用户名: 密码: 验证码:
铌锰锑锆钛酸铅热释电陶瓷的热压烧结工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热释电红外传感器具有成本低廉、无需制冷和对红外波长无选择性等优点,在红外探测和红外成像领域占有及其重要的地位。所以,如何提高热释电材料的性能自然成为研究热点。由于热压烧结所得的陶瓷晶粒均匀、细小、粒界结构紧密、界面出很少气体或杂质凝集,陶瓷通常都具有一定的透明度和较高的机械强度。因此本文采用热压烧结法制备了铌锰锑锆钛酸铅(简称PMNSZT)陶瓷。
     本文分别研究了烧结过程中充入氧气氛对材料性能和微观结构的影响,并分析了氧气氛对于消除材料的氧缺位所起的作用;研究了通氧烧结温度对材料性能和微观结构的影响;研究了在相同升温过程和氧气氛条件下,热压压力对材料性能和微观结构的影响,分析了热压压力对材料致密化所起的作用。
     本文主要结论如下:
     从样品的SEM图可看出,通氧烧结的样品其晶粒尺寸均一性要好于普通烧结样品,且晶粒发育良好,晶界轮廓清晰,晶粒堆积比较密集,这说明通氧烧结能降低材料的烧结温度,以致于在相同烧结温度下,其晶粒尺寸大于普通烧结样品的晶粒尺寸。在不同温度下,对材料进行了通氧烧结。通过对比材料的性能发现,1210℃烧结样品具有较高的热释电系数,并且在33~36℃温区内出现了高热释电系数,其值约为20×10-8C/cm2K,探测率优值达22×10-5Pa-0.5。分析认为,这个可能是由于FRL-FRH相变所引起的相变热释电电流。
     对材料进行了不同热压压力下的烧结,热压温度均为1210℃。从样品的SEM图可以看到,随着热压压力的增大,陶瓷的晶粒尺寸也在增大,并且晶粒形貌由圆形逐渐变成多边形。这是由于在高温时压力的作用下,晶粒与晶粒之间相互挤压、堆叠,将粒界压成多边形,这样更有利于晶界间气孔的排出。并且,随着热压压力的增大,样品的致密度随之增大,热释电性能等参数得到提高。
High performance and inexpensive pyroelectric infrared sensors play an important role in the field of thermal detection and imaging of objects. So, the properties of pyroeletric materials have attracted many researchers. As the grain size of hot-pressed materials is small and uniform, the grain boundary is tight and seldom congeals impurities, so this kind of materials are transparent with high rigidity. So, hot-pressed PMNSZT materials are studied in this article.
     The influences of Oxygen atmosphere to the properties and the micro structure of the material have been studied, the effect of oxygen atmosphere in eliminating the oxygen vacancies is discussed. The sintering temperature with oxygen and hot-press pressure to the properties and the microstructure of the materials have been discussed, the effect of hot-press pressure in compacting the material is analyzed.
     The main conclusions are as follow:
     It could be inferred from the SEM picture that the grain size uniformity of oxygen-sintering material is better than that of the traditional sintered bodies. And the grain growth of oxygen-sintered material is favorable, the grain boundary is clear with the grains compacted together. The conclusion could be drawn that oxygen-sintering could reduce the sintering temperature of the material, so as that the grain size of oxygen-sintered material is larger than that of the traditional sintered samples at the same temperature.
     Green bodies are oxygen-sintered at different temperature. Through comparison, the ceramic body sintered at 1210℃has higher pyroelectric coefficient as much as 20×10-8C/cm2K from 33 to 36℃, the relavant FD reaches as high as 22×10-5Pa-0.5. Analytically, the high pyroelectric current may be caused by FRL-FRH phase transition.
     Green bodies are oxygen-sintered at different pressure at 1210℃, through SEM pictures, the conclusion could be drawn that, with the increasement of hot pressure, the size of the grain is increasing too, and the shape of the grain is changing from round to polygon.
     This may be explained as follow: grains are squeezed together under high pressure, so the grain boundary is squeezed to polygon, this would make the gas hole eliminating from the body more easily. What’s more, the density and the pyroelectric coefficient are increasing with the increasement of hot pressure.
