用户名: 密码: 验证码:
抗高直链大米淀粉回生的物理修饰及其回生的检测和表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
淀粉回生,即淀粉糊化后贮存过程中发生的自身结合,严重影响淀粉类食品的品质,是食品工业中一个尚未得到解决的技术难题。本文以易回生的高直链大米淀粉(HA-RS)为研究对象,在较易回生的贮存温度(4℃)和水分含量(66.7%)下,研究不同新型添加物和物性技术处理抑制淀粉回生的作用。同时,应用快速分子振动光谱技术(主要为红外和拉曼)研究了检测淀粉回生程度的可能性,应用分形理论研究了表征淀粉回生过程的分形生长。主要研究内容和结论如下:
     研究了天然抗氧化提取物茶多酚(TPLs)、越橘提取物(BE)和葡萄籽提取物(GSE)对HA-RS回生的影响。采用差示扫描量热仪(DSC)、X-射线衍射仪(XRD)和扫描电镜(SEM)评价茶多酚对淀粉回生的抑制作用。结果表明,淀粉的糊化温度和焓值随着TPLs添加量的增加而明显降低,添加16%TPLs(基于淀粉重)淀粉样品的糊化To、Tp和Tc分别提前8.93、5.69和5.13℃,糊化焓值则降低2.27J/g;在4℃下贮存,淀粉的回生焓值和重结晶随着TPLs添加量的增加逐渐降低,添加16%TPLs(基于淀粉重)的糊化淀粉样品贮存15d后没有出现回生焓值以及重结晶。在SEM相同放大倍数下回生淀粉颗粒形貌显示,随着TPLs添加量的增加颗粒逐渐减小并呈网孔状。快速粘度仪(RVA)、1H-NMR分析以及傅立叶红外(FT-IR)测定证明,TPLs能与淀粉分子在糊化过程中能发生氢键相互作用,因此可推测正是由于该相互作用干扰了在贮存过程中糊化淀粉分子间的自身结合——即回生。越橘提取物(BE)和葡萄籽提取物(GSE)也具有抗HA-RS回生的能力,其中BE的效果好于GSE。与目前公认的抗淀粉回生效果最好的添加剂海藻糖相比,TPLs、BE(越橘提取物)、GSE(葡萄籽提取物)抑制HA-RS回生的能力均好于海藻糖,顺序为TPLs > BE > GSE >海藻糖。
     研究了壳聚糖的降解方法及其产物抑制HA-RS回生能力。分别采用酶水解法和H2O2降解法制备壳低聚糖(COS)。FT-IR检测发现,酶法COS样品均含有活性氨基基团,而6mL/30min H2O2滴加量制备的COS样品中活性氨基基团被破坏。在4℃贮存7d条件下添加8%COS(基于淀粉重)糊化淀粉样品的抑制能力,5k < COSM < 10k明显,10k < COSM < 30k次之,COSM < 5k不显著。其中,5k < COSM < 10k的回生率降低14.5%,结晶率仅为空白样品的58.52%。这说明COS分子大小可影响淀粉回生的效果。6mL/30min H2O2降解法制备的COS均没有抑制HA-RS回生的能力,主要是由于COS结构发生变化,活性氨基被大量破坏。因此,COS的分子大小和活性氨基存在与否决定了其抗回生能力。
     研究了“多次瞬时加热-搅拌”物性技术对高直链米粉(HA-RF)和HA-RS回生的影响。结果表明,通过20s的加热(100℃)-搅拌(500 r/min)的三次瞬时加热-搅拌处理能明显推迟HA-RF的回生。与空白样品(5.93J/g dry flour)相比,三次瞬时加热-搅拌处理的HA-RF显示最低的回生焓值(3.04J/g dry flour)和最小的重结晶(占空白52.32%)。SEM显示三次瞬时加热-搅拌处理可增加蜂窝状结构和减少结晶形貌。糊化后样品切片的SEM发现,三次瞬时加热-搅拌处理可增大网络结构的网孔,说明此种方法可使大量聚集水存在于网络结构。但这种物性技术对HA-RS的回生不产生影响。HA-RF和HA-RS处理后的不同结果说明,米粉的“多次瞬时加热-搅拌”物性技术可赋予米蛋白的抗回生功能。
     研究了傅立叶红外(FT-IR)和激光共聚焦显微拉曼(Laser Confocal Micro-Raman,LCM-Raman)分子振动光谱快速检测HA-RS回生程度的可能性。结果表明,红外光谱中一些振动模式(包括3415cm-1附近的O-H伸缩振动,2927.46cm-1的CH2伸缩振动,1155.17cm-1处C-O和C-C伸缩振动,1081.89cm-1的C-O-H弯曲振动,1043.32cm-1、1020.18cm-1和998.96cm-1未确定的振动模式,609.41cm-1和578.55cm-1的吡喃环骨架振动模式)和拉曼光谱中一些振动模式(包括1122.37cm-1处的C-O伸缩和C-O-H弯曲振动,1082.83cm-1的C-O-H弯曲振动,1050.05cm-1的C-C伸缩振动,854.31cm-1的C-H变形振动,440.66cm-1处的吡喃环骨架振动)的相对强度均随淀粉回生程度的增加呈现降低的规律。这些振动模式的相对强度的倒数与DSC回生焓值的相关系数达到0.9以上的振动峰包括FT-IR的1081.89cm-1、1043.32cm-1、1020.18cm-1、609.41cm-1、578.55cm-1处吸收峰和LCM-Raman的854.31cm-1、1082.83cm-1、1050.05cm-1处光谱峰。因此,可以将这些振动模式作为定量检测淀粉回生程度的指标,其中LCM-Raman的灵敏性要高于FT-IR。
     研究了基于计算机图像处理技术的分形理论用于表征淀粉回生过程的可能性。贮存5、10、15d的回生淀粉样品中心切面SEM显示,回生淀粉外观形貌具有自相似性,表现出分形特征。专业分形软件分析证明,不同回生程度的淀粉样品分形行为显著。贮存5、10、15d的回生淀粉样品分形维数分别为1.8267、1.7803、1.7333。通过分析计算,淀粉回生程度(回生焓值)与分形维数呈线性关系,线性方程为y = 0.0358x + 1.5934。利用团簇-团簇聚集模型(Cluster-Cluster aggregation,CCA模型)可模拟淀粉回生分形生长过程,模拟结果与实验结果的形态和分形维数均符合。此模型可用来表征淀粉回生的生长机制。
The retrogradation of starch is self-association during storage after gelatinization, it can markedly effect on quality of starchy foods. So it is an important and unresolved technology problem in food industry. To study retrogradation, gelatinized high amylose rice starch (HA-RS) with 66.7% w/w water content was stored at 4 oC different days as model. It was investigated that the effect of new additive and physical technology on preventing the retrogradation. Then rapid molecule vibration spectrum was used to monitor the retrogradation process and fractal theory was used to characterize fractal growth of this process. The major content and results were as following:
     The effect of natural antioxidative extracts including tea polyphenols (TPLs), blueberry extract (BE) and grape seed extract (GSE) on the retrogradation of HA-RS were investigated. TPLs-fortified HA-RS exhibited retarding the retrogradation as assessed by differential scanning calorimetry (DSC), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The temperature and enthalpy of starch gelatinization obviously decreased as the TPLs level increased. Gelatinization To, Tp and Tc of starch with 16%TPLs sample were respectively 8.93, 5.69 and 5.13 oC lower and enthalpy of gelatinization reduced by 2.27J/g. After storage at 4 oC, enthalpy and recrystallization of starch retrogradation gradually decreased with the increase of TPLs content. HA-RS with 16% TPLs had almost no retrogradation enthalpy and recrystallization until storage of 15 days. It was observed at same magnification by SEM that the size of retrograded starch granules decreased and appeared cancellous shape with adding TPLs increased. The overall results demonstrate that the marked inhibitory effect of TPLs on the retrogradation of HA-RS. Subsequently, it found that high active TPLs could interact with HA-RS to form hydrogen band through Rapid Visco Analyzer (RVA), 1H-NMR and FT-IR analyses, so this interaction might disturb self-association of starch retrogradation during storage. In addition, two other natural antioxidant extracts-blueberry extract (BE) and grape seed extract (GSE) also behaved the retarding the retrogradation of HA-RS, and BE has a better effect than GSE. The effect on preventing the retrogradation of TPLs, BE and GSE were all better than trehalose which is publicly known anti-retrogradation additive. The sequence of capability was TPLs > BE > GSE > trehalose.
