用户名: 密码: 验证码:
Skutterudite系热电材料制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Skutterudite 材料具有优良的电性能,包括很高的载流子迁移率和中等的Seebeck系数,虽然热导率比目前常用的热电材料偏高,但它具有特殊的晶体结构,可以通过合金化、置入填充原子等途径使晶格热导率得到显著降低,因而是当前热电材料家族中最具发展前途的热电材料之一。
    本文对Skutterudite 系热电材料的制备工艺、组织结构、热电性能及其内在机理展开了系统深入的研究。首次将机械合金化应用于Skutterudite 系材料制备中,研究了Co-Sb、Co-Fe-Sb 系的机械合金化,发展了两种制备置换及填充Skutterudite 材料的新工艺:高能球磨-无压烧结与高能球磨-热压成型-等温退火,其中后者可得到较致密、晶粒大小较均匀的块体材料。对Fe 置换Skutterudite 化合物Co_(4-x)Fe_xSb_(12)中Fe 的置换固溶度进行了研究,表明Fe 的最大置换固溶度近似为x=0.68。研究了Fe 置换对热电性能的影响,随Fe 置换量增加,P 型载流子浓度增大,电导率上升,Seebeck 系数下降,功率因子在x=0.5 时达到最大。同时,Fe 置换使热导率显著降低。对其热传导机制的分析表明,Fe 置换引入的点缺陷散射并不是导致晶格热导率降低的主要原因,载流子对声子的散射不容忽视,此外,可能有其它尚未知晓的机制存在。随Fe 置换量增加,ZT 值增大,Co_(3.35)Fe_(0.65)Sb_(12)在773K 时达到0.32 的ZT 值。置换量继续增大,Co_3FeSb_(12)成分在550K 以后ZT 值反而开始降低。在置换化合物中加入稀土La 填充元素,制备了部分填充Skutterudite 化合物La_yCo_(4-x)FexSb_(12) (x≤1,y≤1)。对比研究了Fe 置换和La 部分填充对晶体拉曼谱的影响,Fe 置换对拉曼谱影响不大,而La 部分填充则使拉曼谱产生明显变化,峰位有红移,部分峰位明显展宽。对La 填充化合物的Rietveld 结构精修表明,稀土原子具有异常大的热振动参数,证明了填充原子在晶格空隙中处于“扰动”状态。这种特殊的结构使热导率显著下降。此外,对Skutterudite/Bi_2Te_3系梯度复合热电材料的制备进行了初步尝试,结果表明,以低熔点Bi_2Te_3系组元作为中间介质可以获得界面结合紧密的梯度材料。
Skutterudite compound has perfect electrical properties, including high carrier mobility and appropriate Seebeck coefficient. Though its thermal conductivity is higher than that of state-of-the-art thermoelectric materials such as Bi_2Te_3, fortunately, there are two large voids in a unit call of the crystal structure and undersized atoms can be filled into them to yield a remarkable reduction to the lattice thermal conductivity. Therefore it is of great importance for promising thermoelectric applications.
