用户名: 密码: 验证码:
化学共沉积法制备纳米金刚石/铜基复合材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米金刚石(ND)不仅具有金刚石高硬度、高导热、高耐磨等性能,同时兼有纳米粒子的特性,因此受到广泛的关注。纳米金刚石作为增强相制备的金属基复合材料在很多需要高强度、高导电的工业领域具有广泛的应用前景。但是传统制备工艺很难克服纳米颗粒极易团聚和与金属基体浸润性不良的问题。本课题首次采用化学共沉积-粉末冶金法,并通过纳米金刚石表面改性,探索了制备纳米金刚石弥散强化铜基(ND/Cu)复合材料的新方法。
     通过化学共沉积工艺制备了ND/Cu复合粉体,并采用粉末冶金工艺制备了ND/Cu复合材料。研究了不同制备工艺参数(包括:煅烧温度、还原温度、初压压力、烧结温度、烧结时间、复压压力)对复合粉末、复合材料微观组织与性能的影响,确定了最佳的制备工艺参数。
     采用石墨化、酸处理、化学镀等方法对纳米金刚石进行表面改性。改性后的纳米金刚石的分散性均有不同程度的提高。其中经表面石墨化和HF酸两步处理的纳米金刚石表现出良好的分散性,显著降低ND的团聚。经两步处理后的纳米金刚石所制备的复合材料,晶粒细小,纳米金刚石均匀分布于铜基体中,界面结合良好,起到了弥散强化的作用。因此,具有较高的硬度和电导率。
     采用高分辨透射电镜(HRTEM)分析了ND/Cu复合材料的微观组织和界面特征。结果表明:纳米金刚石颗粒弥散分布于铜晶粒中,界面结合紧密,并存在位错、孪晶等亚结构。研究了不同ND含量对复合材料性能的影响,发现随着ND含量的增加,复合材料的密度、电导率随之下降,硬度逐渐升高,抗拉强度在含量为3wt.%时为最高值。随着ND含量的增加,ND/Cu复合材料的抗软化温度升高,当ND含量大于3wt.%时,抗软化温度大于600℃。3wt.%ND/Cu复合材料具有很好的综合性能。探讨了化学共沉积法制备的ND/Cu复合材料的强化机制主要为细晶强化和弥散强化。
Due to the properties of high hardness, high thermal conductivity, high wearing resistant, and the characters of nanoparticle, nanodiamond (ND) has attracted wide research attentions. ND reinforced metal matrix composites have a promising application in the fields which need the materials with high strength, high electric conductivity, and good high temperature performance. However, when ND was taken into consideration, a few problems, such as the aggregations of ND particles and the poor wettability between diamond and copper, could not be overcome by traditional preparation methods. In this paper, a novel method called“chemical co-deposition”was introduced to prepare ND/Cu composite powders. ND particles were functionalized by three modification methods for uniform dispersion, and ND/Cu composites were fabricated by powder metallurgy.
     ND/Cu composite powders were prepared by chemical co-deposition route, and ND/Cu composites were fabricated by powder metallurgy. The influence of different processing parameters (including: calcination temperature, reduction temperature, pressing, sintering temperature, sintering time and repressing) on the microstructure and performance of composite powders and ND/Cu composite bulks were investigated, and then processing parameters were optimized.
     The ND particles were modified by graphitization, acid treatment and electroless plating, respectively. The dispersibility of ND was great improved after modification. The ND particles, treated by graphitization and HF acid, could homogeneously disperse in composite powders and composite bulks. Fine grains and good interfacial combination of the composites were obtained. Thus, the surface treated ND/Cu composites show higher hardness and conductivity properties than untreated ones due to dispersion strengthen effect.