引文
[1]陈实,张海波,姜胜林等.热释电非制冷红外焦平面阵列现状及发展趋势.红外与激光工程,2006,35(4):419~423
    [2]刘少波,李艳秋,刘梅冬.热释电薄膜单片式非制冷红外焦平面阵列的研究.纳米器件与技术,2003,11:9~12
    [3]王松德,张栓记,朱小龙,杨杰慧.热释电红外探测器在安全防护系统中的应用研究.光谱学与光谱分析,2006,26(11):2027~2029
    [4] Kazuhiko H, Tomohiro T, Katsuya M et al. High Performance Human Information Sensor. Sensors and Actuators, 2000, 79: 46~52
    [5]彭丽静,宫世宽,李丽红.热释电红外传感器原理及应用.煤炭技术,2005,24(03):113~114
    [6]李颖文,陈福胜,罗艳.非制冷热成像最新发展和应用前景.红外与激光工程,2005,34(3):257~260
    [7]赵江.红外探测技术的现状与发展趋势.舰船电子工程,2007,27(1):32~36
    [8]陈海生.非制冷红外焦平面热成像技术的进展.光机电信息,2002,3:14~17
    [9] Tanaka A, Matsumoto S, Tsukamoto N. Infrared Focal Plane Array Incorporating Silicon IC Process Compatible Bolometer. IEEE Trans. Electr. Dev., 1996, 43: 1844
    [10] Marasco P L, Derenick E L. Uncooled IR Sensor Performance. SPIE, 1993, 2020: 363~366
    [11]杨瑞东,王光科.红外热释电材料的研究进展.蒙自师范高等专科学校学报,2002,4(2):73~76
    [12]吴传贵,刘兴钊,张万里等.热释电薄膜在红外探测器中的应用.红外,2004,3:5~9
    [13] Stout A. IR Cameras Break the Ice to Open up New Markerts. Photonics Spectra, 1996, 30: 86~88
    [14] Takeshi K, Shinichiro I, A High Sensitive Thermistor Bolometer for a Clinical Tympanis Thermometer. Sensors and Actuators, 1996, 55(1):13~17
    [15] Choil H, WiseK D, A Silicon-thermalpile-based Infrared Sensing Array for Use in Automated Manufacuring. IEEE Electron Device Lett, 1986, 33(1):72~79
    [16] Geetner E R. Liquid Phase Epitaxy of Hg1-xCdxTe from Te Solution: A Route to IRDetector Structures. Mat. Res. Symp. Proc., 1987, 90: 357~361
    [17] Kozlowski L J, Williams G M, Sullivan G J et al. Comporison of GaAs/AlGaAs QWIP and HgCdTe FPA Parameters. IEEE Trans. Electr. Dev., 1991, 38: 1124
    [18]余大年,刘梅冬等. Sol-Gel方法制备掺杂Y的PZT铁电薄膜的研究.压电与声光,1997,19(1):50
    [19]张沛霖,钟维烈.压电材料与器件物理.济南:科学技术出版社,1997
    [20] Yao X, Chen Z. Cross L E. Polarization and Depolarization behavior of hot pressed lead lanthanum zirconate titate. J.Appl.Phys, 1983, 54:3399~3403
    [21]于杰,陈敬超,周晓龙等. TGS热释电晶体生长工艺研究.昆明理工大学学报(理工版),2004,29(6):27~30
    [22]陈实,刘梅冬.薄膜型热释电红外探测器的发展.压电与声光,1999,21(5):370~375
    [23] Antoni Rogalski. Infrared detectors: status and trends. Quantum Electronics, 2003, 27:159~210
    [24]杨永安,吕永林,字正华.热释电材料的研究现状分析.楚雄师专学报,2001,16(3):64~67
    [25] J.Novotny, B.Brezina, J.Zelinka. Growth and characterization of TGS and DTGS single crystals doped with Pt(II), Pt(IV) and L-alanine. Cryst.Res.Technol, 2004, 39(12):1089~1097
    [26]候识华,宋世庚,陶德明.热释电材料及其应用.电子元件与材料,2000, 19(6):26~30
    [27]李标容.电子陶瓷工艺原理.武汉:华中理工大学出版社,1994
    [28]马金龙.烧结技术的革命-微波烧结技术的发展及现状.新材料产业,2001,96(6):30~32
    [29]蔡青,杜懋陆,肖学峰.微波在陶瓷加工中的应用.西南民族大学学报(自然科学版),2006,32(6):1236~1239
    [30]周健,程吉平,董学斌等.陶瓷材料的微波连续化烧结系统研究.硅酸盐通报,1999,18(4):37~40
    [31]王秀芬,周曦亚.放电等离子烧结技术.中国陶瓷,2006,42(7):14~16
    [32]杨俊逸,李小强,郭亮等.放电等离子烧结(SPS)技术与新材料研究.材料导报,2006,20(6):94~97
