用户名: 密码: 验证码:
西藏墨竹工卡地区遥感找矿信息提取研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究区位于西藏自治区中南部的墨竹工卡地区,区内包括两大已知矿床——驱龙、甲马。西藏墨竹工卡地区属高山深切割地区,海拔高、坡度大,对于大面积的找矿工作较为艰难,运用遥感手段研究已知矿区的遥感找矿信息是非常必要的,从而更加宏观的把握好找矿区域信息,并能为其他找矿手段提供有效的辅助作用。在研究区提取的遥感找矿蚀变信息和解译的线环构造信息基础上,结合地层岩性、地球化学、地球物理等资料进行找矿信息的综合分析,验证了以遥感找矿信息为主,其他信息为辅,互相辅助结合对找矿工作的重要性和有效性。
     论文选用ETM+影像和ASTER影像作为遥感数据源,结合前人研究成果,对找矿蚀变信息提取理论进行研究,分析ETM+和ASTER影像波谱特征,然后进行图像预处理、去干扰异常处理,最后运用比值法、主成分分析法进行遥感找矿蚀变信息提取。对不同数据源提取的蚀变信息结果进行空间叠加分析,定量化的分析叠加蚀变信息,从而确定基于不同数据源、不同蚀变信息提取方法的综合蚀变异常信息。
     对ETM+影像进行波段相关性分析,得出ETM+741为最佳波段组合,对ETM7、ETM4、ETM1波段进行RGB彩色合成,得到遥感影像线环构造解译的底图。建立研究区的线性构造和环形构造的解译标志,分别进行构造解译,得到线环构造解译图,并进行线性构造方位分析,线性构造、环形构造的密度分析。环形构造与线性构造都不是独立的地质构造现象,它们呈现不同组合形式的分布,分析线-线构造集中区、环-环构造集中区以及线-环构造集中区,从而确定出找矿的有利部位,来验证遥感线环构造与区内矿产的生成具有一定的内在联系。
     将研究区提取的遥感蚀变信息分别与地层岩性、地球物理、地球化学信息进行复合叠加研究,均呈现了较好的正相关性,进一步证明了文中提取出的遥感蚀变信息的可靠性、有效性。最后分别对驱龙矿区和甲马矿区的找矿信息进行综合分析,结果表明:矿区内遥感蚀变异常、线环构造与地层岩性、地球化学等数据信息的呈现高度正相关性,从而验证了遥感蚀变信息与线环构造信息作为找矿信息的有效性。
     运用遥感和GIS方法,改善遥感蚀变信息提取方法和流程,加强遥感构造解译程度,进一步提高遥感蚀变信息和遥感线环构造在找矿工作的有效性,从而进行多元找矿信息综合分析,以达到更为准确的定位找矿区域是论文进一步研究的重点。
Studying area is Mozhugongka region, which is located in the south-central of the Tibet and includs the two known deposits——Qulong porphyry copper deposit and Jiama copper-polymetallic deposit. Studying area is a alpine areas of deep cuts, high elevation and steep slope, so it is more difficult for large areas of prospecting work. From this perspective, it is essential to study the remote sensing ore-finding information of the known areas using remote sensing means, thereby further grasping the prospecting information from the macroscopic and providing effective aids for other prospecting method. Based on the remote sensing prospecting alteration and interpreted of linear structure and ring structure information extracted from the studying areas and combining lithology, geochemical and geophysical prospecting data from a comprehensive analysis of information, the method, which gives priority to prospecting information based on remote sensing and is supplemented by other information, proved to be important and effective.
     ETM+ image and ASTER images were used as remote sensing data sources. Firstly, with previous research results, researches on the prospecting alteration information extraction theory and analysis of the spectral characteristics of ETM+ and ASTER data were done; secondly, preprocess the images and remove the interferences; finally, extract the remote sensing prospecting alteration information by using the ratio method or the principal component analysis. Using spatial overlay analysis for the result of alteration information from different data sources extracted, quantitative analysis of space superposition alteration information, then the comprehensive altered anomaly information was got based on different data sources and method of alteration information extraction.
     With the spectral band characteristics of ETM+ image, by doing relevant analysis of band, to get ETM7\ETM4\ETM1 band to RGB combination, then uses this image to do visual interpretation of geological structure. Remote sensing signs of structural interpretation in the studying area are established, and interpreted linear structure and ring structure, and obtained the geological structure interpretation graph, then orientation analysis of linear structure, density analysis of linear structure and ring structure. Linear structure and ring structure are not the independent geological structure phenomenon, they appeared with different combination forms, so, Through analysis the linear structure concentration area, the ring structure concentration area, and the linear-ring structure concentration area, thus determine the favorable ore-prospecting area, finally, to verify remote sensing linear-ring structures has a certain internal relations with the mineral in the studying area.