     The microstructure and interfacial characterization of ND/Cu composites were analyzed by TEM and HRTEM. The results demonstrated that ND particles homogeneously dispersed in copper matrix, and the interface between copper and ND was clean and tight. The grains of copper matrix were fine, and dislocations and twins in the matrix could be found. The influence of ND content on composites performances was studied. With the increase of ND content, the hardness, tensile strength and resistive softening properties of the composites could be improved, but the density and conductivity were decreased. 3wt.% ND/Cu composite has the best combined performances. The main strengthen mechanism of ND/Cu composites prepared by chemical co-deposition method are fine grain strengthening and dispersion strengthening.
引文
[1]赵祖德,姚良均,郭鸿运等,铜及铜合金手册,北京:科学出版社,1993.
    [2]刘涛,郦剑,凌国平等,颗粒增强铜基复合材料研究进展,材料导报,2004, 18(4):53~55.
    [3] Korb G, Koráb J, Groboth G,Thermal expansion behaviour of unidirectional carbon-fibre-reinforced copper-matrix composites, Composites Part A, 1998, 29 (12): 1563~1567.
    [4]张毅,周延春,Ti3SiC2弥散强化Cu:一种新的弥散强化铜合金,金属学报,2000,36(6):662~666.
    [5] Z.Y. Ma, S.C. Tjong, High temperature creep behavior of in-situ TiB2 particulate reinforced copper-based composite, Mater Sci Eng A., 2000, 284: 70~76.
    [6] J.Y. Wu, Y.C. Zhou, J.Y. Wang, Tribological behavior of Ti2SnC particulate reinforced copper matrix composites, Mater Sci Eng A., 2006, 422: 266~271.
    [7] W.Z. Shao, V.V. Ivanov, L. Zhen, et al, A study on graphitization of diamond in copper–diamond composite materials, Mater Lett., 2003, 58: 146~149.
    [8]于同仁,颗粒增强统计复合材料的试验研究,马钢科技,1999,1:29~32.
    [9]张红霞,胡树兵,涂江平,颗粒增强铜基复合材料的研究进展,材料科学工艺,2005,13(4):357~360.
    [10]邹柳娟,范志强,碳纤维增强铜基复合材料的研究现状与展望,重庆:材料导报,1998,12(3):56~59.
    [11]程继贵,应美芳,碳纤维增强铜基轴承合金得的制造工艺和性能研究,北京:机械工程学报,1995,6(3):59~61.
    [12] S.C. Tjong, K.C. Lau, Tribological behaviour of SiC particle-reinforced copper matrix matrix composites, Mater Lett., 2000, 43(5~6): 274~280.
    [13] P. Yih, D. Chung, A comparative study of the coated filler method and the admixture method of powder metallurgy for making metal-matrix composites, Journal of Materials Science, 1997, 32(11): 2873~2882.
    [14] G.. Korb, W. Buchgraber, T. Schubert, Thermophysical properties and microstructure of short carbon fibre reinforced Cu-matrix composites made by electroless copper coating or powder metallurgical route respectively, Proceedings of the IEEE/CPMT International Electronics Manufacturing Technology (IEMT) Symposium, Apr 1998, 27~29: 98~103.
    [15] K.G.K. Warrier, P.K. Rohatgi, Mechanical, electrical, and electrical contact properties of Cu-TiO2 composites, Powder Metall., 1986, 29(1): 65~69.
    [16]刘耐艳,Cu-纳米TiB2增强铜基复合材料的制备及摩擦磨损性能,浙江:浙江大学[硕士学位论文],2003,3~4.
    [17]王俊,孙宝德,周尧和等,颗粒增强金属基复合材料的发展概况,铸造技术,1998,20(3):37~41.
    [18] I.A. Ibrahim, F.A. Mohamed, E.J. Lavernia, Particulate reinforced metal matrix composites-a review, J. Mater. Sci., 1991, 26(2): 1137~1156.
    [19]孙国雄,廖恒成等,颗粒增强金属基复合材料的制备技术和界面反应与控制,特种铸造及有色合金,1998,19(4):12~17.
    [20] C.J. Smithells, E.A. Brandes, Metals Reference Book (fifth edition), Butterworth & Co (Publisher) Ltd, 1976.