     It was studied that degradation methods of chitosan and the effect of product on preventing the HA-RS retrogradation. Chito-oligosaccharides (COS) were prepared using enzyme hydrolysis and hydrogen peroxide (H2O2) degradation, respectively. IR analysis proved that COS prepared by enzyme hydrolysis all had active amino-group. But this group of all the fractions of COS prepared by 6mL/30min H2O2 degradation was damaged. Subsequently, the effect of 8% COS (based on starch weight) on the retrogradation of HA-RS after storage for seven days at 4 oC was investigated. It found that the fraction of 5k < COSM < 10k had the best ability to prevent the retrogradation. Moreover, retrogradation ratio of HA-RS with this fraction was reduced by 14.5% as compared with the control and recrystallization ratio was only 58.52% of the control. Then, the inhibition capability of the fraction of 10k < COSM < 30k was followed. But the fraction of COSM < 5k has no this effect.
     Therefore, it stated that the size of molecular weight of COS decided the effect on preventing the retrogradation. But all the fractions of COS prepared by 6mL/30min H2O2 degradation had no effect on retarding the retrogradation due to changes in the structure. Therefore, molecular size and existence of active amino-group of COS determined the capability of anti-retrogradation.
     Multiple instant heating -stirring preventing the retrogradation of high amylose rice flour (HA-RF) and HA-RS were investigated. The results indicate that three instant heating (100 oC)-stirring (500 r/min) had a clear effect on retarding the retrogradation of HA-RF. Treated HA-RF by three instant heating-stirring exhibited the lowest retrogradation enthalpy (3.04J/g dry flour) as compared to the control (5.93J/g dry flour) in DSC analysis and had almost the least recrystallization (52.32% of the control) by XRD. The observation by SEM stated that treated HA-RF by this way granules had a more honeycomb-like structure and reduced the crystal morphologies. The gelatinized HA-RF by three instant heating-stirring treatments enlarged mesh of network structure by SEM section observation, it implied that network structure had more gathered water by this method treatment. But this physical technology had no effect on the retrogradation of isolated HA-RS. The different results of treated HA-RF and HA-RS by this physical technology might be due to rice protein having anti-retrogradation function after treatment.
     It was investigated that Fourier transform infrared (FT-IR) and Laser Confocal Micro-Raman (LCM-Raman) spectroscopy for rapid monitoring the retrogradation process of HA-RS. The results indicate the relative intensity of some vibrational modes reduced regularly with increasing extent of the retrogradation including O-H (3415cm-1) stretching, C-H (2927.46cm-1) stretching, C-O and C-C (1155.17cm-1) stretching, C-O-H (1081.89cm-1) bending, undetermined (1043.32cm-1, 1020.18cm-1 and 998.96cm-1) modes, skeletal modes of pyranose ring (609.41cm-1 and 578.55cm-1) in FT-IR spectra and C-O stretching and C-O-H bending (1122.37cm-1), C-O-H (1082.83cm-1) bending, C-C (1050.05cm-1) stretching, C-H (854.31cm-1) deformation, skeletal modes of pyranose ring (440.66cm-1) in Raman spectra. By the correlation analysis between retrogradation enthalpy of DSC and the relative intensity reciprocal of above vibrational modes, these peaks of 1081.89cm-1, 1043.32cm-1, 1020.18cm-1, 609.41cm-1, 578.55cm-1of FT-IR and 854.31cm-1, 1082.83cm-1, 1050.05cm-1 of LCM-Raman had correlation coefficient above 0.9, so these vibrational modes listed above may be as index to quantify the retrogradation. Meantime, the sensitivity of LCM-Raman was higher than FT-IR.
     It was studied that the probability of fractal theory to characterize process of starch retrogradation. SEM was adopted to observe section feature of retrograded HA-RS stored at 5, 10 and 15d. The surface topography of retrograded starch had self-similarity and manifested fractal characteristics. Based on professional fractal software analysis, fractal behavior of various retrograded starch was remarkable. The fractal dimensions of retrograded samples stored at 15d, 10d and 5d were respectively 1.8267, 1.7803, and 1.7333. The extent of retrogradation (retrogradation enthalpy) and the fractal dimension had a linear relationship, linear equation was y = 0.0358x + 1.5934. Cluster-Cluster aggregation model was used to simulate the fractal growth process of starch retrogradation. Simulation results resembled the feature and fractal dimension of the experimental results, so this model can be characterize the growth mechanism of starch retrogradation.
