用户名: 密码: 验证码:
惰性阳极铝电解槽物理场仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铝电解槽是炼铝的核心设备,其发展与进步代表了电解铝工艺的革新。传统铝电解工艺一直沿用消耗性的炭素阳极,由此产生了一系列的问题,惰性阳极及其电解新工艺因能解决这些问题而成为国际铝业界的研究焦点,因此开展惰性阳极铝电解槽设计方面的研究具有十分重要的意义。
     本文以满足国家“863”重点项目中关于“构建扩大试验用(5kA级)惰性阳极铝电解槽”的需求为目标,以本课题组研发的一种金属陶瓷惰性阳极为应用原型,开发了惰性阳极铝电解槽的物理场仿真方法。主要研究成果如下:
     (1)在充分研究用金属陶瓷惰性阳极替换现行炭素阳极后电解槽在结构和工艺参数等方面所发生的显著变化的基础上,建立了惰性阳极铝电解槽“电-磁-热-流-应力”等物理场的仿真计算方法及程序。经验证,此方法合理可行、收敛性好、精度较高,为惰性阳极铝电解槽的开发提供了技术支持。
     (2)针对本课题组研发的一种深杯状金属陶瓷惰性阳极,深入研究了其热应力的分布与演变规律。计算结果表明:压应力作用于阳极大部分区域,在阳极与电解质及空气接触的三相界面处存在较大的轴向拉应力,是阳极破裂的主要原因;通过优化阳极结构参数、阳极浸入电解质中的深度以及电解工艺参数(包括阳极电流密度和电解温度等)可以达到减缓阳极热应力的目的,例如,适当增加阳极高度、阳极中孔深度和降低中孔半径、阳极浸入电解质中的深度以及降低电解温度均可降低阳极热应力。
     (3)针对已有的铝电解槽熔体流动场(即流场)仿真计算方法对流场(尤其是结构相对较复杂的惰性阳极周边的流场)仿真计算效果不佳的问题,提出了铝电解槽准三相流仿真计算方法。通过将气体作用等效为体积力作用,将复杂的电解质-铝液-气泡三相流计算转化为多步两相流计算,从而能够实现在气体及电磁力共同作用下电解质和铝液流场的耦合计算。应用该方法对惰性阳极铝电解槽的流场仿真计算表明,通过优化阳极结构参数、阳极浸入电解质中的深度以及电解工艺参数可以达到优化电解质和铝液流场的目的。
     (4)提出了多种5kA级惰性阳极铝电解槽结构原型,研究了电解槽的电热场、热应力、电磁场、流场等物理场的分布特征。对比分析表明,采用六阳极为一阳极组的电解槽比采用八阳极为一阳极组的电解槽具有更优的物理场分布,适宜电解槽采用。在此基础上仿真研究了过热度及电流强度对5kA级惰性阳极铝电解槽物理场的影响,这些结论为惰性阳极电解槽的建造与试验提供了技术支撑。
Aluminum reduction cell is the core equipment for extracting aluminum, and its development and progress represent the renovation of aluminum electrolysis. Consumable carbon anodes have always been adopted in conventional aluminum electrolysis process, which has a series of problems. Owing to the problem-solving capabilities, inert anode and new reduction techniques using inert anode have become the research focus of international aluminum industry. Thus the research in designing aluminum reduction cell using inert anode has great significance.
     With the construction of an experimental (5kA grade) inert-anode aluminum reduction cell prepared for a national "863" program as the main target of this research and with a kind of cermet inert anode prepared by our research group as the application prototype, methods for simulating physical fields in inert-anode aluminum reduction cell have been developed. The main conclusions and achievements are as follows:
     (1) Based on full study of the remarkable change of cell structure and technical parameters caused by the replacement of carbon anode with inert anode, methods and procedures for the simulation of "electric-magnetic-thermal-flow-stress" fields in the inert-anode aluminum reduction cell have been developed, which have been proved to be reasonable and feasible with good convergence and high precision and can provide technical support for the development of inert-anode aluminum reduction cell.
     (2) Focusing on a kind of "deep-cup" cermet inert anode developed by our group, the distribution and evolution of its thermal stress have been studied thoroughly. The results show that compressive stress exists on most region of the anode and large tensile stress exists at the three-phase contact surface of the anode, bath and air, which is the major cause of anode cracking. By optimizing the anode structure parameters, anode immersion depth and technical parameters including current intensity and electrolysis temperature etc., the thermal stress of the inert anode can be relaxed. For example, increasing the anode height and central hole depth and reducing central hole radius, anode immersion depth and electrolysis temperature properly can be helpful to the reduction of the thermal stress of the inert anode.
     (3) As the calculation effect of the existing method for simulation of the flow-field in aluminum reduction cell, especially of the flow field around the inert anodes with complicated structure, is not good enough, a quasi simulation method has been put forward. By equating the gas effect to volume force, the complex calculation of electrolyte-aluminum-bubble three-phase flow can be converted to the multi-step calculation of two-phase flow, which can realize the coupled calculation of electrolyte and aluminum under the combined effect of gas and electromagnetic force. The flow field simulation of the inert-anode aluminum reduction cell shows that the flow field of electrolyte and aluminum can be optimized by optimizing the anode structure, anode immersion depth and technical parameters.
     (4) Several structure prototypes of 5kA-grade inert-anode aluminum reduction cell have been put forward and the distribution of the physical fields including thermoelectric, thermal stress, electromagnetic and flow fields has been investigated. The comparison and analysis show that distribution of the physical fields in the cell with six anodes as an anode group is better than that in the cell with eight anodes as an anode group, so the former is more suitable for 5kA-grade inert-anode aluminum reduction cell. On the basis of above investigation, the effect of superheat temperature and current intensity on the physical fields has been studied. All these conclusions provide technical support for the building and experiment of the inert-anode aluminum reduction cell.
