hall),2005.
    [13]Madou M J. Fundamentals of Micro fabrication:The Science of Miniaturization 2nd edn (Boca Raton, FL:CRC Press),2002.
    [14]Fan Z F, Chen J, Zou J, Bullen D, Liu C, Delcomyn F. Design and fabrication of artificial lateral line flow sensors [J]. Journal of Micromechanics and Microengineering,2002,12,655-661.
    [15]Pandya S, Yang Y, Jones D L, Engel J, Liu C. Multisensor processing algorithms for underwater dipole localization and tracking using MEMS artificial lateral-line sensors [J]. EURASIP Journal on Applied Signal Processing,2006,1110-8657.
    [16]Zou J, Chen J, Liu C, Schutt-Aine J E. Plastic deformation magnetic assembly (PDMA) of out-of-planemicrostructures:Technology and application [J]. Journal of Microelectromechanical Systems,2001,10,302-309.
    [17]Krijnen G J M. MEMS based hair flow-sensors as model systems for acoustic perception studies [J]. Nanotechnology,2006,17,84-89.
    [18]J.M. Engel, J. Chen, N. Chen, S. Pandya, C. Liu. Development and characterization of an artificial hair cell based on polyurethane elastomer and force sensitive resistors [J]. IEEE,2005,3:1014-1017.
    [19]Chen J, Fan Z, Zou J, Engel J and Liu C. Two dimensional micromachined flow sensor array for fluid mechanics studies ASCE [J]. Aerospace Eng,2003,16:85-97.
    [20]Sumio Iijima. Helical microtubules of graphitic carbon [J]. Nature,1991,354:56-58.
    [21]Ray H Baughman, Anvar A Zakhidov, Walt A de Heer. Carbon nanotubes-the route twoward applications [J]. Science,2002,297:787-792.
    [22]M R Falvo, G J Clary, R M Taylor, et a. Bending and buckling of carbon nanotubes under large strain [J]. Nature,1997,389:582.
    [23]Young-Kyum Kwon, David Tomanek. Orientational melting in carbon nanotube ropes [J]. Phys Rev Lett,2000,84:1483.
    [24]钟代英.导电高分子材料.西安邮电学院学报,1996,1(4):30-36.
    [25]Nan C W. Physies of inhomogeneous inorganic materials [J]. Prog Mater Sei, 1993,37:1-116.
    [26]江平开,徐传骤,刘辅宜,王寿泰.金属—绝缘体复合材料介电增强的研究[J].西安交通大学学报,1997,31(2):6-11.
    [27]B WESSLING. Electrical Conductivi ty in Heterogenous Polymer Systems [J]. Polym Eng Sci,1991,31 (16):1200-1206.
    [28]O BREUER, R TCHOUDAKOV, M NARKIS, A SIEGMANN. Segregated Structures in Carbon Black Containing Immiscible Polmer Blends:HIPS/LLDPE Systems [J]. Appl Polym Sci,1997,64:1097-1106.
    [29]B G Demczyk, Y M Wang, J Cumings, et al. Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes [J]. Material Science and Engineering,2002, A334:173-178.
    [30]Savas Berber, Young-Kyum Kwon, David Tomanek. Unusually high thermal conductivity of carbon nanotubes [J]. Phys Rev Lett,2000,84:4613-4616.
    [31]Stauffer D, Aharnoy A. Introduction to percolation theory [M]. London:Taylor & Francis,1991.
    [32]Potschke P, et al. Rheologicaland dielectrical characterization of melt mixed Polycarbonate-multiwalled carbon nanotube composites [J]. Polymer,2004, 45:8863-8870.
    [33]KirkPatrik S. Percolation and conduction [J]. Rev Modem Phys,1973,45(4): 574-588.
    [34]Ramasubramaniam R, Chen J, Liu H Y. Homogeneous carbon nanotube/polymer composites for electrical applications [J]. Appl Phys Lett,2003,83(14):2928-2930.
    [35]Medalia. A.I. Rubb Chem Technol,1986, (59):432.
    [36]Sichel E K, et al. Carbon Black-polyer composites:the physics of electrically conducting composites [J]. Plastics Engineering,1982,3:53-59.
    [37]Simmons J G. Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film [J]. Appl Phys,1963,34(6):1793-1803.