    A wide and deep investigation has been carried out on the synthesis process, microstructure, thermoelectric properties and transport mechanism of the Skutterudite compound. Mechanical alloying of Co-Sb and Co-Fe-Sb has been studied and applied to its preparation. Two new approaches, mechanical grinding-sintering and mechanical grinding-hot pressing-annealing, have been developed for synthesizing the substituted as well as the filled Skutterudite compounds. Structure analysis on the Fe substituted Skutterudite compounds Co_(4-x)Fe_xSb_(12) shows that there is a maximal solubility of Fe and is found at about x=0.68. Thermoelectric property measurement between 300~773K shows that both the electrical resistivity and Seebeck coefficient decrease with increasing Fe content due to an increase of the carrier concentration, and thermal conductivity is lowered considerably when Fe is substituted. Mass fluctuation and strain fluctuation scattering due to Fe substitution has been calculated in an effort to qualify the effect of Fe substitution on the lattice thermal conductivity, and it reveals that disorder scattering is not the main reason for decrease of the lattice thermal conductivity, while carrier scattering could not be ignored in these heavily-doped semiconductors, and some unknown mechanism may exist. The overall figure of metir (ZT) is improved with increasing Fe content except the Co_3FeSb_(12) sample, therefore the maximal ZT value of 0.32 is achieved for Co~(3.35)Fe_(0.65)Sb_(12)
    in 773K. Subsequently, La partially filled Skutterudite compounds LayCo4-xFexSb12 (x≤1,y≤1) have been prepared and their structure, optical and thermoelectric properties been studied. Investigation on Raman spectra of the Skutterudite compounds shows that, only Fe substitution makes little change, whereas La filling produces a shift and apparent broadening of the vibrational modes. Also abnormally large thermal parameter of the filling atom is observed from Rietveld refinement of the partially filled compound, revealing that the filling atom is rattling in the oversized voids. These local rattlers could scatter large numbers of phonons and decrease lattice thermal conductivity dramatically, which then is verified by the thermal conductivity measurement. Finally, preparation and interface analysis of a segmented Skutterudite/Bi2Te3 material have been performed. Strong bonding is acquired in sample with Bi2Te3-type powders as interface layer.
引文
[1] 刘恩科,朱秉升,罗晋生等. 半导体物理学. 第一版. 西安:西安交通大学出版社,1998. 295~298
    [2] 高敏,张景韶,D. M. Rowe 编著. 温差电转换及其应用. 第一版. 北京:兵器工业出版社,1996. 276~317
    [3] Gerald Mahan, Brian Sales and Jeff Sharp. Thermoelectric materials: new approaches to an old problem. Physics Today. 1997, 50(1): 42-47
    [4] F. J. DiSalvo. Thermoelectric Cooling and Power Generation. Science. 1999, 285: 703-706
    [5] G. S. Nolas, D.T. Morelli, Terry M. Tritt. Skutterudites: a phonon-glass-electron crystal approach to advanced thermoelectric energy conversion applications. Annu. Rev. Mater. Sci.. 1999, 29:89-116
    [6] D. M. Rowe. CRC Handbook of Thermoelectrics. Boca Raton, FL : CRC Press, 1995
    [7] 方俊鑫,陆栋主编. 固体物理学(上册). 第一版. 上海:上海科学技术出版社,2001. 第三章,p.101
    [8] T. M. Tritt. Holey and unholy semiconductors. Science. 1999, 283: 804-805
    [9] D. Y. Chung, T. Hogan, P. Brazia et al. CsBi4Te4: a high-performance thermoelectric material for low-temperature applications. Science. 2000, 287: 1024-1028