引文
1.姚远.米制品回生研究[D]: [博士学位论文].无锡:无锡轻工大学食品学院, 1999
    2.丁文平.大米淀粉回生及鲜湿米线生产的研究[D]: [博士学位论文].无锡:江南大学食品学院, 2003
    3. Inmyoung p .A study of molecular structure and functional properties of rice starches [D].USA, California Davis of university, 2005
    4. Russell P L. The ageing of gels from starches of different amylose/amylopection content studied by differential scanning calorimetry [J]. Journal of Cereal Science, 1987, 6:147-158
    5.赵思明,熊善柏,张声华.淀粉老化动力学研究述评[J].农业机械学报, 2000, 31 (6): 114-117
    6.赵思明,熊善柏,俞兰苓.稻米淀粉糊老化动力学研究[J].农业工程学报, 2003, 19 (1): 37-39
    7. Hsu C L. Influence of cooling rate on glass transition temperature and starch retrogradation during low temperature storage [D]. USA, University of Missouri-Columbia, 1998
    8. Hoover R, Sosulski F W. Studies on the functional characteristics and digestibility of starches from Phaseolus vulgaris biotypes [J]. Starch/St?ke, 1985, 37: 181-191
    9. Orford P D, Ring S G, Carrot V, et al. The effect of concentration and botanical source on the gelation and retrogradation of starch [J]. Journal of the Science of Food and Agriculture, 1987, 39 (2): 169-177
    10. Bao J S, Sun M, Corke H. Analysis of genotypic diversity in starch thermal and retrogradation properties in nonwaxy rice [J]. Carbohydrate Polymers, 2007, 67: 174-181
    11. Xu L J, Xie J K, Kong XL, et al. Analysis of genotypic and environmental effects on rice starch. 2. thermal and retrogradation properties [J]. Journal of Agricultural and Food Chemistry, 2004, 52: 6017-6022
    12. Biliaderis C G, Zawistowski J. Viscoelastic behavior of aging starch gels: effects of concentration, temperature, and starch hydrolysates on network properties [J]. Cereal Chemistry, 1990, 67: 240-246
    13. Fan J, Marks B P. Retrogradation kinetics of rice flours as influenced by cultivar [J]. Cereal Chemistry,1998, 75 (1): 153-155
    14. Ishiguro K, Kitahara K, Yamakawa O, et al. Retrogradation of sweetpotato starch [J]. Starch/St?ke, 2000, 52 (1): 13-17
    15. Wursch P, Gumy D. Inhibition of amylopectin retrogradation by partial beta-amylolysis [J]. Carbohydrate Research, 1994, 256: 129-137
    16. Parovuori P. Effects of enzymatically modified amylopectin on the rheological properties of amylose-amylopectin mixed gels [J]. Food Hydrocolloids, 1997, 11: 471-477
    17. Shi Y C. Seib P A. The structure of four waxy starches related to gelatinization and retrogradation [J]. Carbohydrate Research, 1992, 227: 131-145
    18. Kim J O, Kim W S, Shin M S, et al. A comparative study on retrogradation of rice starch gels by DSC, X-ray andα-amylase methods [J]. Starch/St?ke, 1997, 49:71-75
    19. Roos Y H. Phase transitions in food systems. In“Handbook of Food Engineering,”D. R. Heldman and D. B. Lund (Ed.), p. 153. Marcel Dekker Inc., New York, NY.
    20. Champagne E T. Rice starch composition and characteristics [J]. Cereal Food World, 1996, 41(11): 833-838
    21. Collison R. Starch retrogradation. Ch. 6. In“Starch and its Derivatives,”4th ed. p. 194. Richard Clay (The Chaucer Press) Ltd., UK, 1968.
    22. Fisher D K, Thompson D B. Retrogradation of maize starch after thermal treatment within and above the gelatinization temperature range. Cereal Chemistry, 1997, 74(3): 344
    23. Karim A A, Norziah M H, Seow C C. (2000). Methods for the study of starch retrogradation [J]. Food Chemistry, 2000, 71: 9-36
    24. Bao J S, Sun M, Zhu L H, et al. Analysis of quantitative trait locus for some starch properties in rice (Oryza satiVa L.): thermal properties, gel texture, swelling volume [J]. Journal of Cereal Science, 2004, 39: 379-385
    25. Bao J S, He P, Li S G, et al. Comparative mapping quantitative trait loci controlling the cooking and eating quality of rice (Oryza satiVa L.) [J]. Science Agricultural Sinica, 2000, 33: 8-13
    26. He P, Li S G, Qian Q, et al. Genetic analysis of rice grain quality [J]. Theoretical and Applied Genetics, 1999, 98: 502-508
    27. Bao J S, Corke H, He P, et al. Analysis of quantitative trait loci for starch properties of rice based on an RIL population [J]. Acta Botanica Sinica, 2003, 45: 986-994
    28. Bao J S, Corke H, Sun M. Nucleotide diversity in starch synthase IIa and validation of single nucleotide polymorphisms in relation to starch gelatinization temperature and other physicochemical properties in rice (Oryza sativa L.) [J]. Theoretical and Applied Genetics, 2006, 113 (7): 1171-1183
    29. Gidley M J, Bulpin P V. Crystallization of malto-oligosaccharides as models of the crystalline forms of starch: minimum chain-length requirements for the formation of double helixes [J]. Carbohydrate Research, 1987, 161:291-300
    30. Yao Y, Zhang J, Ding X. Partial beta-amylolysis retards starch retrogradation in rice products. Journal of Agricultural and Food Chemistry, 2003, 51: 4066-4071
    31. Lu S, Chen L N, Lii C Y. Correlations between the fine structure, physiochemical properties, and retrogradation of amylopectins from Taiwan rice varieties [J]. Cereal Chemistry, 1997, 74:34-39
    32. Kim W S, Kim J, Krishnan H B, et al. Expression of Escherichia coli branching enzyme in caryopses of transgenic rice results in amylopectin with an increased degree of branching [J]. Planta, 2005, 220: 689-695
    33. Palacios H R, Schwarz P B, D’Appolonia B L. Effect ofα-amylases from different sources on the retrogradation and recrystallization of concentrated wheat starch gels: Relationship to bread staling [J]. Journal of Agricultural and Food Chemistry, 2004, 52(19): 5978-5986
    34. Morgan K R, Hutt L, Gerrard J, et al. Staling in starch breads: The effect of antistalingα-amylase [J]. Starch/St?ke, 1997, 49: 54-59
    35. Leman P, Goesaert H, Delcour J A. Residual amylopectin structures of amylase-treated wheat starch slurries reflect amylase mode of action [J]. Food Hydrocolloids, 2009, 23: 153-164
    36. Wursch P, Gumy D. Inhibition of amylopectin retrogradation by partial beta-amylolysis [J]. Carbohydrate Research, 1994, 256: 129-137
    37. Defloor I, Delcour J A. Impact of maltodextrins and antistaling enzymes on the differential scanning calorimetry staling endotherm of baked bread doughs [J]. Journal of Agricultural and Food Chemistry, 1999, 47: 737-741
    38. León A, Durán E, Benedito de Barber C. Firming of starch gels and amylopectin retrogradation as related to dextrin production byα-amylase [J]. European Food Research and Technology, 1997, 205: 131-134
    39. Shim J H, Seo N S, Roh S A, et al. Improved bread-baking process using Saccharomyces cerevisiae displayed with engineered cyclodextrin glucanotransferase [J]. Journal of Agricultural and Food Chemistry, 2007, 55 (12): 4735-4740