    [21] J.R.Groza, J.G.Gilbeling, Principles of particle selection for dispersion strengthened copper, Mater Sci Eng. A, 1993, 171: 115~125.
    [22]雷秀娟,王峰会,胡锐等,Al2O3-Cu纳米复合材料的制备工艺及强化机理,机械科学与技术,2004,23(1):90~91.
    [23] D.Y.Ying, D.L.Zhang, Processing of Cu-Al2O3 metal nanocomposites by using high energy ball milling, Mater Sci Eng A., 2000, 286: 152~156.
    [24] J.S. Benjamin, Dispersion strengthened superalloys by mechanical alloying, USA:Metal1. Trans., 1970, (1): 2943~2951.
    [25] M. Lo′pez, D. Corredor, C. Camurri, et al, Performance and characterizeation of dispersion strengthened Cu–TiB2 composite for electrical use, Mater Charact., 2005, 55: 252~262.
    [26] J. Naster, W. Riehemann, H. Ferke1, Dispersion hardening of metals by nano-scaled ceramic powders, Mater Sci and Eng A, 1997, (234-236): 467~469.
    [27] J.M. Wu, Z.Z. Li, Nanostructured composite obtained by mechanically driven reduction reaction of CuO and Al powder mixture, J Alloy Compd., 2000, 299: 9~16.
    [28]刘志坚,曲选辉,黄伯云,机械合金化反应合成TiN,粉末冶金技术,1997,(2):110—112.
    [29]董仕节,史耀武,(TiB2+A12O3)增强铜基复合材料的研究,材料工程,2002,(7):6-11.
    [30]董树荣,张孝彬,纳米碳管增强铜基复合材料的滑动磨损特性研究,摩擦学学报,1999,19(1):1~6.
    [31] T.G. Durai, Karabi Das, Siddhartha Das, Synthesis and characterization of Al matrix composites reinforced by in situ alumina particulates, Materials Science and Engineering: A, 2007, 445-446: 100~105.
    [32]丁俭,赵乃勤,师春生等,纳米相增强铜基复合材料制备技术的研究进展,兵器材料科学与工程,2005,28 (5):65~68.
    [33] C.C. Leong, L. Lu, J.Y.H. Fuh, In-situ formation of copper matrix composites by laser sintering, Mater Sci Eng. A, 2002, 338: 81~88.
    [34]王庆平,姚明,陈刚,反应生成金属基复合材料制备方法的研究进展,江苏大学学报,2003,24(3):57~61.
    [35] P.K. Jena, E.A. Brocchi, M.S. Motta, In-situ formation of Cu-Al2O3 nano-scale composites by chemical routes and studies on their microstructures, Mater Sci and Eng A, 2001, 313: 180~186.
    [36] S.J. Zhu, T. Iizuka, Fabrication and mechanical behavior of Al matrix composites reinforced with porous ceramic of in situ grown whisker framework, Mater Sci and Eng A, 2003, 354: 306~314.
    [37] P. Yu, C.J. Deng, N.G. Ma, et al, Formation of nanostructure eutectic network inα-Al2O3 reinforced Al-Cu alloy matrix composite, Acta mater., 2003, 51: 3446~3453.
    [38]闵光辉,王常春,于普涟等,Cu-Zr合金基体中TiB2的原位反应合成,复合材料学报,2002,19(5):66~70.
    [39]程建奕,汪明朴,高强高导高耐热弥散强化铜合金的研究现状,材料导报,2004,18(2):38~42.
    [40] W.J. Scheithauer, R.F. Cheney, N.E. Kopatz, Modern Developments in Powder Metallurgy, P1enum press, 1971, 5:149~155.
    [41] D.W. Lee, O. Tolochko, C.J. Choi, et a1, A1uminium oxide dispersion strengthened copper produced by thermochemical process, Powder Metallurgy, 2002, 45(3): 267~270.
    [42] J.T. Jiang, L. Zhen, C.Y. Xu, et al, Microstructure and magnetic properties of SiC/Co composite particles prepared by electroless plating, Surface & Coatings Technology, 2006, 201: 3139~3146.