引文
[1]杨重愚.轻金属冶金学.北京:冶金工业出版社,1996.113
    [2]Vanvoren C,Homsi P,Basquin J L,et al.AP 50:The Pechiney 500 kA cell.In:Anjier J L,eds.Light Metals 2001.New Orleans,LA,USA:TMS,2001.221-226
    [3]王家伟.Na_3AlF_6-K_3AlF_6-AlF_3体系的初晶温度、Al_2O_3溶解能力及NiFe_2O_4基惰性阳极低温电解腐蚀研究:[博士学位论文].长沙:中南大学,2008
    [4]张勇,马思聪,董远霞.浅谈中国铝电解技术发展与进步.世界有色金属,2008,(1):22-25
    [5]周卫铭,郭忠诚.铝电解惰性阳极材料的研究现状.冶金从刊,2004,(1):1-3
    [6]吴贤熙.铝电解惰性阳极研究现状.轻金属,2000,(1):41-43
    [7]陈喜平,刘凤琴.铝电解惰性阳极的研究现状.有色金属(冶炼部分),2002,(4):23-26
    [8]刘业翔.功能电极材料及其应用.长沙:中南工业大学出版社,1996.137-166
    [9]周乃君,姜昌伟,周萍,等.大型预焙铝电解槽物理场的耦合仿真技术及应用.有色金属,2003,55(4):71-75
    [10]Galasiu R,Lingvayu I.SnO_2 based semiconducting ceramics as inert anodes.Acta chimica Hungarica,1992,129(34):557-563
    [11]Grjotheim K,Kvande H,Qiu Z X,et al.Aluminium electrolysis in a 100A laboratory cell with inert electrodes.Metall,1988,42(6):587-589
    [12]刘业翔,Thonstad J.SnO_2基惰性阳极在NaF-AlF_3-Al_2O_3熔体中的析氧过电压.中南矿冶学院学报,1982,(3):66-74
    [13]Russell P G.Oxygen evolution at platinum and ceramic oxide anodes in cryolite-alumina melts.In:Newman D S,Sabounqi M-L,Mamantov G,et al.,eds.Proceedings of the 4th International Symposium on Molten Salts.San Francisco,CA,USA:Electrochemical Soc Inc,1984.430-442
    [14]郭峰.铝电解用金属基惰性阳极材料的开发与展望.粉末冶金材料科学与工程,2007,12(3):134-138
    [15]Haugsrud R,Per K.On the high-temperature oxidation of Cu-rich Cu-Ni alloys.Oxidation of Metals,1998,50(3/4):189-213
    [16]Sadoway D R.Inert anodes for the Hall-Heroult cell:The ultimate materials challenge.JOM,2001,53(5):34-35
    [17]Hym J N,Sadoway D R.Cell testing of metal anodes for aluminum electrolysis. In:Das S K,eds.Light Metals 1993.Denver,CO,USA:TMS,1993.475-483
    [18]Hryn J N,Pellin M J.Dynamic inert metal anode.In:Eckert C E,eds.Light Metals 1999.San Diego,CA,USA:TMS,1999.377-381
    [19]Glucina M,Hyland M.Laboratory-scale performance of a binary Cu-Al alloy as an anode for aluminium electrowinning.Corrosion Science,2006,48(9):2457-2469
    [20]Haugsrud R.On the influence of non-protective CuO on high-temperature oxidation of Cu-rich Cu-Ni based alloys.Oxidation of Metals,1999,52(5):427-445
    [21]石忠宁,徐君莉,邱竹贤,等.Cu-Ni-Al金属阳极抗氧化耐腐蚀性能研究.轻金属,2003,(6):22-24
    [22]Beck T R.Non-consumable metal anode for production of aluminum with low-temperature fluoride melts.In:Evans J W,eds.Light Metals 1995.Las Vegas,NV,USA:TMS,1995.355-360
    [23]Beck T R.Production of aluminum with low temperature fluoride melts.In:Mannweiler U,eds.Light Metals 1994.San Francisco,CA,USA:TMS,1994.417-423
    [24]Thonstad J,Kisza A,Hives J.Anode overvoltage on metallic inert anodes in low-melting bath.In:Galloway T J,eds.Light Metals 2006.San Antonio,TX,USA:TMS,2006.373-377
    [25]石忠宁,徐君莉,邱竹贤,等.Ni-Fe-Cu惰性金属阳极的抗氧化和耐蚀性能.中国有色金属学报,2004,14(4):591-595
    [26]王淑霞,秦庆伟,赵恒勤,等.铝电解惰性阳极的研究现状.矿产保护与利用,2001,(6):45-48
    [27]张刚.铝电解用NiFe_2O_4-10NiO基金属陶瓷惰性阳极的致密化与强韧化:[博士学位论文].长沙:中南大学,2008
    [28]赖延清,田忠良,秦庆伟,等.复合氧化物陶瓷在Na_3AlF_6Al_2O_3熔体中的溶解性.中南工业大学学报(自然科学版),2003,34(3):245-248
    [29]Weyand J D.Manufacturing processes used for the production of inert anodes.In:Miller R E,eds.Light Metals 1986.New Orleans,LA,USA:Metallurgical Soc of AIME,1986.321-339
    [30]Olsen E,Thonstad J.Behaviour of nickel ferrite cermet materials as inert anodes.In:Hale W,eds.Light Metals 1996.Anaheim,CA,USA:TMS,1996.249-257
    [31]张雷,周科朝,李志友,等.气氛对NiFe_2O_4陶瓷烧结致密化的影响.中国有 色金属学报,2004,14(6):1002-1006
    [32]张雷,李志友,周科朝,等.大尺寸NiFe_2O_4-10NiO/17Ni型金属陶瓷惰性阳极的制备.中国有色金属学报,2008,18(2):294-300
    [33]Zhang L,Li Z Y,Zhou K C,et al.Sintering of the NiFe_2O_4-10NiO/xNi Cermet.Journal of Central South University of Technology,2006,13(4):332-336
    [34]张刚,赖延清,田忠良,等.铝电解用NiFe_2O_4基金属陶瓷的制备.材料科学与工程学报,2003,21(4):510-513