     The results, made by compositely overlaying the remote sensing alteration information extracted from the studying areas with the formation lithology, geochemical and geophysical information, showed a good positive correlation, so the remote sensing alteration information extracted in this paper proved to be reliable and efficient. At last, An comprehensive analysis of prospecting information for Qulong and Jiama mining area was made and the results showed that: In the mining areas, remote sensing alteration information, linear-ring structure and formation lithology, geochemical data prospecting information appeared to be highly positive-correlated, which verified the validity of the remote sensing alteration information and linear-ring geological structure as prospecting information.
     In order to locate the prospecting areas more accurately, the emphasis is that: improving the remote sensing anomaly extraction methods and processes with RS and GIS, strengthening the interpretation of the extent of remote sensing geological structure to further improve the efficiency of remote sensing alteration information and linear-ring structure in prospecting work and thereby comprehensively analyzing the multivariate prospecting information.
引文
[1]葛良胜.论遥感地质找矿工作方法体系[A].第十五届全国遥感技术学术交流会论文摘要集,2005.
    [2]谭衢霖.试论遥感地质找矿的进展[J].地质找矿论丛,1999,14(4):29-34.
    [3]梅安新.遥感导论[M].北京:高等教育出版社,2001.
    [4]张守林.基于ETM数据矿化蚀变信息定量提取方法研究[D].博士学位论文.中国地质大学(北京).2006.
    [5] Abrams, M.J., Ashley, R.P., Brown, L.C., Goetz, A .F.H., Kahle , A.B. Mapping of hydrothermal alteration in the Cuprites mining district, Nevada, using aircraft scanning images for the spectral region 0.46 to 2.36mm[J]. Geology, 1977(5):713~718.
    [6] Rowan, L.C., Goetz, A.F.H. and Ashely, R.P. Discrimination of hydrothermally altered and unaltered rocks in visible and near infrared multispectral images [J]. Geophysics, 1977(42):522~535
    [7] Hunt, G.R., Salisbury, J.W., and Lenhoff, G.J. Visible and near infrared spectra of minerals and rocks: Oxides and hydroxides[J]. Modern Geology, 1978(2):195~205.
    [8] Crosta,A. and Moore,J.McM. Enhancement of Landsat Thematic Mapper imagery for residual soil mapping in SW Minais Gerais State, Brazil: a prospecting case history in Greenstone belt terrain[A]. In: Proceedings of the 7th ERIM Thematic Conference: Remote sensing for exploration geology[C]. 1989.1173~1187.
    [9] Loughlin W.P. Principal component analysis for alteration mapping[J]. Photogrammetric Engineering and Remote Sensing , 1991(57): 1163~1169.
    [10] CROWL EY, James K.HUBBARD, Bernard E., and MARS, John C. Hydrothermal alteration on the cascade stratovolcanoes: A remote sensing survey [J]. Geological Society of America Abstracts with Programs , 2003, 35(6):552.
    [11] Kjell Wester, Bengt Lunden and Gerhard Bax. Analytically processed Landsat TM images for visual geological interpretation in the northern Scandinavian Caledonides [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1990, 45(5): 442~460.
    [12] H.Ranjbar , M. Honarmand , Z. Moezifar. Application of the Crosta technique for porphyry copper alteration mapping, using ETM+ data in the sourhern part of the Iranian volcanic sedimentary belt[J]. Journal of Asian Earth Sciences,2004, 24:237~243.
    [13]二宫芳树,傅碧宏.帕米尔东北缘ASTER多光谱热红外遥感数据的岩性信息提取[J]. 2003,21(1):22~28.
    [14]刘燕君.遥感图像中矿产信息的提取[J].地质与勘探. 1984, (8):30~35.
    [15]赵元洪,张福祥,陈南峰.波段比值主成份复合在热液蚀变信息提取中的应用[J].国土资源遥感,1991,3:12~16.
    [16]何国金,胡德永,陈志军等.从TM图像中直接提取金矿化信息[J].遥感技术与应用,1995,10(3):51~54.
    [17]马建文.利用TM数据快速提取含矿蚀变带方法研究.遥感学报,1997,1(3)
    [18]张远飞,吴建生.基于遥感图像提取矿化蚀变信息[J].有色金属矿产与勘查,1999,8(6):604~606.
    [19]刘庆生.内蒙哈达门沟金矿区山前钾化带遥感信息提取.遥感技术与应用,1999,(3)
    [20]刘素红,马建文等.通过Gram-Schmidt投影方法在高山区提取TM数据中含矿蚀变带信息[J].地质与勘探. 2000,36(5):62~65.