    [38]Kilnura T, Yoshimura N, et al. Effect of elongation on electric resistance of carbon-polymer system [J]. Polymer,1999,40(14):4149-4152.
    [39]Xiang-Wu Zhang, Yi Pan, Qiang Zheng, et al. Time dependence of piezoresistance for the conductor filled polymer composites [J]. Journal of Polymer Science:Part B Polymer Physics,2000,38(21):2739-2749.
    [40]Van Beck, Van Pul. Internal field emission in carbon black-loaded natural rubber vulcanizates [J]. Journal of Applied Polymer Science,1962,24:651-655.
    [41]张雄伟,黄锐.高分子复合导电材料及其应用发展趋势[J].功能材料,1994,25(6):492-499.
    [42]李凤生,杨毅等编著.纳米/微米复合技术及应用[M].北京:国防工业出版社,2002.
    [43]周祚万,卢昌颖.复合型导电高分子材料导电性能影响因素研究概况[J].高分子材料科学与工程,1998,14(2):5-7.
    [44]张玉龙主编.高技术复合材料制备手册[M].北京:国防工业出版社,2003.
    [45]Hu Ning, Karube Yoshifumi, Yan Cheng. Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor [J]. Acta Materialia,2008,56(13):2929-2936.
    [46]A.I. Oliva-Aviles, F. Aviles, V. Sosa. Electrical and piezoresistive properties of multi-walled carbon nanotube/polymer composite films aligned by an electric field [J]. Carbon,2011,49:2989-2997.
    [47]lima S. Helical microtubules of graphitic carbon [J]. Nature,1991,354(6348): 56-58.
    [48]lima A S, Ihihashi T. Single-shell carbon nanotubes of 1 nm diameter [J]. Nature, 1993,363:603-605.
    [49]Bethune D S, Kiang C H, Deveries M S, et al. Cobalt-catayzed growth of carbon nanotubes with single-atomic-layerwalls [J]. Nature,1993,363:605-607.
    [50]Wang J. Carbon-nanotube based electrochemical biosensors:A review [J]. Electroanalysis,2005,17(1):7-14.
    [51]Kaushik BK, Goel S, Rauthan G. Future VLSI interconnects:optical fiber or carbon nanotube-a review [J]. Microelectronics International,2007,24(2):53-63.
    [52]Coleman JN, Khan U, Blau WJ, GunkoYK. Small but strong:A review of the mechanical properties of carbon nanotube-Polymer composites [J]. Carbon,2006, 44(9):1624-1652.
    [53]Breuer O, Sundararaj U. Big returns from small fibers:A review of polymer/carbon nanotube composites [J]. Polymer Composites,2004,25(6):630-645.
    [54]Bokobza L. Multiwall carbon nanotube elastomeric composites:A review [J]. Polymer,2007,48(17):4907-4920.
    [55]韩峰等,新型材料—碳纳米管[J].江苏化工.2001,29(4):35-37.
    [56]朴玲钰,李永丹.纳米碳管的研究进展[J].化工进展,2001,20(11):18-22.
    [57]Valentin N Popov. Carbon nanotubes:Properties and applieation [J]. Materials Science and Engineering R,2004,43(3):61-102.
    [58]M.麦亚潘,刘忠范.碳纳米管—科学与应用[M].科学出版社,2007.
    [59]Li Q W, Li Y, Zhang XF, Chikkannanavar SB, Zhao YH, Dangelewicz AM, et al. Structure-dependent elcetrical Properties of carbon nanotube fibers [J]. Advanced Materials,2007,19(20):3358-3363.
    [60]Ding F, Bolton K, Rosen A. Structure and thermal Properties of supported catalyst clusters for single-walled carbon nanotube growth [J]. Applied Surface Science,2006,252(15):5254-5258.
    [61]Lange H, Bystrzejewski M, Huczko A. Influence of cartbon structure on carbon nanotube formation and carbon arc plasma [J]. Diamond and Related Materials,2006, 15(4-8):1113-1116.
    [62]Supriyo Datta. Quantum Transport [M]. Cambridge University Press, United Kingdom,2005.
    [63]S Reich, C Thomsen. Carbon Nanotubes [M]. Wiley-VCH, Germany,2004.