    [35]田忠良,赖延清,张刚,等.铝电解用NiFe_2O_4-Cu金属陶瓷惰性阳极的制备.中国有色金属学报,2003,13(6):1540-1545
    [36]焦万丽,张磊,姚广春,等.NiFe_2O_4及添加TiO_2的尖晶石的烧结过程.硅酸盐学报,2004,32(9):1150-1153
    [37]席锦会,姚广春,刘宜汉,等.V_2O_5对镍铁尖晶石烧结机理及性能的影响.硅酸盐学报,2005,33(6):683-687
    [38]张刚,李劫,赖延清,等.CaO掺杂对10NiO-NiFe_2O_4复合陶瓷致密化及导电性能的影响.材料与冶金学报,2007,6(3):214-219
    [39]张刚,李劼,赖延清,等.CaO对17Ni/(10NiO-NiFe_2O_4)金属陶瓷的致密化及力学性能的影响.复合材料学报,2007,24(6):110-115
    [40]Li J,Zhang G,Lai Y Q,et al.Densification and sintering dynamics of 10NiO-NiFe_2O_4 composites doped with CaO.Journal of Central South University of Technology,2007,14(5):629-632
    [41]孙小刚.Ni-NiFe_2O_4-NiO金属陶瓷惰性阳极的致密化及力学性能研究:[硕士学位论文].长沙:中南大学,2005
    [42]赖延清,张刚,李劫,等.金属含量对Cu-Ni-NiFe_2O_4金属陶瓷导电性能的影响.中南大学学报(自然科学版),2004,35(6):880-884
    [43]Tian Z L,Lai Y Q,Li J,et al.Effect of Ni content on corrosion behavior of Ni/(10NiO-90NiFe_2O_4) cermet inert anode.Transactions of Nonferrous Metals Society of China,2008,18(2):361-365
    [44]Lai Y Q,Li X Z,Li J,et al.Effect of metallic phase species on the corrosion resistance of 17M/(10NiO-NiFe_2O_4) cermet inert anode of aluminum electrolysis.Journal of Central South University of Technology,2006,13(3):214-218
    [45]段华南.Cu-Ni-NiO-NiFe_2O_4金属陶瓷在冰晶石-氧化铝熔体中的电解腐蚀行为研究:[硕士学位论文].长沙:中南大学,2005
    [46]Xi J H,Yao G C,Liu Y H.Effect of additive V_2O_5 on sintering and corrosion rate of cermet inert anodes in aluminium electrolysis.In:Galloway T J,eds.Light Metals 2006.San Antonio,TX,USA:TMS,2006.479-483
    [47]Liu Y H,Yao G C,Luo H J,et al.Study on the nickel ferrate spinel inert anode for aluminum electrolysis.In:Galloway T J,eds.Light Metals 2006.San Antonio,TX,USA:TMS,2006.415-420
    [48]周正明.导流型铝电解槽的电热场仿真与优化研究:[硕士学位论文].长沙:中南大学,2004
    [49]程迎军.铝电解槽阳极-熔体电热场及惰性阳极热应力的计算机仿真与优化:[硕士学位论文].长沙:中南大学,2003
    [50]Haupin W E.Calculating thickness of containing walls frozen from melt.In:Edgeworth T C,eds.Light Metals 1971.New York,NY,USA:TMS,1971.188-194
    [51]Kryukovsky V A,Scherbinin S A.Mathematical modelling of heat transfer in pots lining materials for production of non-ferrous metals.In:Cutshall E R,eds.Light Metals 1992.San Diego,CA,USA:TMS,1992.557-562
    [52]Pfundt H,Vogelsang D,Gerling U.Calculation of the crust profile in aluminium reduction cells by thermal computer modelling.In:Campbell P G,eds.Light Metals 1989.Las Vegas,NV,USA:Metallurgical Soc of AIME,1989.371-377
    [53]Bruggeman J N,Danka D J.Two-dimensional thermal modeling of the Hall-Heroult cell.In:Blckert C M,eds.Light Metals 1990.Anaheim,CA,USA:TMS,1990.203-209
    [54]Ahmed H A,Elrefale F A,El-Demerdash M F,et al.Development of a thermal model for prebaked aluminium reduction cells at the Aluminum Company of Egypt(Egyptalum).In:Das S K,eds.Light Metals 1993.Denver,CO,USA:TMS,1993.375-378
    [55]Tomasino T,Martin C,Waz E,et al.Numerical modeling of heat transfer around an aluminum reduction pot shell.In:Tabereaux A T,eds.Light Metals 2004.Carlotte,NC,USA:TMS,2004.433-438
    [56]Kiss L I,Dassylva-Raymond V.Freeze thickness in the aluminum electrolysis cells.In:Deyoung D H,eds.Light Metals 2008.New Orleans,LA,USA:TMS,2008.431-436
    [57]Tabsh I,Dupuis M,Gomes A.Process simulation of aluminum reduction cells.In:Hale W,eds.Light Metals 1996.Anaheim,CA,USA:TMS,1996.451-457
    [58]Dupuis M.Thermo-electric design of a 400 kA cell using mathematical models:A tutorial.In:Peterson R D,eds.Light Metals 2000.Nashville,TN,USA:TMS, 2000.297-302
    [59]Dupuis M.Computation of aluminum reduction cell energy balance using ANSYS finite element models.In:Welch B J,eds.Light Metals 1998.San Antonio,TX,USA:TMS,1998.409-417
    [60]Dupuis M.Thermo-electric analysis of the grande-baie aluminum reduction cell.In:Mannweiler U,eds.Light Metals 1994.San Francisco,CA,USA:TMS,1994.339-342