    [43] G.Z. Zou, M.S. Cao, H.B. Lin, et al, Nickel layer deposition on SiC nanoparticles by simple electroless plating and its dielectric behaviors, Powder Technology, 2006, 168: 84~88.
    [44]王文芳,顾家山,石墨表面镀铜对石墨-铜复合材料强度影响的研究,热加工工艺,1999, 28(6):28~29.
    [45] K. Ichikawa, M. Achikita, Electrical conductivity and mechanical properties of carbide dispersion-strengthened copper prepared by compocasting, Materials Transactions, 1993, 34(8): 718~724.
    [46] E.J. Stefanides, A Al2O3/Cu materials, Design News, 1979, 46: 22~23.
    [47] S.C. Tjong, K.C. Lau, Abrasive wear behavior of TiB2 particle-reinforced copper matrix composites, Mater Sci and Eng A, 2000, 282: 183~186.
    [48]赵乃勤,李国俊,王长臣等,粉末冶金真空热压法制备WC/Cu复合电阻焊电极,兵器材料科学与工程,1997,20(3):39~43.
    [49]熊拥军,邓至谦,凌兴珠等,TiB2颗粒增强铜基复合材料的研究,中南工业大学学报,2001,32(3):294~297.
    [50] Y. Wan, Y. Wang, G. Chug, Effects of processing parameters, particle characteristics, and metallic coatings on properties of Al2O3 copper matrix composites, Powder Metallurgy, 1998, 41(1): 59~63.
    [51] Y.Z. Zhan, G.D. Zhang, Wear transitions in particulate reinforced copper matrix composite, Materials Transactions, 2004, 45(7): 2332~2338.
    [52]邓启明,孙峰岳,石墨含量对铜-石墨材料机械性能和摩擦特性的影响,粉末冶金技术,1989,7(1):62~63.
    [53] Y.Z. Zhan, G.D. Zhang, Effect of surface metallization of graphite on the tribological properties of copper hybrid composites, Scandinavian Journal of Metallurgy, 2004, 33(2): 80~84.
    [54] Y.Z. Zhan, G.D. Zhang, Graphite and SiC hybrid particles reinforced copper matrix composite and its tribological characteristic, Journal of Materials Science Letters, 2003, 22: 1087~1089.
    [55] N.J. Grant, High conductivity copper and aluminum alloys, Los Angeles: California press, 1984, 26(3): 103~106.
    [56] R.W. Siegel, Nanostructured materals mixed over matter, Nanostructured Matter, 1994, 4: 121~138.
    [57]李泉,曾广赋,席时权,纳米粒子,化学通报,1995,6:29~34.
    [58] N. R. Gneiner, D.S. Phillips, J.D. Johnson, et a1, Diamonds in detonation soot, Nature, 1988, 333: 440~443.
    [59] O.A. Shenderova, V.V. Zhirnov, D.W. Brenner, Carbon nanostructures, Crit. Rev. Solid. State., 2002, 27: 227~356.
    [60] A.E. Aleksenskii, M.V. Baidakova, A.Y. Vu?, V.I. Siklitskii, The structure of diamond nanoclusters, Phys. Solid. State., 1999, 41: 668~671.
    [61] A. Krüger, F. Kataoka, M. Ozawa, et al, Unusually tight aggregation in detonation nanodiamond: identification and disintegration, Carbon, 2005, 43: 1722~1730.
    [62]徐康,金增寿,炸药爆炸法制备超细金刚石粉末,含能材料,1993,1(3):19~21.
    [63]陈生玉,陈增凯,纳米级金刚石系列产品的现状及展望,宇航材料工艺,1999,29(2):9~11.
    [64]李世才,池军智,黄风雷等,影响超细金刚石尺寸长大的限制机理,北京理工大学学报,1997,17(5):552~557.