    [10] G. A. Slack, V. G. Tsoukala. Some properties of semiconducting IrSb_3. J. Appl. Phys.. 1994, 76: 1665-1671
    [11] A. Nozue, Y. H. Park, A. Kawasaki. The effect of various dopants on thermoelectric properties of Bi2 (Te_(0.9)Se_(0.1))_3 polycrystals. In Proceedings ICT'03. 22nd International Conference on Thermoelectrics. IEEE, 2003. 31-33
    [12] C. Wood. Materials for thermoelectric energy Conversion. Rep. Prog. Phys.. 1988, 51(4): 459~539
    [13] Y. Noda, K. Mizuno, Y. S. Kang et al. Preparation and properties of thermoelectric materials for intermediate temperature range applications. J. of the Japan Institute of Metals. 1999, 63(11): 1448~1453
    [14] M. Orihashi, Y. Noda, H. T. Kaibe et al. Evaluation of thermoelectric properties of Impurity-doped PbTe. Materials Transactions, JIM. 1998, 39(6): 672~678
    [15] V. Raag. The time and temperature behavior of the thermoelectric properties of Si_(78) Ge_(22) alloy. in Proc. Eleventh Intersoc. Energy Conversion Eng. Conf.. 1976. 1527~1532
    [16] C. M. Bhandari, D. M. Rowe. Silicon-germanium alloys as high-temperature thermoelectric materials. Contemp. Phys.. 1980, 21(3): 219~242
    [17] Glen A. Slack, M. A. Hussain. The maximum possible conversion efficiency of silicon-germanium thermoelectric generators. J. Appl. Phys.. 1992, 70: 2694~2718
    [18] B.C. Sales, D. Mandrus, R.K. Williams. Filled skutterudite antimonides: a new class of thermoelectric materials. Science. 1996, 272: 1325-1328
    [19] J.-P. Fleurial, T. Caillat & A. Borshchevsky. Skutterudites: an update. in Proc. 16th Inter. Conf. on Thermoelectrics. Piscataway, U.S.A.: IEEE, 1997. 1-11
    [20] G. S. Nolas, J. L. Cohn, G. A. Slack et al. Semiconducting Ge clathrates: Promising candidates for thermoelectric applications. Appl. Phys. Lett.. 1998, 73(2):178~180
    [21] G. S. Nolas, G. A. Slack, D. T. Morelli et al. The effect of rare-earth filling on the lattice thermal conductivity of skutterudites. J. Appl. Phys.. 1996, 79:4002~4008
    [22] T. M. Tritt, R. T. Littleton, J. W. Kolis et al. Transition-metal pentatellurides as potential low-temperature thermoelectric refrigeration materials. Phys. Rev. B. 1999, 60(19): 13453~13457
    [23] C. Uher, J. Yang, S. Hu et al. Transport properties of pure and doped MNiSn (M=Zr, Hf). Phys. Rev. B. 1999, 59(13): 8615~8621
    [24] S. Bhattacharya, A. L. Pope, R. T. Littleton et al. Effect of Sb doping on the thermoelectric properties of Ti-based half-Heusler compounds, TiNiSn_(1-x)Sb_x. Appl. Phys. Lett.. 2000, 77(16): 2476~2478
    [25] K. Mastronardi, D. Young, C. C. Wang et al. Antimonides with the half-Heusler structure: new thermoelectric materials. Applied Physics Letters. 1999, 74(1): 1415-1417
    [26] P. Larson, S. D. Mahanti et al. Electronic structure of rare-earth nickel pnictides: narrow-gap thermoelectric materials. Physics Review B. 1999, 59: 15660-15668
    [27] Q. Shen, L. Chen, J. Yang et al. Effects of partial substitution of Ni by Pd on thermoelectric properties of ZrNiSn-based compounds. in Proceeding of the 20th International Conference on Thermoelectric. Beijing. 2001. Piscataway, U.S.A.: IEEE, 247-251
    [28] X. Zhang, H. B. Li, B. Zhao et al. Ordered self-organizing films of an amphiphilic polymer by slow evaporation of organic solvents. Macromolecules. 1997, 30(6): 1633~1636
