用户名: 密码: 验证码:
降凝剂对含蜡油石蜡析出过程影响的实验与模型化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含蜡油输送时,低温下蜡晶的析出会阻塞输油管道,从而严重影响原油的输送和生产。目前采用了许多物理或者化学方法来解决这一问题。添加化学降凝剂的方法以其操作简单、设备投资少,且不需要后处理等优点而被广泛采用,因此研究降凝剂对石蜡沉积的影响有非常重要的意义。本文以模拟油为研究对象,从实验和模型化两个方面研究了降凝剂对石蜡沉积的影响。
     采用高速离心分离法和气相色谱法测定了模拟含蜡油添加降凝剂前后不同温度下的析蜡量以及析出蜡晶的组成。结果表明添加降凝剂后,一定温度范围内的析蜡量减少,随着温度的不断降低,析蜡量降低的幅度逐渐减小,当温度降低至某一温度时,加剂前后的析蜡量趋于相等;在同一温度下,加剂后析出的蜡晶中高碳数烷烃所占比例增加,析出蜡晶的摩尔质量增大。
     差示扫描量热法(DSC)测定了添加降凝剂前后蜡晶的热谱图,结果表明加剂后蜡晶的整个DSC曲线向低温方向移动,根据DSC分析程序得出,加剂后蜡晶的熔点和固-固转换温度降低,但是蜡晶的熔解焓和固-固转换焓变化很小,特别是熔解焓和固-固转换焓的和几乎没有变化。
     采用X射线衍射仪和偏光显微镜对添加降凝剂前后蜡晶的晶格结构和晶形进行了研究。X射线结果表明降凝剂的加入促进了蜡晶形成旋转晶型,减弱了正交晶型的蜡晶生成。正交晶为蜡晶低温有序固相,旋转晶为蜡晶高温无序固相,降凝剂的加入使得蜡晶以一种类似于液态的非有序固相存在,这意味着在某一温度下从加剂溶液中析出的蜡晶结构与在更高的温度下从未加剂溶液中析出的蜡晶结构相同,降凝剂的加入,有效地降低了蜡晶的熔点。蜡晶的偏光显微图像表明添加降凝剂后蜡晶颗粒尺寸变大,蜡晶界面轮廓更清晰、形状更规整,单位体积内蜡晶颗粒的数量大大降低。加剂后由于单位体积浓度的降低、蜡晶聚集颗粒形状的准球形化和蜡晶聚集体絮凝能力的减弱,含蜡油开始呈现非牛顿流体特性的温度降低。
     从正规溶液理论和聚合物溶液理论两个角度出发,结合液-固两相热力学平衡理论,在前人的基础上分别建立了加剂前后石蜡沉积的正规溶液模型和UNIQUAC局部组成活度系数模型,并且比较了两个模型的预测性能。
     (1)正规溶液理论模型:在该模型中组分i在固相和液相中的非理想性均采用正规溶液理论来描述。
     (2) UNIQUAC局部组成活度系数模型:在该模型中,液相的相态描述采用了G~E-EOS模型,其中状态方程为改进的PR状态方程,混合规则采用LCVM模型;固相的非理想性则采用改进的UNIQUAC局部组成活度系数模型来描述。
     研究表明,当石蜡的碳链大于9时,其固相至少存在着四种晶体结构,即旋转晶(α_H)、三斜晶(β_T)、单斜晶(β_M)和正交晶(β_O),旋转的α晶体在许多情况下类似于液体,它在C_9~C_(43)的奇碳数烷烃和C_(22)~C_(42)的偶碳数烷烃的熔点下是稳定的。当温度低于旋转化温度时,烷烃成为低能量不可转化的β晶体,其间不同碳原子数的正构烷烃都经历了固-固转换。基于这种现象,本文两个热力学模型在组分i的标准态逸度比公式中考虑了固-固转换对石蜡沉积的影响,并且根据文献实验数据,对于正构烷烃的熔解焓、固-固转换焓以及固-固转换温度建立了新的关系式。差示扫描量热仪实验显示添加降凝剂后蜡晶的熔点和固-固转换温度降低,本文采用了这一实验结果对添加降凝剂后蜡晶的熔点和固-固转换温度也进行了新的关联。
     基于新建立的正构烷烃的熔解焓、固-固转换焓以及固-固转换温度的关系式,采用本文两个模型对文献中含蜡原油体系的析蜡点以及不同温度下的析蜡量进行了计算并与文献中模型的预测结果进行了比较,结果表明本文所建立的模型,特别是UNIQUAC局部组成模型的模拟结果更加接近于实验值,从而验证了本文模型的可靠性和正确性。将所建立的热力学模型对本文含蜡油体系添加降凝剂前后的析蜡点、不同温度下的析蜡量以及析出蜡晶的组成进行了模拟计算,模型计算值与实验值吻合较好。模型计算结果表明,烷烃的熔点和固.固转换温度等热力学性质对于石蜡沉积的计算有很大的影响,添加降凝剂后,在一定温度范围内,含蜡油的析蜡量降低,析出蜡晶中高碳数烷烃所占比例增加,析出蜡晶的摩尔质量增大,与降凝剂对石蜡沉积影响的实验现象一致。
When waxy oils are transported at low temperature,the plug of pipeline caused by wax precipitation has important influence on the transportation and production of crude oils.At present,many physical and chemical means have been used to solve this problem.Adding chemical pour point depressant(PPD) to the oils have been applied extensively because of its simple operation,low investment and non-after treatment.It is important to study the influence of pour point depressant(PPD) on wax precipitation.This research works on the effect of PPD on the thermodynamic properties of wax precipitation from the point of view of experimental and thermodynamic models.