    [33]江昕,戴红莲,陈晓明.陶瓷烧结新工艺.陶瓷研究,2001,16(4):20~23
    [34]李尚平,田莳.常、热压烧结0.3PZN-0.7PZT压电陶瓷性能比较.压电与声光,2000,22(5):313~315
    [35]卢波辉,赵新兵,倪华良等.热压法制备Bi2Te3基热电材料的组织与性能.兵器材料科学与工程,2004,27(3):13~16
    [36] B.D.Stojanovic, M.A.Zaghete, C.O.Paiva-Santos etc. Hot-pressed 9.5/65/35 PLZT prepared by the polymeric precursor method. Ceramics International, 2000, 26:625~630
    [37] Xunhu Dai, Z.Xu, Dwight Viehland. Phase stability and transformations in pure and lanthanum modified lead zirconate cearamics. J.Appl.Phys, 1995, 77(10):5086~5094
    [38] Xunhu Dai, Z.Xu, Dwight Viehland. Dielectric properties of tetragonal lanthanum modified lead zirconate ceramics. J.Appl.Phys, 1993, 74(5):3399~3404
    [39]王月花.陶瓷的热压烧结.周口师范学院学报,2004,21(2):44~46
    [40]梁忠友.热等静压技术在特种陶瓷制备中的应用.陶瓷,1999,137:39~41
    [41]张远骏.热等静压设备结构特点及应用工艺.真空电子技术,2002,3:43~46
    [42]詹志洪.热等静压技术和设备的应用与发展.中国钨业,2005,20(1):44~47
    [43]郑仕远,李荣缇,罗永明.自蔓延燃烧法材料合成技术.山东陶瓷,1999,22(4):3~12
    [44] Hirofumi Takahashi, Jinhao Qiu, Junji Tani etc. Fabrication of high-performance PNN-PZT ceramic using microwave and hot-press hybrid sintering process. Jpn.J.Appl.Phys., 2001, 40:4611~4614
    [45] H.Takahashi, K.Kato, J.Qiu etc. Property of Lead Zirconate Titanate Ceramic using Microwave and Hot-press Hybrid Sintering Process. Jpn.J.Appl.Phys., 2001, 40:5642~5646
    [46]张德颖,章秀淦,郭太良等.锆钛酸铅陶瓷的烧结性能.福州大学学报(自然科学版),1999,27(6):42~44
    [47] Effect of Molecular Mass of B-site Ions on Electromechanical Coupling Factors of Lead-Based Perovskite Piezoelectric Materials, Jpn.J.Appl.Phys., 2000, 39:5593~5596
    [48] Sotter N. Cross L E. The role of b-site cation disorder in diffuse phase transitionbehavior of perovskite ferroelectrics. J. Appl. Phys, 1980, 51(8): 4356~4360
    [49]陈磊,刘梅冬,曾亦可等. (Pb,La)TiO3铁电薄膜的制备及热释电性能研究.压电与声光,1999,21(1):55~58
    [50] Kholkin AL, Calzada ML, Ramos P et al. Piezoelectric properties of Ca-modified PbTiO3 thin films J.Appl. Phys.Lett., 1996, 69(23):3602~3604
    [51]蒲朝辉,刘洪,徐鹏等. PZT厚膜的制备及其热释电性能研究.四川大学学报(自然科学版),2005,42(2):481~484
    [52]杜辉,孙大志,钟妮等. PZT95/5铁电陶瓷的掺杂改性研究.无机材料学报,2003,18(2):320~324
    [53] Sun Dazhi, Liu Ruibin. Electromechanical coupling in PHZT and PLZT ceramic materials near the F-AF phase boundary. Ferroelectrics, 1995, 173:279~282
    [54] Coble R.L. (I)Sintering crystalline solids-intermediate and final diffusion models; (II) Sintering crystalline solids-experimantal test of diffusion models in powder compacts. J.Appl.Phys., 1961, 32:787~793
    [55] Kingery W.D, Berg M. Study of the initial stage of sintering by viscous flow, evaporation-condensation, and self-diffusion. J.Appl.Phys., 1955, 26:1205
    [56]施剑林.固相烧结——I气孔显微结构模型及其热力学稳定性,致密化方程.硅酸盐学报,1997,25(5):499~512

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700