    [29] M. Liley, T. Keller, C. Duschl et al. Direct observation of self-assembled monolayers, ion complexation, and protein conformation at the gold/water interface: An FTIR spectroscopic approach. Langmuir. 1997, 13(16): 4190~4192
    [30] H. Yakabe, K. Kikuchi, I. Terasaki et al. Thermoelectric properties of transition-metal oxide NaCo_2O_4 system. in Proc. of the International Conference on Thermoelectrics. IEEE, 1997. 523~527
    [31] W. Shin, N. Murayama. High performance p-type thermoelectric oxide based on NiO. Materials Letters. 2000, 45(6): 302~306
    [32] S. Li, R. Funahashi, I. Matsubara et al. Magnetic and thermoelectric properties of NaCo_(2-x)MxO_4 (M = Mn, Ru). Materials Research Bulletin. 2000, 35: 2371-2378
    [33] A. L. Pope, T. M. Tritt, M. A. Chernikov et al. Thermal and electrical transport properties of the single-phase quasicrystalline material: Al_(70.8)Pd_(20.9)Mn_(8.3.) Appl. Phys. Lett.. 1999, 75(13): 1854~1856
    [34] E. Macia. May quasicrystals be good thermoelectric materials?. Appl. Phys. Lett.. 2000, 77(19): 3045~3047
    [35] I. R. Fisher, K. O. Cheon, A. F. Panchula et al. Magnetic and transport properties of single-grain R-Mg-Zn icosahedral quasicrystals [R=Y, (Y_(1-x)Gd_x), (Y_(1-x)Tb_x), Tb, Dy, Ho, and Er]. Phys. Rev. B. 1999, 59: 308~321
    [36] A. Reich, M. Conrad, F. Krumeich et al. Dodecagonal quasicrystalline telluride (Ta, V)_(1.6)Te and its crystalline approximant (Ta, V)_(97)Te_(60). in Mater. Res. Soc. Symp. Proc.. Vol. 553. 1999. 83~94
    [37] R. Venkatasubramanian, S. Edward et al. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature. 2001, 413: 597-602
    [38] G. Chen, T. Zeng, D. Song et al. Phonon engineering in nanostructures for solid-state energy conversion. Materials Science and Engineering A. 2000, A292: 155-161
    [39] G. Chen. Phonon heat conduction in nanostructures. International Journal of Thermal Sciences. 2000, 39(4): 471-480
    [40] A. Leithe-Jasper, D. Kaczorowski et al. Synthesis Crystal-structure Determination and Physical Properties of YbFe_4Sb_(12). Solid State Communication. 1999, 109: 395~400
    [41] H. W. Hillhouse, M. T. Tuominen. The interpretation of X-ray diffraction data for the determination of channel orientation in mesoporous films. Microporous and Mesoporous Materials. 2001, 44-45: 639-643
    [42] J. L. Liu, A. Khitun, K. L. Wang et al. Growth of Ge quantum dot superlattices for thermoelectric applications. J. of Crystal Growth. 2001, 227/ 228: 1111-1115
    [43] B. Yang, G. Chen, J. Zhang. Effect of TiC additions on the formation of Al_3Ti of in situ TiC/Al composites. Materials and Design. 2001, 22(8): 645-650
    [44] T. Hirano, J. Teraki, Y. Nishio. Computational design for functionally graded thermoelectric materials. Mater. Sci. Forum. 1999, V. 308-311: 641~646
    [45] M. Koizumi. FGM activities in Japan. Composites Part B: Engineering. 1997, 28(1-2): 1-4
    [46] Y. Imai, Y. Shinohara, I. Nishida et al. Joint of n-type PbTe with different carrier concentration and its thermoelectric properties. in Proceedings of the 4th International Symposium on Functionally Graded Materials. 1997. 617-622
    [47] M. Hashimoto, O. Ohashi, I. Shiota et al. Thermoelectric properties of Pb_(1-x)Sn_xTe FGM by liquid phase diffusion bonding. Mater. Sci. Forum. 1999, 308-311: 699~703