    [65]陈鹏万,恽寿榕,黄风雷等,爆轰合成纳米超微金刚石的提纯方法研究,功能材料,2000,31(1):56~57.
    [66] V. G. Gryaznov, L. I. Trusov, Size effects in micromechanics of nanocrystals, Progress in Materials Science, 1993, 37: 289~401.
    [67]罗立群,张泾生,朱永伟,纳米金刚石的研究与应用现状,材料导报,2004,18:127~131.
    [68]邹芹,王明智,王艳辉,纳米金刚石的性能与应用研究,金刚石与磨料磨具工程,2003,2:54~58.
    [69] Q. Ouyang, K. Okada, Nano-ball bearing effect of ultra-fine particles of cluster diamond, Applied Surface Science, 1994, 78: 309~313.
    [70] I.Kh. Chepovetskii, et a1, Effect of metal lubricants containing ultradisperse diamond on wear resistance elements, Sverkhtverd Mater, 1994, (3): 62~63.
    [71]乔玉林,徐滨士,马世宁等,含纳米金刚石复合润滑油添加剂的摩擦学性能,石油炼制与化工,1999,30(3):12~15.
    [72]张家玺,李百川,朱均,超精细金刚石在车用内燃机磨合油中的应用研究,西安公路交通大学学报,1998,18(3):75~78.
    [73]高宏刚,王建明,应用纳米级金刚石抛光亚纳米级光滑表面,光学精密工程,1999,7(5):80~84.
    [74]徐滨士,欧忠文,马世宁等,纳米表面工程基本问题及其进展,中国表面工程,2001,(3):6~12.
    [75]蒋中伟,张竟敏,黄文浩等,金刚石热化学抛光的机理研究,光学精密工程,2002,10(1):50~55.
    [76] N.I. Chkhalo, M.V. Fedrochenko, E.P. Krul yakov, et al, Ultradispersed diamond powders of detonation nature for polishing X-ray mirrors, Nucl Instr Methods Phys. Res. A, 1995, 359: 155~156.
    [77]朱永伟,王柏春,陈立舫等,纳米金刚石的应用现状及发展前景,材料导报,2002,16(12):27~30.
    [78] N. Kossovsky, A. Gelman, H. Hnatyzyn, et al, Surface-modified diamond nanoparticles as antigen delivery vehicles, Bioconjugate Chem., 1995, 6: 507~511.
    [79] Stanislaw Mitura, Nanotechnology in materials science, Intertech 2000, Vanscover, Canada, July 2000.
    [80] P.H. Chung, E. Perevedentseva, J.S. Tu, et al, Spectroscopic study of bio-functionalized nanodiamonds, Diamond & Related Materials, 2006, 15: 622~625.
    [81]徐滨士,纳米表面工程,北京:化学工业出版社,2003.
    [82] J. Sun, L. Gao, W. Li, Chem. Mater., 2002, 14: 5169~5172.
    [83] E.D. Eidelman, V.I. Siklitsky, L.V. Sharonova, et al, A stable suspension of single ultrananocrystalline diamond particles, Diamond & Related Materials, 2005, 14: 1765~1769.
    [84] O. Shenderova, I. Petrov, J. Walsh, et al, Modification of detonation nanodiamonds by heat treatment in air, Diamond & Related Materials, 2006, 15: 1799~1803.
    [85] X.Y. Xu, Z.M. Yu, Y.W. Zhu, et al, Influence of surface modification adopting thermal treatments on dispersion of detonation nanodiamond, Solid State Chemistry, 2005, 178: 688~693.
    [86]李凤生,崔平,杨毅等,微纳米粉体后处理技术及应用,北京:国防工业出版社,2005.
    [87] M. Colic, G. Franks, M. Fisher, et al, Chemisorption of Organofunctional Silanes on Silicon Nitride for Improved Aqueous Processing, J.Am.Ceram.Soc., 1998, 81(8): 2157~2163.
    [88] T. Nakamura, M. Ishihara, T. Ohana, et al, Chemical modification of diamond powder using photolysis of perfluoroazooctane, Chem. Commun., 2003, (7): 900~901.