    40. Lee S H, Kim Y W, Lee S, et al. Modulation of cyclizing activity and thermostability of cyclodextrin glucanotransferase and its Application as an antistaling enzyme [J]. Journal of Agricultural and Food Chemistry, 2002, 50 (6): 1411-1415
    41. Auh J H, Chae H Y, Kim Y R, et al. Modification of rice starch by selective degradation of amylose using alkalophilic bacillus cyclomaltodextrinase [J]. Journal of Agricultural and Food Chemistry, 2006, 54(6): 2314-2319
    42. Seo N S, Roh S A, Auh J H, et al. Structural characterization of rice starch in rice cake modified by Thermus scotoductus 4-alpha-glucanotransferase (TS alpha GTase) [J]. Journal of food science, 2007, 72(6): C331-C336
    43. Park J H, Park K H, Jane J L. Physicochemical properties of enzymatically modified maize starch using
    4-alpha-glucanotransferase [J]. Food science and biotechnology, 2007, 16 (6): 902-909
    44. Singh N, Chawla D, Singh J. Influence of acetic anhydride on physicochemical morphological and thermal properties of corn and potato starch [J]. Food Chemistry, 2004, 86: 601-608
    45. Lawal O S. Succinyl and acetyl starch derivatives of a hybrid maize: Physicochemical characteristics and retrogradation properties monitored by differential scanning calorimetry [J]. Carbohydrate Research, 2004, 339: 2673-2682
    46. Yeh A, Yeh S. Some characteristics of hydroxypropylated and cross linked rice starch [J]. Cereal Chemistry, 1993, 70: 596-601
    47. Perera C, Hoover R. Influence of hydroxypropylation on retrogradation properties of native, defattedand heat-moisture treated potato starches [J]. Food Chemistry, 1999, 64: 361-375
    48. Adebowale K O, Lawal O S. Functional properties and retrogradation behaviour of native and chemically modified starch of mucuna bean (Mucuna pruriens) [J]. Journal of the Science of Food and Agriculture, 2003, 83, 1541-1546
    49. Wurzburg O B. Converted starches [M]. In O. B. Wurzburg (Ed.), Modified starches: Properties and uses. Boca Raton, FL: CRC press, 1986. 17-41
    50. An H J, King J M. Using ozonation and amino acids to change pasting properties of rice starch [J]. Journal of food science, 2009, 74 (3): C278-C283
    51. Chung H J, Woo K S, Lim S T. Glass transition and enthalpy relaxation of cross-linked corn starches [J]. Carbohydrate Polymers, 2004, 55: 9-15
    52. Singh J, Kaur L, McCarthy O J. Factors influencing the physicochemical morphological thermal and rheological properties of some chemically modified starches for food application -A review [J]. Food Hydrocolloids, 2007, 21: 1-22
    53. Morikawa K, Nishinari K. Effects of concentration dependence of retrogradation behaviour of dispersions for native and chemically modified potato starch [J]. Food Hydrocolloids, 2000, 14, 395-401
    54. Yook C, Pek U H, Park K H. Gelatinization and retrogradation characteristics of hydroxypropylated cross-linked rices [J]. Journal of Food Science, 1993, 58: 405-407
    55. Karim A A, Nadiha M Z, Chen F K, et al. Pasting and retrogradation properties of alkali-treated sago (Metroxylon sagu) starch [J]. Food Hydrocolloids, 2008, 22: 1044-1053
    56. de Delahaye E P, Techeira N. Chemical and functional properties of native and modified Yam (Dioscorea alata) starch [J]. Interciencia, 2009, 34 (4): 280-285
    57. Gudmundsson M, Eliasson A C. Retrogradation of amylopectin and the effect of amylose and added surfactants/emulsifiers [J]. Carbohydrate Polymers, 1990, 13: 295-315
    58. Biliaderis C G, Tonogai J R. Influence of lipids on the thermal and mechanical properties of concentrated starch gels [J]. Journal of Agricultural and Food Chemistry, 1991, 39: 833-840
    59. Biliaderis C G, Prokopowich D J, Jacobson M R, et al. Effect of n-alkyl glucosides on waxy maize and wheat starch retrogradation [J]. Carbohydrate Research, 1996, 280: 157-169
    60. Smits A L M, Kruiskamp P H, van Soest J J G, et al. The influence of various small plasticisers and malto-oligosaccharides on the retrogradation of (partly) gelatinised starch [J]. Carbohydrate Polymers, 2003, 51: 417-424
    61. Tian Y Q, Xu X M, Li Y, et al. Effect ofβ-cyclodextrin on the long-term retrogradation of rice starch [J]. European Food Research and Technology, 2009, 228: 743-748
    62. Jang J K, Lee S H, Cho S C, et al. Effect of sucrose on glass transition, gelatinization, and retrogradation of wheat starch [J]. Cereal Chemistry, 2001, 78 (2): 186-192
    63. Farhat I A, Blanshard J M V, Descamps M, et al. Effect of sugars on retrogradation of waxy maize starch-sugar extrudates [J]. Cereal Chemistry, 2000, 77 (2): 202-208
    64. Prokopowich D J, Biliaderis C G. A comparative study of the effect of sugars on the thermal and mechanical properties of concentrated waxy maize, wheat, potato and pea starch gels [J]. Food Chemistry, 1995, 52: 255-262
    65. Babic J, Subaric D, Milicevic B. Influence of trehalose, glucose, fructose, and sucrose on gelatinisation and retrogradation of corn and Tapioca starches [J]. Czech Journal of Food Sciences, 2009, 27 (3): 151-157
    66. Takahiko M, Takashi S, Toshiyuki S, et al.ToshioDesiccation and prevention of retrogradation using trehalose. USA, 5693788 [P], 1997-12-02
    67. Muadklay J, Charoenrein S. Effects of hydrocolloids and freezing rates on freeze-thaw stability of tapioca starch gels [J]. Food Hydrocolloids, 2008, 22 (7): 1268-1272
    68. Babic J, Subaric D, Ackar D, et al. Effects of pectin and carrageenan on thermophysical and rheological properties of tapioca starch [J]. Czech journal of food sciences, 2006, 24 (6): 275-282
    69. Funami T, Noda S, Hiroe M, et al. Functions of iota-carrageenan on the gelatinization and retrogradation behaviors of corn starch in the presence or absence of various salts. Food Hydrocolloids, 2008, 22 (7): 1273-1282
    70. Funami T, Kataoka Y, Omoto T, et al. Food hydrocolloids control the gelatinization and retrogradation behavior of starch. 2a. Functions of guar gums with different molecular weights on the gelatinization behavior of corn starch [J]. Food Hydrocolloids, 2005b, 19: 15-24
    71. Funami T, Kataoka Y, Omoto T, et al. Food hydrocolloids control the gelatinization and retrogradation behavior of starch. 2b. Functions of guar gums with different molecular weights on the retrogradation behavior of corn starch [J]. Food Hydrocolloids, 2005c, 19: 25-36
    72. Khanna S, Tester R F. Influence of purified konjac glucomannan on the gelatinisation and retrogradation properties of maize and potato starches [J]. Food Hydrocolloids, 2006, 20 (5): 567-576
    73. Lee M H, Baek M H, Cha D S, et al.. Freeze-thaw stability of sweet potato starch gel by polysaccharide gums [J]. Food Hydrocolloids, 2002, 16: 345-352
    74. Barcenas M E, Rosell C M. Different approaches for increasing the shelf life of partially baked bread: Low temperatures and hydrocolloid addition [J]. Food chemistry, 2007, 100 (4): 1594-1601