    [48] M. Hashimoto, I. Shiota, O. Ohashi et al. Liquid phase diffusion bonding and thermoelectric properties of Pb_(1-x)Sn_xTe compounds. in Proc. of the 17th ICT. 1998. 346~349
    [49] Y. S. Yang et al. Development and evaluation of 3-stage segmented thermoelectric elements. in Proc of International Conf on Thermoelectrics. Piscataway, U.S.A.: IEEE, 1998. 429-432
    [50] M. Koshigoe, I. Shiota, I. A. Nishida. Expansion of utilizing temperature range of Bi2Te3/PbTe by FGM forming. Mater. Sci. Forum. 1999, V. 308-311: 693~698
    [51] D. J. Singh, W. E. Pickett. Skutterudite antimonides: Quasilinear bands and unusual transport. Phys. Rev. B. 1994, 50: 11235~11238
    [52] D. J. Singh, I. I. Mazin. Calculated thermoelectric properties of La-filled skutterudites. Phys. Rev. B. 1997, 56: R1650~1653
    [53] L. Nordstrom, D. J. Singh. Electronic structure of Ce-filled skutterudites. Phys. Rev. B. 1996, 53: 1103~1108
    [54] D. J. Braun and W. Jeitschko. Preparation and structural investigations of antimonides with the LaFe_4P_(12) structure. J. Less-Common Met.. 1980, 72(1): 147~156
    [55] W. Jeitschko and D. J. Braun. LaFe4P12 with filled CoAs3-type structure and isotypic lanthanoid-transition metal polyphosphides. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.. 1977, 33: 3401~3406
    [56] C. B. H. Evers, W. Jeitschko, L. Boonk et al. Rare earth and uranium transition metal pnictides with LaFe_4P_(12) structure. Journal of Alloys and Compounds. 1995, 224(2): 184-189
    [57] D. T. Morelli, G. P. Meisner. Low temperature properties of the filled skutterudite CeFe_4Sb_(12). J. Appl. Phys.. 1995, 77: 3777~3781
    [58] D. Jung, M. H. Whangbo, S. Alvarez. Inorg. Chem.. 1990, 29: 2252; D. J. Singh and W. E. Pickett. Phys. Rev. B. 1994, 50: 11235
    [59] B. C. Sales, B. C. Chakoumakos, D. Mandrus. Thermoelectric properties of thallium filled Skutterudites. Phys. Rev. B. 2000, 61(4): 2475-2479
    [60] X. F. Tang, L. D. Chen, T. Goto et al. Synthesis and high temperature thermoelectric properties of n-type Ba_yNi_xCo_(4-x)Sb_(12). in Proceeding of the 20th International Conference on Thermoelectrics. Beijing. 2001. Piscataway, U.S.A.: IEEE. 97-103
    [61] H. Anno, G. S. Nolas, K. Akai et al. Electronic structure of Yb-filled CoSb3 Skutterudites studied by X-ray photoelectron spectroscopy. in Proceeding of the 20th International Conference on Thermoelectrics. Beijing. 2001. Piscataway, U.S.A.: IEEE. 61-66
    [62] S. W. Kim, Y. Kimura, Y. Mishima. Effect of partial La filling on high-temperature thermoelectric properties of IrSb3-based Skutterudite compounds. J. of electronic materials. 2004, 33(10): 1156~1160
    [63] D. Cao, F. Bridges, P. Chesler et al. Evidence for rattling behavior of the filler atom (L) in the filled skutterudites LT4X12 (L= Ce,Eu,Yb; T= Fe,Ru; X= P,Sb) from EXAFS studies. Physical Review B. 2004, 70(9): 094109
    [64] B. C. Sales, D. Mandrus, B. C. Chakoumakos et al. Filled Skutterudite antimonides: electron crystals and phonon glasses. Phys. Rev. B. 1997, 56(23): 15081-15086
    [65] G. S. Nolas, M. Kaeser, R. T. Littleton et al. High figure of merit in partially filled ytterbium Skutterudite material. Appl. Phy. Lett.. 2000, 77(12): 1855-1859
    [66] 唐新峰,陈立东等. 填充式Skutterudite 化合物:BayFexCo4-xSb12 的多步固相反应合成及结构. 物理学报. 2000, 49(11): 2196-2199
    [67] D. G. Cahill, S. K. Watson, and R. O. Pohl. Lower limit to the thermal conductivity of disordered crystals. Phys. Rev. B. 1992, 46: 6131~6140