    [64]L Yang, M P Anantram, J P Lu. Band Gap Change of Carbon Nanotubes:Effect of Small Uniaxial and Torsional Strain [J]. Physical Review B,1999,60: 13874-13878.
    [65]A Kleiner, S Eggert. Band gaps of primary metallic carbon nanotubes [J]. Phys Rev B,2001,63:073408-1-073408-4.
    [66]Cao J, Wang Q, Dai H. Electromechanical Properites of Metallic Quasimetallic and Semiconducting Carbon Nanotubes under Strenthicng [J]. Phys Rev Lett,2000, 85(1):157601-1-4.
    [67]Paulson S, Falvo MR, Snider N, Helser A, Hudson T, Seeger A, Taylor R M, Superfine R, Washburn S. In Situ resistance measurements of strained carbon nanotubes [J]. Appl Phys Letts,1999,75(19):2933-38.
    [68]NATO Science Series, Carbon Nanotubes, Edited by Valentin N. Popov and Philippe Lambin, Springer, Netherlands,2006.
    [69]C L Kane, E J Mele, R S Lee, J E Fischer, P Petit, H Dai, A Thess, R E Smalley, A R M Verschueren, S J Tans and C Dekker. Temperaturedependent resistivity of single wall carbon nanotubes [J]. Europhys Lett,1998,41:683-688.
    [70]G.厄特尔.聚氨酷手册[M].中国石化出版社,1992.
    [71]Estes G M, Cooper S L, Tobolsky A V. Macromol Sci Rev Macromol Chem, 1970,4:313.
    [72]Foks J, Janik H, Russo R, et al. Eur Polym,1989,25:31.
    [73]Cooper S L, Toboolsky A V. Appl Polym Sci.1966,19:1037.
    [74]AmoldC. Elastomers Plastics,1974,6:238.
    [75]C.海普本.聚氨酷弹性体[M].辽宁科学技术出版社,1985.
    [76]Chuang FS. Analysis of the thermal degradation of diacetylene-containing polyurethane copolymers [J]. Polymer Degradation and Stability,2007,92(7):1393-1407.
    [77]Eceiza A, Martin MD, de la Caba K, Kortaberria G, Gabilondo N, Corcuera MA, et al. Thermoplastie Polyurethane elastomers based on Polycarbonate diols with different soft segment molecular weight and chemical structure:Mechanical and thermal properties [J]. Polymer Engineering and science,2008,48(2):297-306.
    [78]Thirumal M, Khastgir D, Singha NK, Manjunath BS, Naik YP. Mechanical, morphological and thermal properties of rigid polyurethane foam:Effect of the fillers [J]. Cellular Polymers,2007,26(4):245-259.
    [79]Qian D, Dickey E C, Andrews R, et al. Appl Phys Lett,2000,76:2868-2870.
    [80]Pierard N, Fonseca A, Konya Z, et al. Production of shortcarbon nanotubes with open tips by ball milling [J].Chem Phys Lett,2001,335(1-2):1.
    [81]Aleksandrov I V, Raab G 1, Shestakova L O, et al. Refine-ment of tungsten microstructure by severe plastic deformation [J]. Phys Metals Metall,2002,93:493.
    [82]Kawasaki M, Langdon T G. Principles of superplasticity in ultrafine-grained materials [J]. J Mater Sci,2007,42:1782.
    [83]Zhu Y T, Langdon T G. Influence of grain size on deformation mechanisms:An extension to nanocrystalline materials [J]. Mater Sci Eng,2005, A409:234.
    [84]Huang Z M, Zhang Y Z, Kotaki M, el al. A review on polymer nanofibers by electrospinning and their applications in nanocomposites [J]. Compos Sci Technol, 2003,63(15):2223-2253.
    [85]Li D, Wang Y L, Xia Y N. Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned anays [J]. Nano Lett.2003,3(8):1167-1171.
    [86]夏苏,王政,杨荆泉,吴金辉.基于四氢呋喃/二甲基甲酰胺的聚氨酯静电纺丝[J].纺织学报,2009,30(11):18-23.
    [87]Yael Dror, Wael Salalha, Rafail L. Khalfin, Yachin Cohen, Alexander L. Yarin, and Eyal Zussman. Carbon Nanotubes Embedded in Oriented Polymer Nanofibers by Electrospinning [J]. Langmuir,2003,19 (17):7012-7020.