    75. Funami T, Kataoka Y, Noda S, et al. Functions of fenugreek gum with various molecular weights on the gelatinization and retrogradation behaviors of corn starch-1: Characterizations of fenugreek gum and investigations of corn starch/fenugreek gum composite system at a relatively high starch concentration: 15 w/v% [J]. Food Hydrocolloids, 2008, 22 (5): 763-776
    76. Funami T, Kataoka Y, Noda S, et al. Functions of fenugreek gum with various molecular weights on the gelatinization and retrogradation behaviors of corn starch-2: Characterizations of fenugreek gum and investigations of corn starch/fenugreek gum composite system at a relatively high starch concentration: 5 w/v% [J]. Food Hydrocolloids, 2008, 22 (5): 777-787
    77. Ward K E J, Hoseney R C, Seib P A. Retrogradation of amylopectin from maize and wheat starches [J]. Cereal Chemistry, 1994, 71: 150-155
    78. Santos E, Rosell CM, Collar C. Gelatinization and retrogradation kinetics of high-fiber wheat flour blends: A calorimetric approach [J]. Cereal Chemistry, 2008, 85 (4): 457-465
    79. Lockwood S, King J M, Labonte D R. Altering pasting characteristics of sweet potato starches through amino acid additives [J]. Journal of Food Science, 2008, 73 (5): C373-C377
    80. Liang X M. Effects of lipids, amino acids, and beta-cyclodextrin on gelatinization, pasting, and retrogradation properties of rice starch [D]. USA, Louisiana state University, 2001
    81. Appelqvist IAM, Debet M R M. Starch-Biopolymer Interactions-A Review [J]. Food reviews international, 1997, 13 (2): 163-224
    82. Obanni M, BeMiller J N. Properties of some starch blends [J]. Cereal Chemistry, 1997, 74: 431-436
    83. Novello-Cen L, Betancur-Ancona, D. Chemical and functional properties of Phaseolus lunatus and Manihot esculenta starch Blends [J]. Starch/St?ke, 2005, 57: 431-441
    84. Ortega-Ojeda F E, Eliasson A C. Gelatinisation and retrogradation behaviour of some starch mixtures [J]. Starch/St?rke, 2001, 53: 520-529
    85. Yao Y, Zhang J, Ding X. Retrogradation of starch mixtures containing rice starch [J]. Jounal of Food Science, 2003, 68 (1): 260-265
    86. Alves R M L, Grossmann M V E, Silva R S S F. Gelling properties of extruded yam (Dioscorea alata) starch [J]. Food Chemistry, 1999, 67: 123-127
    87. Doona C J, Feeherry F E, Baik M Y. Water dynamics and retrogradation of ultrahigh pressurized wheat starch [J]. Journal of Agriculture and Food Chemistry, 2006, 54: 6719-6724
    88. Stute R, Klingker R W, Boguslawski S, et al. Effects of high pressuires treatment on starches [J]. Starch/St?ke, 1996, 48: 399-408
    89. Luo Z G, Fu X, He X W, et al. Effect of ultrasonic treatment on the physicochemical properties of maize starches differing in amylose content [J]. Starch/St?rke, 2008, 60: 646-653
    90. Ciesla K, Eliasson A C. DSC studies of retrogradation and amylose-lipid complex transition taking place in gamma irradiated wheat starch [J]. Nuclear Instruments and Methods in Physics Research B, 2007, 265: 399-405
    91. Gonzalez Z, Perez E. Evaluation of lentil starches modified by microwave irradiation and extrusion cooking [J]. Food Research International, 2002, 35: 415-420
    92. Gunaratne A, Hoover R. Effect of heat-moisture treatment of the structure and physicochemiscal properties of tuber and root starches [J]. Carbohydrate Polymers, 2000, 49, 425-437
    93. Takaya T, Sano C, Nishinari K. Thermal studies on the gelatinisation and retrogradation of heat–moisture treated starch [J]. Carbohydrate Polymers, 2000, 41: 97-100
    94. Adebowale K O, Henle T, Schwarzenbolz U, et al. Modification and properties of African yam bean (Sphenostylis stenocarpa Hochst. Ex A. Rich.) harms starch I: heat moisture treatments and annealing [J]. Food Hydrocolloids, 2009, 23 (7): 1947-1957
    95. Lawal O S. Studies on the hydrothermal modifications of new cocoyam (Xanthosoma sagittifolium) starch [J]. International Journal of Biological Macromolecules, 2005, 37 (5): 268-277
    96. Lim S T, Chang E H, Chung H J. Thermal transition characteristics of heat–moisture treated corn and potato starches [J]. Carbohydrate Polymers, 2001, 46 (2): 107-115
    97. FAO. FAO Statement on Biotechnology. Food and Agricultural Organization of the United Nations, Rome. 2001, www.fao.org
    1.杨贤强,王岳飞,陈留记等.茶多酚化学[M].上海:上海科学技术出版社, 2003.3
    2.孙志栋,陈国,潘巨忠等.茶年糕加工技术初步研究及茶叶功能成分分析[J].安徽农学通报, 2007, 13 (3): 127-128
    3. Zhou Y B, Wang D F, Zhang L, et al. Effect of polysaccharides on gelatinization and retrogradation of wheat starch [J]. Food Hydrocolloids, 2008, 22: 505-512
    4. Karim A A, Norziah M H, Seow C C. Methods for the study of starch retrogradation [J]. Food Chemistry, 2000, 71: 9-36
    5. Lin J H, Chang Y H. Molecular degradation rate of rice and corn starches during acid-methanol treatment and its relation to the molecular structure of starch [J]. Journal of Agricultural and Food Chemistry, 2006, 54: 5880-5886
    6.洪燕等.淀粉化学实验[M].江南大学食品学院, 2002: 7-8
    7. Rodríguez-Sandovala E, Fernández-Quinterob A, Cuvelierc G, et al. Starch retrogradation in cassava flour from cooked parenchyma [J]. Starch/St?ke, 2008, 60: 174-180
    8.张燕萍.变性淀粉制造与应用[M].化学工业出版社, 2004, 4
    9. Bao J S, Sun M, Corke H. Analysis of genotypic diversity in starch thermal and retrogradation properties in nonwaxy rice [J]. Carbohydrate Polymers, 2007, 67: 174-181
    10. Perez C M, Villareal C P, Juliano B O, et al. Amylopectin-staling of cooked nonwaxy milled rices and starch gels [J]. Cereal Chemistry, 1993, 70: 567-571
    11. Villareal C P, Juliano B O, Hizukuri S. Varietal differences in amylopectin staling of cooked waxy milled rices [J]. Cereal Chemistry, 1993, 70: 753-758
    12. Zhu F, Cai Y Z, Sun M, et al. Effect of phytochemical extracts on the pasting, hermal, and gelling properties of wheat starch [J]. Food Chemistry, 2009, 112: 919-923
    13. Baker L A, Rayas-Duarte P. Freeze-thaw stability of amaranth starch and the effects of salt and sugars [J]. Cereal chemistry, 1998, 75: 301-303
    14. Hoover R, Senanayake S P J N. Composition and physicochemical properties of oat starches [J]. Food Research Internation, 1996, 29: 15-26
    15. Fearn T, Russell P L. A kinetic study of bread staling by differential scanning calorimetry: The effect of specific volume [J]. Journal of the Science of Food and Agriculture, 1982, 33: 537-541
    16.丁文平,檀亦兵,丁霄霖.水分含量对大米淀粉糊化和回生的影响[J].粮食与饲料工业, 2003, 8: 44-47
    17.纪莹.传统米制松糕的货架期预测模型研究[D]. [博士学位论文].无锡:江南大学食品学院, 2008
    18. Escarpa A, González M C, Morales M D, et al. An approach to the influence of nutrients and other food constituents on resistant starch formation [J]. Food Chemistry, 1997, 60: 527-532