    [89] B.V. Spitsyn, J.L. Davidson, M.N. Gradoboev, et al, Inroad to modification of detonation nanodimond, Diamond & Related Materials, 2006,15: 296~299.
    [90] Y. Liu, Z.N. Gu, J.L. Margrave, et al, Functionalization of Nanoscale Diamond Powder: Fluoro-, Alkyl-, Amino-, and Amino Acid-Nanodiamond Derivatives, Chem. Mater., 2004,16: 3924~3930.
    [91] L. Li, J.L. Davidson, C.M. Lukehart, Surface functionalization of nanodiamond particles via atom transfer radical polymerization, Carbon, 2006, 44: 2308~2315.
    [92] T. Tsubota, O. Hirabayashi, S. Ida, et al, Chemical modification of hydrogenated diamond surface using benzoyl peroxides, Phys. Chem. Chem. Phys., 2002, 4: 806~811.
    [93] T. Tsubota, S. Ida, O. Hirabayashi, et al, Chemical modification of diamond surface using a diacyl peroxide as radical initiatior and CN group-containing compounds for the introduction of the CN group, Phys. Chem. Chem. Phys., 2002, 4: 3881~3886.
    [94] J.B. Miller, D.W. Brown, Photochemical modification of diamond surfaces, Langmuir, 1996, 12: 5809~5817.
    [95] T. Nakamura, M. Hasegawa, K. Tsugawa, et al, Photochemical modification of nanodiamond films with perfluorooctyl functionalities, Diamond & Related Materials, 2006, 15: 678~681.
    [96] S. Ferro, A.D. Battisti, Physicochemical properties of fluorinated diamond electrodes, J. Phys. Chem. B, 2003, 107: 7567~7573.
    [97] M.A. Ray, O. Shenderova, W. Hook, et al, Cold plasma functionalization of nanodiamond particles, Diamond & Related Materials, 2006, 15: 1809~1812.
    [98] Z.J. Qiao, J.J. Li, N.Q. Zhao, et al, Graphitization and microstructure transformation of nanodiamond to onion-like carbon, Scripta Materialia, 2006, 54: 225~229.
    [99]王盘鑫,粉末冶金学,北京:冶金工业出版社,1996,65~66.
    [100]中南矿冶学院粉末冶金教研室,粉末冶金基础,北京:冶金工业出版社,1974.
    [101] D.S. Zhao, M. Zhao, Q. Jiang, Size and temperature dependence of nanodiamond-nanographite transition related with surface stress, Diamond & Related Materials, 2002, 11: 234~236.
    [102] G.N. Yushin, S. Osswald, V.I. Padalko, et al, Effect of sintering on structure of nanodiamond, Diamond & Related Materials, 2005, 14: 1721~1729.
    [103] A.V. Okotrub, L.G. Bulusheva, V.L. Kuznetsov, Electronic structure of diamond/graphite composite nanoparticles, The European Physical Journal D, 2005, 34: 157~160.
    [104] N.S. Xu, J. Chen, S.Z. Deng, Effect of heat treatment on the properties of nano-diamond under oxygen and argon ambient, Diamond & Related Materials, 2002, 11: 249~256.
    [105] A.V. Okotrub, L.G. Bulusheva, A.V. Gusel’nikov, et al, Field emission from products of nanodiamond annealing, Carbon, 2004, 42: 1099~1102.
    [106] A.V. Okotrub, L.G. Bulusheva, V.L. Kuznetsov, Electronic state of nanodiamond/graphite interfaces, Applied Physics A, 2005, 81: 393~398.
    [107] J.C. Romero, R.J. Arsenault, Anomalous penetration of Al into SiC, Acta metal mater., 1995, 43(2): 849~857.
    [108] C.X. Huang, K. Wang, S.D. Wu, et al, Deformation twinning in polycrystalline copper at room temperature and low strain rate, Acta Materialia, 2006, 54: 655~665.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700