    [61]Arkhipov G V,Pingin V V,Tretyakov Y A,et al.Simulation of cell thermoelectric field with consideration of electrochemical processes.In:Sorlie M,eds.Light Metals 2007.Orlando,FL,USA:TMS,2007.327-332
    [62]梁芳慧,冯乃祥,孙阳.利用槽膛形状的计算机仿真技术确定160kA预焙槽最佳铝液高度.轻金属,2000,(1):33-36
    [63]李相鹏,李劫,薛铁鹏,等.大型预焙铝电解槽槽膛内形模拟计算.冶金自动化,2003,(4):30-33
    [64]梅炽,汤洪清,孟柏庭.铝电解槽电、热解析数学模型及数值仿真试验.中南矿冶学院学报,1986,52(6):29-37
    [65]程迎军,李劫,赖延清,等.铝电解槽的电热模型及其应用.有色金属(冶炼部分),2002,(6):23-27
    [66]罗海岩,陆继东,吴君棋,等.铝电解槽三维电热场计算分析.轻金属,2002,(9):42-46
    [67]罗海岩,陆继东,黄来,等.铝电解槽三维电热场的ANSYS分析.华中科技大学学报(自然科学版),2002,30(7):4-6
    [68]喻海良,崔青玲,刘相华,等.300kA铝电解槽三维电热场电位ANSYS分析.有色矿冶,2004,20(3):30-32
    [69]崔青玲,喻海良,田庭辽,等.铝电解槽三维电热场耦合分析.有色金属(冶炼部分),2005,(4):28-30
    [70]李劼,程迎军,赖延清,等.大型预焙铝电解槽电、热场的有限元计算.计算物理,2003,20(4):351-355
    [71]李相鹏.75kA导流型铝电解槽物理场仿真与优化:[博士学位论文].长沙:中南大学,2004
    [72]裴海灵,周乃君,周正明.导流型铝电解槽抗热扰动能力研究.轻金属,2005,(3):26-29
    [73]李劼,邓星球,赖延清,等.160kA预焙铝电解槽在低分子比和低温条件下的三维电热场.中南大学学报(自然科学版),2004,35(6):875-879
    [74]邓星球.160kA预焙阳极铝电解槽阴极内衬电-热-应力计算机仿真研究:[硕士学位论文].长沙:中南大学,2004
    [75]周孑民,李茂,王长宏.石墨化阴极铝电解槽电热场仿真研究.炭素技术,2007,26(2):6-9
    [76]王长宏.300kA石墨化阴极铝电解槽工业试验与数值仿真研究:[硕士学位论文].长沙:中南大学,2006
    [77]Hashimoto T,Ikeuchi H.Computer simulation of dynamic behavior of an aluminum reduction cell.In:Mcmirm C J,eds.Light Metals 1980.Las Vegas,NV,USA:Metallurgical Soc of AIME,1980.273-283
    [78]Paulsen K A,Huglen R,Andersen J A,et al.Variations of side lining temperature,anode position and current/voltage load in aluminum reduction cell.In:Mcminn C J,eds.Light Metals 1980.Las Vegas,NV,USA:Metallurgical Soc of AIME,1980.325-341
    [79]张明杰,刘新平.45kA自焙阳极电解槽动态热平衡.有色金属(冶炼部分),1992,(5):12-15
    [80]Zhao H X,Zhang M J,Liu X P,et al.Influence of environmental temperature on energy balance of electrolysis cells.In:Cutshall E R,eds.Light Metals 1992.San Diego,CA,USA:TMS,1992.468-470
    [81]周萍.铝电解槽槽膛内形的连续监测:[硕士学位论文].长沙:中南工业大学,1991
    [82]游旺,王前普.铝电解槽槽膛内形在线仿真理论研究.中国有色金属学报,1998,8(4):695-699
    [83]游旺.大型预焙铝电解槽槽膛内形在线动态仿真研究:[博士学位论文].长沙:中南工业大学,1997
    [84]Mittag J,Bemhauser E,Friedli H.Sodium,its influence on cathode life in theory and practice.In:Cutshall E R,eds.Light Metals 1992.San Diego,CA,USA:TMS,1992.789-793
    [85]伍洪泽,文丕华.180kA级铝电解槽槽壳应力数值计算方法.中国有色金属学报,1995,5(1):30-33
    [86]Sayed H S,Megahed M M,Omar H H,et al.Assessment of cathode swelling pressure using nonlinear finite element technique.In:Hale W,eds.Light Metals 1996.Anaheim,CA,USA:TMS,1996.383-388
    [87]Sayed H S,Megahed M M,Dawi F M,et al.Identification of the nonlinear swelling pressure distribution of the aluminum reduction cell.In:Huglen R,eds. Light Metals 1997.Orlando,FL,USA:TMS,1997.303-308
    [88]曹国法.大型铝电解槽槽壳热应力分析和上部结构设计.铝镁通讯,1991,(1):23-30
    [89]Wu Y W,Yao S H.Optimum investigation on structure of aluminum reduction cell potshell.In:Cutshall E R,eds.Light Metals 1991.New Orleans,LA,USA:TMS,1991.431-434
    [90]Megahed M M,Sayed H S,Hasan M S,et al.Finite element modeling for structural analysis of shells of reduction cells.In:Hale W,eds.Light Metals 1996.Anaheim,CA,USA:TMS,1996.375-381
    [91]霍岱明,朱丹青.浅谈摇篮式铝电解槽槽壳的设计及结构改进.轻金属,2002,(10):46-50
    [92]Dupuis M,Asadi G V,Read C M,et al.Cathode shell stress modelling.In:Cutshall E R,eds.Light Metals 1991.New Orleans,LA,USA:TMS,1991.427-430
    [93]梁利.200kA铝电解槽非线性有限元结构分析:[硕士学位论文].武汉:华中科技大学,2003
    [94]王泽武,蒙培生,曾青,等.铝电解槽三维热应力场非线性有限元分析.北京科技大学学报,2007,29(9):948-952
    [95]Larsen B,Sorlie M.Stress analysis of cathode bottom blocks.In:Campbell P G,eds.Light Metals 1989.Las Vegas,NV,USA:Metallurgical Soc of AIME,1989.641-646