    [21]刘成,王丹丽,李笑梅.用混合像元线性模型提取中等植被覆盖区的粘土蚀变信息[J].地质找矿论,2003,18(2):131~137.
    [22]张玉君,曾朝铭等. ETM+(TM)蚀变遥感异常方法研究与应用—方法选择和技术流程[J].国土资源遥感. 2003,6(2):44~50.
    [23]毛晓长,刘文灿等. ETM和ASTER数据在遥感矿化蚀变信息提取应用中的比较—以安徽铜陵凤凰山矿田为例[J].现代地质,2005.,19(2):44~50.
    [24]张金树,任云生,范文玉等.西藏自治区墨竹工卡县甲马矿区铜铅多金属矿详查报告[R].2000.
    [25]夏代祥,周敏,秦克章等.西藏自治区墨竹工卡县驱龙矿区铜多金属矿勘探报告[R].2008.
    [26]陈江,付建飞.先进星载热发射和反射辐射仪(ASTER)—地质学家的最佳选择[J].地质通报,2006,25(5):650-652.
    [27]代晶晶,曲晓明,等.基于ASTER遥感数据的西藏多龙矿集区示矿信息的提取[J].地质通报,2010,29(5):752-759.
    [28]甘甫平,王润生.遥感岩矿信息提取基础与技术方法研究[M].北京:地质出版社. 2004.
    [29]陈述彭,赵英时.遥感地学分析[M].北京:测绘出版社.1990.
    [30]陈述彭,童庆禧,郭华东等.遥感信息机理研究[M].北京:科学出版社.2000.
    [31]赵英时等.遥感应用分析原理与方法[M].北京:科学出版社. 2003.
    [32]邓书斌.ENVI遥感图像处理方法[M].科学出版社,2010,274-275.
    [33]周可法,孙莉,张楠楠等.中亚地区高光谱遥感地物蚀变信息识别与提取[M].北京:地质出版社.2004.
    [34]耿新霞,杨建民,?等.?ASTER数据在浅覆盖区蚀变遥感异常信息提取中的应用[J].地质论评,2008,54(2):184‐190.
    [35]黄照强,等:基于ASTER和ETM+数据的蚀变信息提取比较研究—以西藏泽当矿田为例[J].地质与勘探,2009,45(5):606‐611.
    [36]李建国,毛德宝.基于ETM+与ASTER数据的矿化蚀变信息提取方法研究———以满都拉地区为例[J].?地质调查与研究,2007,30(3):234‐239.
    [37]燕守勋,张兵,赵永超等.矿物与岩石的可见-近红外光谱特性综述[J].遥感技术与应用,2003,,18(4):191-201.
    [38]张瑞丝.遥感找矿异常信息提取方法改进与应用[D].北京:中国地质大学.2009.
    [39]吴德文,朱谷昌,张远飞等.多元数据分析与遥感矿化蚀变信息提取模型[J].国土资源遥感.2006,67(1):22-25.
    [40]时丕龙,付碧宏,二宫芳树等.基于ASTER VNIR-SWIR多光谱遥感数据识别与提取干旱地区岩性信息——以西南天山柯坪隆起东部为例[J].地质科学.2010,45(1):333-347.
    [41]冯聪.内蒙古白乃庙地区矿化蚀变信息提取及成矿预测[D].北京:中国地质大学.2006.
    [42]池宏康,周广胜,许振柱等.表现反射率及其在植被遥感中的应用[J].植物生态学报,2005,29(1):74-80.
    [43]杨建民,张玉君,邓刚等.中国天山铜矿带找矿靶区优选[M].北京:地质出版社.2008.
    [44]王多义,邓美洲,童纯菡等.川西石亭江地区遥感地质解译及构造解析[J].
    [45]杨世瑜,王瑞雪.矿床遥感地质问题[M].云南:云南大学出版社.2003.
    [46]陈华慧.遥感地质学[M].北京:地质出版社.1984.
    [47]朱志澄,宋鸿林.构造地质学[M].北京:中国地质大学出版社.1990.
    [48]戴昌达,姜小光,唐伶俐.遥感图像应用处理与分析[M].北京:清华大学出版社.2004.
    [49]丰茂森.遥感图像数字处理[M].地质出版社,1992.
    [50]翟裕生.区域构造、地球化学与成矿[J].地质调查与研究.2003,26(1):5-11.
    [51]郭华东.中国新疆北部遥感找矿方法与实践[M].北京:科学出版社.1995.
    [52]陈毓川,朱裕生.中国矿床成矿模式[M].北京:地质出版社.1993.
    [53]朱亮璞.遥感地质学[M].北京:地质出版社.1994.