    19. Belitz H D, Grosch W. 1999. Food Chemistry. 2nd (Ed) (pp. 302-304). Pringer-Verlag: Berlin.
    20. Beta T, Corke H. Effect of ferulic acid and catechin on sorghum and maize starch pasting properties [J]. Cereal Chemistry, 2004, 81: 418-422
    21. Ma X F, Yu J G, Feng J. Urea and formamide as a mixed plasticizer for thermoplastic starch [J]. Polymer International, 2004, 53: 1780-1785
    22. Yu J G, Wang N, Ma X F. The effects of citric acid on the properties of thermoplastic starch plasticized by glycerol [J]. Starch/St?ke, 2005, 57: 494-504
    23.蹇华丽,高群玉,梁世中.抗性淀粉结晶性质的研究[J].食品科学, 2003, 24 (7): 44-47
    24.李作为,芮汉明,张立彦.淀粉老化对微波膨化影响的研究[J].粮食与饲料工业, 2000, 1: 42-43
    25. Arámbula V G, González H J, Ordorica F C A. Physicochemical, structural and textural properties of tortillas from extruded instant corn flour supplemented with various types of corn lipids [J]. Journal of Cereal Science, 2001, 33: 245-252
    26. Zobel H F. Starch crystal transformations and their industrial importance [J]. Starch/St?ke, 1988a, 40: 1-7
    27. ThiréR M S M, Simáo R A, Andradeb C T. High resolution imaging of the microstructure of maize starch films [J]. Carbohydrate Polymers, 2003, 54: 149-158
    28. Osella C A, Sánchez H D, Carrara C R, et al. Water redistribution and structural changes of starch during storage of a gluten-free bread [J]. Starch/St?ke, 2005, 57: 208-216
    29. Beta T, Corke H. Effect of ferulic acid and catechin on sorghum and maize starch pasting properties [J]. Cereal Chemistry, 2004, 81: 418-422
    30.马骁飞.耐回生热塑性淀粉的结构与性能研究[D]: [博士学位论文].天津:天津大学, 2004
    31.蒋先明,何伟平.简明红外光谱识谱法[M].广西师范大学出版社, 1992
    32. Khan N, Mukhtar H. Tea polyphenols for health promotion. Life Sciences, 2007, 81, 519-533
    33. Miao S, Roos, Y H. Crystallization kinetics and X-ray diffraction of crystals formed in amorphous lactose, trehalose, and lactose/trehalose mixtures [J]. Journal of Food Science, 2005, 70(5): E350-E358
    1.康战燕,耿丽华,李树品.甲壳素与壳聚糖在食品中的应用[J].山东科学, 1999, 12 (1): 55-58
    2.魏新林,夏文水.甲壳低聚糖的特性研究[J].水产科学, 2004, 23(2): 15-19
    3. Smits A L M, Kruiskamp P H, van Soest J J G, et al. The influence of various small plasticisers and malto-oligosaccharides on the retrogradation of (partly) gelatinised starch [J]. Carbohydrate Polymers, 2003, 51: 417-424
    4.蒋英,刘羿君,封云芳等.过氧化氢氧化降解壳聚糖及其分子量分布的研究[J].浙江工程学院学报, 2004, 12(4): 279- 282
    5. Sun T, Zhou D X., Xie J L, et al. Preparation of chitosan oligomers and their antioxidant activity [J]. European Food Research and Technology, 2007, 225, 451-456
    6.蒋先明,何伟平.简明红外光谱识谱法[M].广西师范大学出版社, 1992
    7. Tian F, Liu Y, Hu K, et al. Study of the depolymerization behavior of chitosan by hydrogen peroxide [J]. Carbohydrate Polymers, 2004, 57: 31-37
    8. Qin C Q, Du Y M, Xiao L. Enzymic preparation of water-soluble chitosan and their antitumor activity [J]. International Journal of Biological Macromolecules, 2002, 31: 111-117
    9. Qin C Q, Du Y M, Xiao L. Effect of hydrogen peroxide treatment on the molecular weight and structure of chitosan [J]. Polymer Degradation and Stability, 2002, 76: 211-218
    10. Lia J, Dua Y M, Yang J H, et al. Preparation and characterisation of low molecular weight chitosan and chito-oligomers by a commercial enzyme [J]. Polymer Degradation and Stability, 2005, 87: 441-448
    11. Durán E, León A, Benedito de Barber C. Effect of low molecular weight dextrins on gelatinization and retrogradation of starch [J]. European Food Research and Technology, 2001, 212: 203-207
    12. Miyazaki M, Maeda T, Morita N. Effect of various dextrin substitutions for wheat flour on dough properties and bread qualities [J]. Food Research International, 2004, 37: 59-65
    13.赵凯.淀粉非化学改性技术[M].化学工业出版社, 2008: 44
    14. León A, Durán E, Benedito de Barber C. Firming of starch gels and amylopectin retrogradation as related to dextrin production byα-amylase [J]. European Food Research and Technology, 1997, 205: 131-134
    15. Rojas J A, Rosell CM, Benedito de Barber C. Role of maltodextrins in the staling of starch gels [J]. European Food Research and Technology, 2001, 212: 364-368
    16. Wang Y J, Jane J L. Correlation between glass transition temperature and starch retrogradation in the presence of sugars and maltodextrins [J]. Cereal Chemistry, 1994, 71: 527-531
    1. Rao P A, Nussinovitch A, Chinachoti P. Effects of surfactants on amylopectin recrystallization and of recoverability of bread crumb during storage [J]. Cereal Chemisty, 1992, 69, 613-618
    2. Roach R R, Hoseney R C. Effects of certain surfactants on the starch in bread [J]. Cereal Chemistry, 1995, 72: 578-582
    3. Martin M L, Hoseney R C. A mechanism of bread firming. II. Role of starch hydrolysing enzymes [J]. Cereal Chemistry, 1991, 68: 503-507