    [96]Dupuis M.Evaluation of thermal stress due to coke preheat of a Hall-Heroult.In:Mannweiler U,eds.Proceeding of the ANSYS 6th international conference.San Francisco,CA,USA:CIM,1994.15-23
    [97]Arkhipov G V,Pingin V V.Investigating thermoelectric fields and cathode bottom integrity during cell preheating,start-up and initial operating period.In:Schneider W,eds.Light Metals 2002.Seattle,WA,USA:TMS,2002.347-354
    [98]李相鹏,李劼,赖延清,等.聚铝沟排布对导流型铝电解槽热应力分布的影响.中国有色金属学报,2007,17(6):979-983
    [99]张钦菘.160kA预焙铝电解槽焦粒焙烧过程电-热-应力场计算机仿真研究:[硕士学位论文].长沙:中南大学,2005
    [100]伍玉云.300kA铝电解槽电热应力及钠膨胀应力的:[硕士学位论文].长沙:中南大学,2007
    [101]张晓泳,周科朝,李志友,等.一种二维梯度电极模型的表面热应力缓和 设计.材料科学与工程学报,2003,21(5):697-702
    [102]Li J,Zhang Q S,Lai Y Q,et al.Thermal stresses relaxation design of Ni/NiFe_2O_4 system functionally graded cermet inert anode.Acta Metallurgica Sinica(English Letters),2005,18(5):635-641
    [103]Ziegler D P,Kozarek R L.Hall-Heroult cell magnetics measurements and comparison with calculations.In:Cutshall E R,eds.Light Metals 1991.New Orleans,LA,USA:TMS,1991.381-391
    [104]Dupuis M,Tabsh I.Thermo-electro-magnetic modeling of a Hall-Heroult cell.http://www.genisim.qc.ca/website/ansy94.htm,1994
    [105]Gyimesi M,Layers J D,Pawlak T,et al.Application of the general potential formulation.IEEE Transactions on Magnetics,1993,29(2):1345-1347
    [106]Gyimesi M,Lavers J D.Generalized potential formulation for 3-D magnetostatic problems.IEEE Transactions on Magnetics,1992,28(4):1924-1929
    [107]Severo D S,Schneider A F,Pinto E C V,et al.Modeling magnetohydrodynamics of aluminum electrolysis cells with ANSYS and CFX.In:Kvande H,eds.Light Metals 2005.San Francisco,CA,USA:TMS,2005.475-480
    [108]Kacprzak D,Gustafsson M J,Taylor M P.A finite element analysis of busbars and magnetic field of an aluminum reduction cell.IEEE Transactions on Magnetics,2006,42(10):3192-3194
    [109]李国华,李德祥,邱竹贤.用双标量法计算铝电解槽的磁场.有色金属,1993,45(4):55-59
    [110]Li G H,Li D X,Li D F.Further studies on calculation method of magnetic field in aluminium reduction cell.In:Hale W,eds.Light Metals 1996.Anaheim,CA,USA:TMS,1996.389-396
    [111]杨溢,李朗如.大型铝电解槽磁场的有限元法综合分析.有色金属,2002,54(3):66-69
    [112]杨溢,黄祖琨,姚世焕,等.利用有限元法计算铝电解槽电磁场.有色冶炼,2002,(6):21-24
    [113]闫照文,汪友生,苏东林,等.大型铝电解槽三维电磁场的数值模拟.电工技术学报,2003,18(5):23-26
    [114]闫照文,苏东林,李朗如,等.基于ANSYS分析的铝电解槽电磁场计算方法.电机与控制学报,2005,9(4):326-329
    [115]姜昌伟,梅炽,周乃君,等.用标量电位法与双标量磁位法计算铝电解槽三维磁场.中国有色金属学报,2003,13(4):1021-1025
    [116]Li M,Zhou J M.Numerical simulation of busbar configuration in large aluminum electrolysis cell.Journal of Central South University of Technology,2008,15(2):271-275
    [117]刘杰.大型预焙铝电解槽电磁场设计与优化研究:[硕士学位论文].长沙:中南大学,2007
    [118]刘伟.铝电解槽多物理场数学建模及应用研究:[博士学位论文].长沙:中南大学,2008
    [119]Tarapore E D.Magnetic fields in aluminum reduction cells and their influence on metal pad circulation.In:Peterson W S,eds.Light Metals 1979.New Orleans,LA,USA:Metallurgical Soc of AIME,1979.541-550
    [120]Blanc J M,Entner P.Application of computer calculations to improve electromagnetic behaviour of pots.In:Mcminn C J,eds.Light Metals 1980.Las Vegas,NV,USA:Metallurgical Soc of AIME,1980.285-295
    [121]Arita Y,Ikeuchi H.Numerical calculation of bath and metal convection patterns and their interface profile in al reduction cells.In:Bell G M,eds.Light Metals 1981.Chicago,IL,USA:Metallurgical Soc of AIME,1981.357-371
    [122]Robl R F.Metal flow dependence on ledging in Hall-Heroult cells.In:Adkins E M,eds.Light Metals 1983.Atlanta,GA,USA:Metallurgical Soc of AIME,1983.449-456
    [123]Ai D K.Hydrodynamics of the Hall-Heroult cell.In:Bohner H O,eds.Light Metals 1985.New York,NY,USA:Metallurgical Soc of AIME,1985.593-607
    [124]Wahnsiedler W E.Hydrodynamic modeling of commercial Hall-Heroult cells.In:Zabreznik R D,eds.Light Metals 1987.Denver,CO,USA:Metallurgical Soc of AIME,1987.269-287