    [68] L. D. Chen, X. F. Tang, T. Kawahara et al. Multi-filling approach for the improvement of thermoelectric properties of Skutterudites. in Proceedings 20th ICT. Beijing. 2001. IEEE. 57~60
    [69] G. S. Nolas, J. L. Cohn, G. A. Sales. Effect of partial void filling on the lattice thermal conductivity of Skutterudites. Phys. Rev. B. 1998, 58(1): 164-168
    [70] 唐新峰,陈立东等. Ce 填充分数对P 型Ce_yFe_(1.5)Co_(2.5)Sb_(12) 化合物热电传输特性的影响. 物理学报. 2000, 49(12):2461-2465
    [71] L. D. Chen. Recent advances in filled Skutterudite system. in Proceeding of the 21th International Conference on Thermoelectrics. 2002. Piscataway, U.S.A.: IEEE. 42-47
    [72] G. P. Meisner, D. T. Morelli, S. Hu et al. Structure and lattice thermal conductivity of fractionally filled skutterudites: solid solutions of fully filled and unfilled end members. Physical review letters. 1998, 80(16): 3551~3554
    [73] H. Sato, Y. Abe, H. Okada et al, Anomalous transport properties in the filled skutterudites. Journal of Magnetism and Magnetic Materials. 2003, 258-259: 67-72
    [74] M. Hedo, Y. Uwatoko, H. Sugawara et al. Pressure effect on the electrical resistivity of the filled skutterudite compound CeO_(s4)Sb_(12). Physica B. 2003, 329-333: 456-457
    [75] J. Ackermann, A. Wold. The preparation and characterization of the cobalt Skutterudites CoP3, CoAs_3 and CoSb_3. J. Phys. Chem. Solid. 1977, 38:1013~1016
    [76] E. Arushanov, K. Fess, W. Kaefer et al. Transport properties of lightly doped CoSb3 single crystals. Phys. Rev. B. 1997, 56:1911~1917
    [77] T. Caillat, J. –P. Fleurial, A. Borshchevsky. Bridgman-solution crystal growth and characterization of the Skutterudite compounds CoSb_3 and RhSb_3. J. Crystal Growth. 1996, 166: 722~726
    [78] D. T. Morelli, T. Caillat, J. –P. Fleurial et al. Low-temperature transport properties of p-type CoSb3. Phys. Rev. B. 1995, 51: 9622~9628
    [79] D. Mandrus, A. Migliori, T. W. Darling et al. Electronic transport in lightly doped CoSb_3. Phys. Rev. B. 1995, 52: 4926~4931
    [80] 唐新峰, 袁润章. 填充式Skutterudite 化合物(Ce 或Y)_yFe_xCo_(4-x)Sb_(12) 的固相反应合成及填充原子Ce 或Y 对晶格热导率的影响.中国科学B, 2000, 30(6): 489~494
    [81] J. Yang, T. Aizawa, A. Yamamoto et al. Effect of processing parameters on thermoelectric properties of p-type (Bi_2Te_3)_(0.25)(Sb_2Te_3)_( 0.75) prepared via BMA-HP method. Materials Chemistry and Physics. 2001, 70: 90~94
    [82] B. B. Bokhonov, I. G. Konstanchuk, V. V. Boldyrev. Stages of formation of a solid solution during the mechanical alloying of Si and Ge. Journal of Alloys and Compounds. 1993, 191(2): 239~242
    [83] N. Bouad, R. M. Marin-Ayral, J. C. Tedenac. Mechanical alloying and sintering of lead telluride. Journal of Alloys and Compounds. 2000, 297(1-2): 312~318
    [84] J. Y. Yang, T. Aizawa, A.Yamamoto et al. Effects of interface layer on thermoelectric properties of a pn junction prepared via the BMA-HP method. Materials Science and Engineering B: Solid-State Materials for Advanced Technology. 2001, 85 (1): 34-37
    [85] M. Umemoto. Preparation of thermoelectric β-FeSi2 doped with Al and Mn by mechanical alloying. Materials Transactions, JIM. 1995, 36(2): 373-383
    [86] H. Nagai. Effects of mechanical alloying and grinding on the preparation and thermoelectric properties of β-FeSi_2. Materials Transactions, JIM. 1995, 36(2): 365-372