    [54]李玲.遥感数字图像处理[M].重庆:重庆大学出版社.2010.
    [55]芮宗瑶,黄崇轲,齐国明等.中国斑岩铜(钼)矿床[M].北京:地质出版社.1984.
    [56]刘燕君.遥感找矿的原理和方法[M].北京:冶金工业出版社,1991.
    [57]吕凤军,郝跃生等.多光谱蚀变遥感异常提取方法研究[J].遥感应用,2007(04):98-101.
    [58]姚佛军,杨建民,三种不同类型矿床分类型蚀变遥感异常提取及其应用[J].岩石学报,2009, 25 (4):971-976.
    [59]张玉君,姚佛军.应用多光谱ASTER数据对ETM遥感异常的定性判别研究——以东昆仑五龙沟为例.岩石学报.2009.25(4):963-970.
    [60]张玉君.张玉君地质勘查新方法研究论文集[C].北京:中国大地出版社.2009.
    [61]吴华.基于多元遥感信息的成矿远景区预测研究[D].中国科学院.2008.
    [62]倪忠云.川西巴塘砂西地区遥感成矿信息提取[D].成都理工大学.2008.
    [63]段元彬.西藏嘎仁错东部地区蚀变遥感信息提取研究[D].成都理工大学.2009.
    [64]吕凤军.遥感蚀变信息场及其应用研究[D].吉林大学.2006.
    [65]刘李.基于多光谱和高光谱数据的遥感矿化蚀变信息提取研究[D].北京:中国地质大学.2010.
    [66]孙忠军,杨少平,徐仁廷等.西藏冈底斯斑岩铜矿带矿集区和矿田靶区定位预测[J].地质学报,2006(10):1566-1571.
    [67]左仁广,夏庆霖,谭宁等.西藏冈底斯斑岩铜矿综合信息预测[J].中南大学学报(自然科学版).2007.38(2):368-373.
    [68]王亮亮.西藏冈底斯带驱龙含矿斑岩的特征及与Cu(Mo)成矿的关系[D].北京:中国地质大学.2007.
    [69]姚鹏,王全海,李金高.西藏甲马-驱龙矿集区成矿远景[J].中国地质.2002.29(2):197-202.
    [70]杨志明.西藏驱龙超大型斑岩铜矿床——岩浆作用与矿床成因[D].中国地质科学院.2008.
    [71]杨波.遥感信息多层次分离提取技术[D].中南大学.2002.
    [72]杨志明,侯增谦,宋玉财等.西藏驱龙超大型斑岩铜矿床:地质、蚀变与成矿[J].矿床地质.2008.27(3):279-318.
    [73]王润生,等.遥感线性体场的数量化分析[J].国土资源遥感,1992(13):49-53.
    [74]杨武年,李永颐,易显志等.遥感信息量化处理在西昌地区构造解析及油气远景预测中的应用[J].国土资源遥感.1994,3:63-70.
    [75]杨武年,朱章森.遥感信息场分层解析与构造应力场定量研究[J].地质学报.1997,71(1):86-96.
    [76]郭娜,陈建平,唐菊兴等.基于RS技术的西藏甲玛铜多金属矿外围找矿预测研究[J].地学前缘.2010,17(4):280-288.
    [77]张宏伟,杨武年.多元信息综合分析在新疆伊吾地区成矿预测中的应用[J].物探化探计算技术.2000,20(4):340-345.
    [78]廖崇高,杨武年,刘登忠等.基于GIS空间分析进行多源信息找矿预测[J].物探化探计算技术.2002,24(2):146-150.
    [79]吴德文.遥感与地面观测数据的找矿信息提取和处理技术及应用[D].北京:中国地质地质大学.2006.
    [80]方洪宾,李志忠.遥感化探信息综合分析在地质找矿中的应用研究[J].国土资源遥感.1998,38(4):33-36.
    [81]鲍光淑,刘斌.基于空间分析的矿产资源评价方法[J].中南工业大学学报.2001,31(1):1-4.
    [82]李磊.西藏墨竹工卡县甲玛铜多金属矿床控矿构造研究[D].成都理工大学.2009.
    [83]杨自安,徐国端,邹林等.遥感与多元地学信息综合找矿定位预测[J].矿产与地质.2004,104(4):343-345.
    [84]吴曙亮.溧阳火山岩盆地TM遥感图像线性构造密度分析[J].江苏地质.2000,24(3):161-164.
    [85]高景刚.新疆北部主要斑岩铜矿带成矿条件及遥感找矿定位研究[D].长安大学.2008.
    [86]汤国安,杨昕. ArcGIS地理信息系统空间分析实验教程[M].北京:科学出版社.2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700