    [125]Potocnik V,Laroche F.Comparison of measured and calculated metal pad velocities for different prebake cell designs.In:Anjier J L,eds.Light Metals 2001.New Orleans,LA,USA:TMS,2001.419-425
    [126]Doheim M A,E1-Kersh A M,Kotb N A,et al.Modeling and measurements of metal pad velocity in 208 kA end to end prebaked cells.In:Deyotmg D H,eds.Light Metals 2008.New Orleans,LA,USA:TMS,2008.419-424
    [127]黄兆林,杨志峰,吴江航.铝电解槽内湍流流动与界面波动的数值模拟.计算物理,1994,11(2):179-184
    [128]冯乃祥,孙阳,刘刚.铝电解槽热场、磁场和流场及其数值计算.沈阳:东北大学出版社,2001.143-180
    [129]吴建康,黄珉,黄俊,等.铝电解槽电解质-铝液流动及铝液表面变形计算.中国有色金属学报,2003,13(1):241-244
    [130]黄俊,吴建康,姚世焕.铝电解磁流体流动的数值计算.有色冶炼,2002,(6):25-26
    [131]周萍,梅炽,周乃君,等.三种湍流模型对Al电解槽内Al液流场预测的比较及其工业测试.金属学报,2004,40(1):77-82
    [132]周萍.铝电解槽内电磁流动模型及铝液流动数值仿真的研究:[博士学位论文].长沙:中南大学,2002
    [133]姜昌伟,梅炽,周乃君,等.铝电解槽内电-磁-流场的耦合仿真方法及应用.计算物理,2006,23(6):665-672
    [134]姜昌伟.预焙阳极铝电解槽电场、磁场、流场的耦合仿真方法及应用研究:[博士学位论文].长沙:中南大学,2003
    [135]周孑民,李茂,蒋胜矩.铝电解槽磁流体的两相模拟及其界面追踪.中南大学学报(自然科学版),2007,38(2):267-270
    [136]李茂,周孑民,王长宏.300kA铝电解槽电、磁、流多物理场耦合仿真.过程工程学报,2007,7(2):354-359
    [137]刘伟,李劫,赖延清,等.铝电解槽电磁流场的数学建模与应用.中国有色金属学报,2008,18(5):909-916
    [138]Solheim A,Johansen S T,Rolseth S,et al.Gas driven flow in Hall-Heroult cells.In:Campbell P G,eds.Light Metals 1989.Las Vegas,NV,USA:Metallurgical Soc of AIME,1989.245-252
    [139]Fortin S,Gerhardt M,Gesing A J.Physical modelling of bubble behaviour and gas release from aluminum reduction cell anodes.In:McGeer J P,eds.Light Metals 1984.Los Angeles,CA,USA:Metallurgical Soc of AIME,1984.721-741
    [140]Shekhar R,Evans J W.Physical modeling studies of electrolyte flow due to gas evolution and some aspects of bubble behavior in advanced Hall cells:Part Ⅱ.Flow and inter-polar resistance in cells with a grooved anode.Metallurgical and Materials Transactions B:Process Metallurgy and Materials Processing Science,1994,25(3):341-349
    [141]Shekhar R,Evans J W.Physical modeling studies of electrolyte flow due to gas evolution and some aspects of bubble behavior in advanced Hall cells:Part Ⅰ.Flow in cells with a flat anode.Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science,1994,25(3):333-340
    [142]Shekhar R,Evans J W.Modeling studies of electrolyte flow and bubble behavior in advanced Hall cells.In:Blckert C M,eds.Light Metals 1990.Anaheim,CA,USA:TMS,1990.243-248
    [143]Shekhar R,Evans J W.Physical modeling studies of electrolyte flow due to gas evolution and some aspects of bubble behavior in advanced Hall cells:Part Ⅲ.Predicting the performance of advanced hall cells.Metallurgical and Materials Transactions B:Process Metallurgy and Materials Processing Science,1996,27(1):19-27
    [144]Solheim A,Thonstad J.Model experiments of mass transfer at the electrolyte-gas interface in aluminium cells.In:Zabreznik R D,eds.Light Metals 1987.Denver,CO,USA:Metallurgical Soc of AIME,1987.239-245
    [145]Solheim A,Thonstad J.Model cell studies of gas induced resistance in Hall-Heroult cells.In:Miller R E,eds.Light Metals 1986.New Orleans,LA,USA:Metallurgical Soc of AIME,1986.397-403
    [146]Perron A,Kiss L I,Poncsak S.Regimes of the movement of bubbles under the anode in an aluminum electrolysis cell.In:Kvande H,eds.Light Metals 2005.San Francisco,CA,USA:TMS,2005.565-570
    [147]Yang W,Cooksey M A.Effect of slot height and width on liquid flow in physical models of aluminium reduction cells.In:Sorlie M,eds.Light Metals 2007.Orlando,FL,USA:TMS,2007.451-456
    [148]Cooksey M A,Yang W.PIV measurements on physical models of aluminium reduction cells.In:Galloway T J,eds.Light Metals 2006.San Antonio,TX,USA:TMS,2006.359-365