    4. Lasztity R. The Chemistry of Cereal Proteins, second ed. CRC Press, Boca Raton, 1996.
    5. Adoration P R, Li X L, Okita T W, et al. Characterization of poorly digested protein of cooked rice protein bodies [J]. Cereal Chemistry, 1993, 70: 101-105
    6. Harbitz O. (1983). Gel formation of potato starch in the presence of a surfactant [J]. Starch/St?rke, 1983, 35: 198-202
    7. Chrastil J. Protein–starch interactions in rice grains. Influence of storage of oryzenin and starch [J]. Journal of Agricultural and Food Chemistry, 1990, 38: 1804-1809
    8. Dahle L K. Wheat protein–starch interaction.Ⅰ.some starch binding effects of wheat–flour proteins [J]. Cereal Chemistry, 1971, 48: 706-714
    9. Haralampu S G. Resistant starch—a review of the physical properties and biological impact of RS3 [J]. Carbohydrate Polymers, 2000, 41: 285-292
    10. Escarpa A, González M C, Morales M D, et al. An approach to the influence of nutrients and other food constituents on resistant starch formation [J]. Food Chemistry, 1997, 60: 527-532
    11. Yao Y, Zhang J M, Ding X L. Structure-retrogradation relationship of rice starch in purified starches and cooked rice grains: a statistical investigation [J]. Journal of Agricultural and Food Chemistry, 2002, 50: 7420-7425
    12.张守文.面包科学与加工工艺[M].中国轻工业出版社, 2000
    13. Kim J O, Kim W S, Shin M S, et al. A comparative of rice starch andα-Amylase study on retrogradation gels by DSC, X-Ray methods [J]. Starch/St?rke, 1997, 49: 71-75
    14. Zobel H F, Kulp K. The staling mechanism. In: Hebeda, R.E., Zobel, H.F. (Eds.), Baked Goods Freshness: Technology, Evaluation, and Inhibition of Staling. Marcel Dekker, New York, 1996. 1-64
    15. Primo-Martmin C, van Nieuwenhuijzen N H, Hamer R J, et al. Crystallinity changes in wheat starch during the bread-making process: Starch crystallinity in the bread crust [J]. Journal of Cereal Science, 2007, 45: 219-226
    16. Hoover R, Manuel H. A comparative study of the physicochemical properties of starches from two lentil cultivars [J]. Food Chemistry, 1995, 53: 275-284
    17. Whistler R L, Daniel J R. Carbohydrates. In O. R. Fennema (Ed.), Food chemistry. New York: Marcel Dekker, 1985. 110-111
    18. Yeh A, Yeh L. Some characteristics of hydroxypropilated and cross-linked rice starch [J]. Cereal Chemistry, 1993, 70: 273-276
    19. Karim A A, Norziah M H, Seow C C. Methods for the study of starch retrogradation [J]. Food Chemistry, 2000, 71: 9-36
    20. Yuan R C, Thompson D B. Freeze–thaw stability of three waxy maize starch pastes measured by centrifugation and calorimetry. Cereal Chemistry, 1998, 75: 571-573
    21. González-Soto R A, Mora-Escobedo R, Hernández-Sánchez H, et al. The influence of time and storage temperature on resistant starch formation from autoclaved debranched banana starch [J]. Food Research International, 2007, 40: 304-310
    1. Karim A A, Norziah M H, Seow C C. Methods for the study of starch retrogradation [J]. Food Chemistry, 2000, 71: 9-36
    2. Bulkin B J, Dea I C M, Kwak Y T. Characterization of Starch Retrogradation Using Raman Spectroscopy. In: G.O. Phillips, D.J. Wedlock and P.A. Williams, Editors, Gums and Stabilizers for the Food Industry 3, Elsevier, 1986: 485-496
    3. Fechner P M, Siegfried W, Peter K, et al. Studies of the retrogradation process for various starch gels using Raman spectroscopy [J]. Carbohydrate Research, 2005, 340: 2563-2568
    4. Wilson R H, Goodfellow B J, Belton P S, et al. Comparison of Fourier Transform MID infrared spectroscopy and near infrared spectroscopy with differential scanning calorimetry for the study of the staling of bread [J]. Journal of the Science of Food and Agriculture, 1991, 54: 471-483
    5. Xie F, Dowell F E, Sun X Z S. Comparison of near-infrared reflectance spectroscopy and texture analyzer for measuring wheat bread changes in storage [J]. Cereal Chemistry, 80 (1): 25-29
    6. Bao J S, Shen Y, Jin L. Determination of thermal and retrogradation properties of rice starch using near-infrared spectroscopy [J]. Journal of Cereal Science, 2007, 46: 75-81
    7. Seung-Yong Cho, Sung-Gil Choi, Chul Rhee. Determination of degree of retrogradation of cooked rice by near infrared reflectance spectroscopy [J]. Journal of Near Infrared Spectroscopy, 1998, 6 (A): 355-359
    8. van Soest J J G, de-Wit D, Tournois H, et al. Retrogradation of potato starch as studied by Fourier Transform Infrared Spectroscopy [J]. Starch/St?rke, 1994, 46: 453-457
    9. van Soest J J G, Tournois H, de-Wit D, et al. Short-range structure in (partially) crystalline potato starch determined with attenuated total reflectance Fourier-transform IR spectroscopy [J]. Carbohydrate Research, 1995, 279: 201-214
    10. Smits A L M, Ruhnau F C, Vliegenthart J F G, et al. Ageing of starch based systems as observed with FT-IR and solid state NMR spectroscopy [J]. Starch/ St?rke, 1998, 50: 478- 483
    11. Ogawa K, Yamazaki I, Yoshimura T, et al. Studies on the retrogradation and structural properties of waxy corn starch [J]. Bulletin of the Chemical Society of Japan, 1998, 71 (5): 1095-1100
    12.蒋先明,何伟平.简明红外光谱识谱法[M].广西师范大学出版社, 1992
    13. Ispas-Szabo P, Ravenelle F, Hassan I, et al. Structure–properties relationship in cross-linked high-amylose starch for use in controlled drug release [J]. Carbohydrate Research, 2000, 323: 163-175