    [87] V. Savchuk, J. Schumann et al. Formation and thermal stability of the Skutterudite phase in films sputtered from Co_(20)Sb_(80) targets. J. of alloys and compounds. 2003, 351: 248-252
    [88] J. C. Caylor, A. M. Stacy et al. Growth and properties of multilayered Skutterudite thin films. in Pro. of the18th International Conference on Thermoelectrics. 1999. Piscataway, U.S.A.: IEEE. 656-660
    [89] S. Heike, S. Arwyn, Y. Gene. Synthesis of filled Skutterudite compounds with varied degree of filling. in Pro. of the18th International Conference on Thermoelectrics. 1999. Piscataway, U.S.A.: IEEE. 352-357
    [90] H. Liu, J. Y. Wang, X. B. Hu et al. Preparation of filling Skutterudite nanowire by a hydrothermal method. J. of Alloys and Compounds. 2002, 334: 313-316
    [91] 杨磊,张澜庭,吴建生. 致密度对填充Skutterudite 化合物La_(0.75)Fe_3CoSb_(12) 热电性能的影响. 物理学报. 2004,53(2):537~542
    [92] B. Abeles. Lattice thermal conductivity of disordered semiconductor alloys at high temperatures. Physical review. 1963, 131(5): 1906~1911
    [93] T. Caillat, A. Borshchevsky, J. -P. Fleurial. Properties of single crystalline semiconducting CoSb_3. J. Appl. Phys.. 1996, 80:4442~4449
    [94] G. A. Slack. Solid state physics. New York: Academic P., 1979. Vol. 34, P. 1
    [95] W. Chen, J. S. Dyck, C. Uher et al. Low temperature thermoelectric properties of Ni doped n-type filled Skutterudites Ba_(0.3)Ni_xCo_(4-x)Sb_(12). in Proc. of the 20th ICT. Beijing. 2001. Piscataway, U.S.A.: IEEE. 69~72
    [96] H. D. Lutz and G. Kliche. Z. Anorg. Allg. Chem.. 1981, 480: 105
    [97] G. S. Nolas, G. A. Slack, T. Caillat et al. Raman scattering study of antimony-based Skutterudites. J. Appl. Phys.. 1996, 79(5): 2622~2626
    [98] J. L. Feldman and D. J. Singh, Lattice dynamics of skutterudites: First-principles and model calculations for CoSb_3. Phys. Rev. B. 1996, 53: 6273~6282
    [99] A. Kjekshus and T. Rakke. Acta Chem. Scand.. 1974, A 28: 99
    [100] 刘红超,郭常霖.研究固体微结构的X 射线粉末衍射全谱图拟合方法.物理学进展.1996,16(2):228~250
    [101] 马礼敦.X 射线粉末衍射的新起点-Rietveld 全谱拟合.物理学进展.1996,16(2):251~271
    [102] R. A. Young, Allen C. Larson & C. O. Paiva-Santos. User’s guide to program DBWS-9807a for Rietveld analysis of x-ray and neutron powder diffraction patterns
    [103] A. C. Larson, R. B. Von Dreele. Los Alamos National Laboratory Report No. LA-UR-86-748. 1987
    [104] R. A. Young, A. Sakthivel, T. S. Moss et al. DBWS-9411. An upgrade of the DBWS programs for rietveld refinement with PC and mainframe computers. J. Appl. Crystallogr.. 1995, 28: 366~367
    [105] F. Izumi. J. Cryst. Soc. Jpn.. 1985, 27:23
    [106] Ch. Baerlocher. XRS-82. The X-ray Rietveld system institut fuer keistallogrphie. ETH ZUrich
    [107] J. Rodriguez-Carvajal. FULLPROF: a program for Rietveld refinement and pattern matching analysis. Abstracts of the satellite meeting on powder diffraction of the XV congr. intl. union of crystallogr.. Talence, France. p. 127
    [108] M. Puyet, B. Lenoir, A. Dauscher et al. Synthesis and crystal structure of CaxCo4Sb12 Skutterudites. J. of solid state chemistry. 2004, 177: 2138~2143
    [109] Hirotsugu Takizawa, Keiichi Miura, Masayuki Ito et al. Atom insertion into the CoSb3 Skutterudite host lattice under high pressure. J. of alloys and compounds. 1999, 282:79~83
    [110] 虞觉奇,易文质,陈邦迪等编译. 二元合金状态图集. 上海:上海科学技术出版社,1987

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700