    [88]M Weber and M R Kamal. Estimation ofthe Volume Resistivity of Electrically Conductive Composites [J]. Polymer Composites,1997,18:711-725.
    [89]I Balberg. Excluded-volume explanation of Archie's law [J]. Physical Review B, 1986,33:3618-3620.
    [90]L Onsager. The effects of shape on the interaction of colloidal particles [J]. Annual New York Academy Science,1949,51:627-659.
    [91]I Balberg, N Binenbaum and N Wagner. Percolation thresholds in the threedimensional sticks system [J]. Physical Review Letters,1984,52:1465-1486.
    [92]I Balberg, C H Anderson, S ALexander and N Wagner. Excluded volume and its relation to the onset of percolation [J]. Physical Review B,1984,30:3933-3943.
    [93]Z Ounaies, C Park, K E Wise, E J Siochi, J S Harrison. Electrical properties of single wall carbon nanotube reinforced polyimide composites [J]. composites science and technology,2003,63:1637-1646.
    [94]I Balberg. "Univeral" percolation-threshold limits in the continuum [J]. Physical Review B,1985,31:4053-4055.
    [95]A Celzard, E McRae, C Deleuze, M Dufort, G Furdin, J F Mareche. Critical concentration in percolating systems containing a high-aspect-ratio filler [J]. Physical Review B,1996,53:6209-6214.
    [96]G W Milton. The Coherent Potential Approximation is a Realizable Effective Medium Scheme [J]. Communication in Mathematical Physics,1985,99:463-500.
    [97]Sandier JKW, Kirk JE, Kinloch IA, Shaffer MSP, Windle AH. Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composite [J]. Polymer, 2003,44:5893-5899.
    [98]Kilbride BE, Coleman JN, Fraysse J, Foumet P, Cadek M, Drury A, Hutzler S, Roth S, Blau WJ. Experimental observation of scaling laws for alternating current and direct current conductivity in polymer carbon nanotube composite thin films [J]. Appl Phys,2002,92(7):4024-4030.
    [99]Watts PCP, Hsu WK, Chen GZ, Fray DJ, Kroto HW, Walton DRM. A low resistance boron-doped carbon nanotube-polystyrene composite [J]. Appl Polym Sci, 2001,11(10):2482-88.
    [100]Safai B, Andrews R, Grulke EA. Multiwalled carbon nanotube polymer composites:synthesis and characterization of thin films [J]. Appl Polym Sci,2002, 84(14):2660-2669.
    [101]Stephan C, Nguyen TP, Lahr B, Blau W, Lefrant S, Chauvet O. Raman spectroscopy and conductivity measurements on polymer-multiwalled carbon nanotubes composites [J]. Mater Res,2002,17(2):396-400.
    [102]Potschke P, Bhattacharyya AR, Janke A. Melt mixing of polycarbonate with multiwalled carbon nanotubes:microscopic studies on the state of dispersion [J]. Eur Polym J,2004,40:137-148.
    [103]Taya M, Kim WJ, Ono K. Piezorisistivity of a short fiber/elastomer matrix composite [J]. Mech Mater,1998:28:53-59.
    [104]Nardelli MB, Bernholc J. Mechanical deformation and coherent transport in carbon nanotube [J]. Phys Rev B,1999,60(24):RI6 338-341.
    [105]Zhou C, Kong J, Dai H. Intrinsic Electrical Properties of Indiviudal Single-Walled Carbon Nanotubes with Small Band Gaps [J], Phys Rev Lett,2000: 84(24):5604-5607.
    [106]Cao J, Wang Q, Dai H. Electromechanical Properites of Metallic, Quasimetallic, and Semiconducting Carbon Nanotubes under Strenthicng [J]. Phys Rev Lett,2000, 85(1):157601-1-4.
    [107]Simmons J G. Low-Voltage Current-Voltage Relationship of Tunnel Junctions [J]. Appl Phys,1963,34:238-239.
    [108]Yasuoka T, Shimamura Y, Todoroki A. Piezorisistivity of Carbon-Nanotube Composite [J]. The Ninth Japan International SAMPE symposium,2005,341-344.
    [109]H L Cox. The elasticity and strength of paper and other fibrous materials [J]. Brithish Journal of Applied Physics,1952,3:72-79.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700