    14.陈玲,黄嫣然,李晓玺等.红外光谱在研究改性淀粉结晶结构中的应用[J].中国农业科学2007, 40 (12): 2821-2826
    15. Kizil R, Irudayaraj J, Seetharaman K. Characterization of irradiated starches by using FT-Raman and FTIR spectroscopy [J]. Journal of Agricultural and Food Chemistry, 2002, 50: 3912-3918
    16. Lewandowicz G, Soral-S′mietana M. Starch modification by iterated syneresis [J]. Carbohydrate Polymers, 2004, 56: 403-413
    17. Santha N, Sudha K G, Vijaykumari K P, et al. Raman and Infrared spectra of starch samples of sweet potato and cassava [J]. Proc. Indian Acad. Sci. (Chem.Sci.) 1990, 102: 705-712
    18. Fechner P M, Wartewig S, Kiesow A, et al. Influence of water on molecular and morphological structure of various starches and starch derivatives [J]. Starch/St?rke, 2005, 57: 605-615
    19. Schuster K C, Ehmoser H, Gapes J R, et al. On-line FT-Raman spectroscopic monitoring of starch gelatinisation and enzyme catalysed starch hydrolysis [J]. Vibrational Spectroscopy, 2000, 22: 181-190
    1.张济忠.分形[M].北京:清华大学出版社, 1995: 111-140
    2.孙霞,吴自勤,黄畇.分形原理及应用[M].中国科学技术大学出版社, 2003: 23
    3.段晨龙,赵跃民,唐利刚等.废弃电路板材料断口的分形表征[J].中南大学学报(自然科学版), 2009, 40(1): 78-82
    4. Peleg M, Normand M D. Characterization of the ruggedness of instant coffee particle shape by natural fractals. Journal of Food Science, 1985, 50: 829-831
    5. Marangoni A G, Rousseau D. Is plastic fat governed by the fractal nature of the fat crystals? JAOCS, 1996, 73: 991-994
    6. Narine S S, Marangoni A. The difference between cocoa butter and salatrim lies in the microstructure of the fat crystal network. Journal of the American Oil Chemists’Society, 1999a, 76: 7-13
    7. Narine S S, Marangoni A. Mechanical and structural model of fractal networks of fat crystals at low deformations. Physical Review E, 1999b, 60: 6991-7000
    8. Tao Y Z, Xu W L. Microwave-assisted solubilization and solution properties of hyperbranched polysaccharide [J]. Carbohydrate Research, 2008, 343: 3071-3078
    9. Nagai T, Yano T. Fractal structure of deformed potato starch and its sorption characteristics [J]. Journal of Food Science, 1990, 55: 1334-1337
    10. Hanselmann R, Burchard W, Ehrat M, et al. Structural properties of fractionated starch polymers and their dependence on the dissolution process [J]. Macromolecules, 1996, 29: 3277-3282
    11. Suzuki T, Chiba A, Yano T. Interpretation of small angle X-ray scattering from starch on the basis of fractals [J]. Carbohydrate Polymer, 1997, 34: 357-363
    12. Calzetta-Resio A, Aguerre R J, Suarez C. Analysis of the sorptional characteristics of amaranth starch.Journal of Food Engineering, 1999, 42: 51-57
    13. Genovese1 D B, Rao M A. Role of starch granule characteristics (volume fraction, rigidity, and fractal dimension) on rheology of starch dispersions with and without amylose [J]. Cereal Chemistry, 2003, 80(3): 350-355
    14. Herrera-Gómez A, Canónico-Franco M, Ramos G. Aggregate formation and segregation of maize starch granules cooked at reduced moisture conditions [J]. Starch-St?rke, 2005, 57 (7): 301-309
    15. Bouchon P, Pyle D L. Studying oil absorption in restructured potato chips [J]. Journal of Food Science, 2004, 69(3): FEP115-FEP12
    16. Thanatuksorn P, Pradistsuwana C, Jantawat P, et al. Effect of surface roughness on post-frying oil absorption in wheat flour and water food model [J]. Journal of the Science of Food and Agriculture, 2005, 85(15): 2574-2580
    17. Putaux J L, Buléon A, Chanzy H. Network formation in dilute amylose and amylopectin studied by TEM [J]. Macromolecules, 2000, 33: 6416-6422
    18.李平,张廷安,汪秉宏等.灰度阈值对图像分形特征参数提取的分析[J].东北大学学报(自然科学版)2006, 27 (1): 57-60
    19. Barrett A H, Peleg M. Applications of fractals analysis to food structure [J]. LWT-Food Science and Technology, 1995, 28: 553-563
    20. Rahman M S. Physical meaning and interpretation of fractal dimensions of fine particles measured by different methods [J]. Journal of Food Engineering, 1997, 32: 447-456
    21.杨书申,邵龙义. MATLAB环境下图像分形维数的计算[J].中国矿业大学学报, 2006, 35(4):
    478-482
    22. Tao Y Z, Xu W L. Microwave-assisted solubilization and solution properties of hyperbranched polysaccharide [J]. Carbohydrate Research, 2008, 343(18): 3071-3078
    23.蒋俊,祝昌军,高玲等.氮化硅陶瓷中的分形生长[J].中国有色金属学报, 2001, 11: 172-175
    24.吴黎黎.分形生长的图象生成及其处理[D]: [硕士学位论文].杭州:浙江工业大学, 2003
    25. Helali N, Rezig B. Computer simulation of fractal growth via a 2D-MECA percolative system representingan extended nutrient releasingsource (NRS) [J]. Physica A, 2001, 292: 9-25
    26.吴航,冉祥海,张坤玉等.红外光谱法研究交联淀粉的退化行为[J].高等学校化学学报, 2006, 27 (4): 775-778
    27. van Soest J J G, de Wit D, Tournois H, et al. Retrogradation of potato starch as studied by Fourier Transform Infrared Spectroscopy [J]. Starch/Starke, 1994, 46: 453-457
    28. Lewen K S. The development and application of nuclear magnetic cross relaxation spectroscopy to model and retrograding starch systems [D]. Doctoral dissertation, University of Illinois at Urbana-Champaign, 2002
    29.周有丹,梁虹.团簇-团簇聚集模型及模拟实现[J].计算技术与自动化, 2005, 24 (2): 81-84
    30. Gould H, Tobochnik J, Christian W G. An introduction to computer simulation methods : applications to physical systems =计算机模拟方法在物理学中的应用,第3版[M].北京:高等教育出版社: Pearson Education Asia, 2006: 525-527
    31.任婷婷.微生物颗粒反应器的水动力学[D].合肥:中国科学技术大学, 2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700