    [149]薛玉卿.铝电解槽阳极气泡的生成机理和运动规律:[硕士学位论文].长沙:中南大学,2006
    [150]Solheim A,Johansen S T,Rolseth S,et al.Gas induced bath circulation in aluminium reduction cells.Journal of Applied Electrochemistry,1989,19(5):703-712
    [151]Purdie J M,Bilek M,Taylor M P,et al.Impact of anode gas evolution on electrolyte flow and mixing in aluminum electrowinning cells.In:Das S K,eds.Light Metals 1993.Denver,CO,USA:TMS,1993.355-360
    [152]Kiss L I,Poncsak S,Antille J.Simulation of the bubble layer in aluminum electrolysis cells.In:Kvande H,eds.Light Metals 2005.San Francisco,CA, USA:TMS,2005.559-564
    [153]Poncsak S,Kiss L I,Toulouse D,et al.Size distribution of the bubbles in the Hall-Heroult cells.In:Galloway T J,eds.Light Metals 2006.San Antonio,TX,USA:TMS,2006.457-462
    [154]Kiss L I,Perron A L,Poncsak S,et al.The bubble laden layer around inert anodes.In:Sorlie M,eds.Light Metals 2007.Orlando,FL,USA:TMS,2007.495-500
    [155]Feng Y Q,Cooksey M A,Schwarz P.CFD modelling of electrolyte flow in aluminium reduction cells.In:Sorlie M,eds.Light Metals 2007.Orlando,FL,USA:TMS,2007.339-344
    [156]Kiss L I,Vekony K.Dynamics of the gas emission from aluminum electrolysis cells.In:Deyoung D H,eds.Light Metals 2008.New Orleans,LA,USA:TMS,2008.425-429
    [157]铁军,邹建成.铝电解阳极气泡长大过程的计算机模拟.计算机与应用化学,2002,19(2):172-176
    [158]铁军,袁玉蝶,高丽君,等.铝电解中阳极气泡的行为.北方工业大学学报,1996,8(3):72-76
    [159]铁军,韩至成.铝电解中阳极气泡形成的电化学研究.有色金属,1996,48(1):44-48
    [160]Li X P,Li J,Lai Y Q,et al.Mathematical simulation of gas induced bath flow in drained aluminum reduction cell.Transactions of Nonferrous Metals Society of China,2004,14(6):1221-1226
    [161]Li X P,Li J,Lai Y Q,et al.Physical modeling of gas induced bath flow in drained aluminum reduction cell.Transactions of Nonferrous Metals Society of China,2004,14(8):1017-1022
    [162]Doheim M A,EI-Kersh A M,Ali M M.Computational modeling of flow in aluminum reduction cells due to gas bubbles and electromagnetic forces.Metallurgical and Materials Transactions B,2007,38(1):113-119
    [163]夏小霞,周乃君,崔大光,等.156kA铝电解槽内电解质两相流动的数值模拟.中国有色金属学报,2006,16(11):1988-1992
    [164]夏小霞,王志奇,周乃君.铝电解槽内电解质运动的数值模拟.过程工程学报,2007,7(2):235-240
    [165]夏小霞.铝电解槽内电解质流场的数值模拟研究:[硕士学位论文].长沙:中南大学,2005
    [166]Alcom T R,Tabereaux A T,Richards N E,et al.Operational results of pilot cell test with cermet inert anodes.In:Das S K,eds.Light Metals 2003.Denver,CO,USA:TMS,1993.433-443
    [167]Windisch C F J,Strachan D M,Henager C H J,et al.Materials characterization of cermet anodes tested in a pilot cell.In:Das S K,eds.Light Metals 1993.Denver,CO,USA:TMS,1993.445-454
    [168]Antille J,Klinger L,Von Kaenel R,et al.Modeling of a 25 kA de Nora inert metallic anode test cell.In:Galloway T J,eds.Light Metals 2006.San Antonio,TX,USA:TMS,2006.391-396
    [169]李德祥.惰性阳极铝电解的理论能耗和理论能耗电压.轻金属,2006,(2):31-32
    [170]黄永忠,王化章,王平甫,等.铝电解生产.长沙:中南工业大学出版社,1994.182
    [171]Liu W,Li J,Lai Y Q,et al.2D finite element analysis of thermal balance for drained aluminum reduction cells.Journal of Central South University of Technology,2007,14(6):783-787
    [172]郭宽良,孔祥谦,陈善年.计算传热学.合肥:中国科学技术大学出版社,1989.4-9
    [173]Michel C J.Evolution of the cathodic ohmic drop during the electrolysis in the aluminium cell.In:Bohner H O,eds.Light Metals 1985.New York,NY,USA:Metallurgical Soc of AIME,1985.989-1003
    [174]Haupin W E.Cathode voltage loss in aluminum smelting cells.Aluminium,1976,62(7):446-448
    [175]Sorlie M,Gran H.Cathode collector bar-to-carbon contact resistance.In:Cutshall E R,eds.Light Metals 1992.San Diego,CA,USA:TMS,1992.779-787
    [176]李景江,邱竹贤.铝电解槽阴极电场的计算机仿真.东北工学院学报,1989,10(6):591-597
    [177]Beeler R.An analytical model for cathode voltage drop in aluminum reduction cells.In:Crepeau P N,eds.Light Metals 2003.San Diego,CA,USA:TMS,2003.241-245
    [178]Noel J.Future developments in the Bayer-Hall-Heroult process.In:Burkin A R,eds.Production of aluminium and alumina.Wiley J,1987.188-207
    [179]罗英涛,王平甫.铝用炭素材料(续11),.炭素技术,2001,(4):46-48
    [180]薛守义.弹塑性力学.北京:中国建材工业出版社,2005.56-65
    [181]王志刚,黄蔚,赖延清.铝电解惰性阳极材料研究新进展.轻金属,2007,(2):27-30
    [182]王保林,韩杰才,张幸红.非均匀材料力学.北京:科学出版社,2003.27
    [183]Li J,Wang Z G,Lai Y Q,et al.Effect of working condition on thermal stress of NiFe_2O_4-based cermet inert anode in aluminum electrolysis.Journal of Central South University of Technology,2007,14(4):479-484
    [184]Li J,Wang Z G,Lai Y Q,et al.Effect of structural parameters on the thermal stress of a NiFe_2O_4-based cermet inert anode in aluminum electrolysis.Acta Metallurgica Sinica(English Letters),2007,20(2):139-147
    [185]刘业翔,李相鹏,李劫,等.导流槽阴极热应力分布计算与结构优化.中南大学学报(自然科学版),2004,35(6):869-874
    [186]Li J,Liu w,Lai Y Q,et al.Coupled simulation of 3D electro-magneto-flow field in hall-heroult cells using finite element method.Acta Metallurgica Sinica (English Letters),2006,19(2):105-116
    [187]黄俊,吴建康,姚世焕.垂直磁场对铝电解槽稳定性的影响.有色冶炼,2002,(6):19-20
    [188]Potocnik V.Principles of MHD design of aluminum electrolysis cells.In:Cutshall E R,eds.Light Metals 1992.San Diego,CA,USA:TMS,1991.1187-1193
    [189]陶建华.水波的数值模拟.天津:天津大学出版社,2005.232-235
    [190]Sterten A,Solli P A,Skybakmoen E.Influence of electrolyte impurities on current efficiency in aluminium electrolysis cells.Journal of Applied Electrochemistry,1998,28(8):781-789
    [191]Sterten A,Solli P A.Electrochemical current efficiency model for aluminium electrolysis cells.Journal of Applied Electrochemistry,1996,26(2):187-193
    [192]Solli P A,Haarberg T,Eggen T,et al.Laboratory study of current efficiency in cryolitic melts.In:Mannweiler U,eds.Light Metals 1994.San Francisco,CA,USA:TMS,1994.195-203
    [193]Solli P A,Eggen T,Skybakmoen E,et al.Current efficiency in the Hall-Heroult process for aluminium electrolysis:experimental and modelling studies.Journal of Applied Electrochemistry,1997,27(8):939-946
    [194]Solli P A,Eggen T,Rolseth S,et al.Design and performance of a laboratory cell for determination of current efficiency in the electrowinning of aluminium.Journal of Applied Electrochemistry,1996,26(10):1019-1025
    [195]Paulsen K A,Thonstad J,Rolseth S,et al.Current efficiency as a function of the contents of alumina and CaF_2 in industrial aluminium electrolysis cells.In:Das S K,eds.Light Metals 1993.Denver,CO,USA:TMS,1993.233-238
    [196]Dorreen M R,Hyland M,Welch B J.Current efficiency studies in a laboratory aluminum cell using the oxygen balance method.In:Welch B J,eds.Light Metals 1998.San Antonio,TX,USA:TMS,1998.483-489
    [197]Dewing E W.Loss of current efficiency in aluminum electrolysis cells.Metallurgical Transactions B,1991,22(2):177-182
    [198]曾水平,刘业翔.160kA预焙铝电解槽区域电流效率.中国有色金属学报,2000,10(2):274-277
    [199]Zeng S P,Zhang Q P.Effect of current distribution on current efficiency in 160KA prebake cells.In:Schneider W,eds.Light Metals 2002.Seattle,WA,USA:TMS,2002.503-509
    [200]Zeng S P,Liu Y X,Mei C.Mathematical model for continuous detection of current efficiency in aluminum production.Transactions of Nonferrous Metals Society of China,1998,8(4):683-687
    [201]Sterten A.Current efficiency in aluminium reduction cells.Journal of Applied Electrochemistry,1988,18(3):473-483
    [202]Tarapore E D.Effect of some operating variables on flow in aluminum reduction cells.Journal of Metals,1982,34(2):50-55
    [203]孙阳,冯乃祥,陈建利,等.186kA大型预焙阳极铝电解槽流场的数值计算.稀有金属,2001,25(5):382-385

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700