     The amount and composition of wax precipitated from simulated oils with and without PPD at different temperatures were measured by high speed centrifuge and gas chromatography(GC),respectively.It can be concluded that the amounts of wax precipitated from oils treated with PPD in the experimental range are lower than that from untreated oils. However,the amounts of wax precipitated from oils treated and untreated with PPD are the same when the temperature drops to a certain temperature.At the same temperature,the wax precipitated from treated oils is richer in paraffins with higher melting point than that from untreated oils,so the wax formed from the treated oil mixture has a higher molecular weight than the wax formed from the untreated oil mixture.
     The thermograms of waxes with and without PPD were measured by differential scanning calorimetry(DSC).After the waxes were treated with additives,the DSC curves of waxes are all shifted to lower temperature.The experimental data show that the melting points and the solid-solid transition temperatures of paraffin mixtures are both decreased while they were being treated with PPD.However,the transition enthalpies have little changes especially the sum of solid-solid transition enthalpy and melting enthalpy.
     The lattice structure and morpholopy of wax crystals were studied by X-ray diffraction and the polarized light micsoscope,respectively.The X-ray diffraction results indicated that after adding PPD,the structure of wax is partly transformed from orthorhombic into hexagonal lattice.The orthorhombic lattice is an ordered phase at lower temperature and the hexagonal lattice is a disordered phase at higher temperature.The wax with PPD will prefer to crystallize in a less ordered state which is more akin to the liquid phase.This means that the wax precipitated from treated oils at a given temperature is corresponds to the wax precipitated from untreated oils at a higher temperature.The polarized light micsoscope results indicated that the function of PPD on the crystal morpholopy is increasing the size of paraffin particles,improving their symmetry,reducing their dispersivity,depressing their interaction and connection,so the characteristic temperature of non-Newton waxy oils is lowered.
     Based on the regular solution theory and polymer solution theory as well as the liquid-solid phase thermodynamic equilibrium,the regular solution model and the UNIQUAC local composition model were established in this work to predict the wax precipitated from oils with and without PPD,the prediction performance of these two models were also compared in this work.
     (1) Regular solution model:The activity coefficient based on a regular solution theory approach was used to account for the non-ideality of liquid and solid phases.
     (2) UNIQUAC local composition model:The fluid phase behavior was described by the modified LCVM,PR equation of state-G~E model and the solid phase non-ideality was represented by the UNIQUAC equation using the local composition concept.
     It is well known that the solid phases of all n-paraffins with more than nine carbon atoms in the chain consist of four distinct crystal structures,hexagonal(α_H),triclinic(β_T), monoclinic(β_M) and orthorhombic(β_O),respectively.When the temperature is slightly lower than the wax appearance temperature,the paraffin will precipitate with a disorderedα_H crystal structure,with the further decrease of temperature,and all of the solid paraffins become orderedβphase.The influence of solid-solid transition on the wax precipitation was considered in the correlation of standard fugacity ratio.From the point of view of the close relation between the crystal lattice structure and the thermal properties of paraffins,new correlations for fusion enthalpy,solid-solid transition enthalpy and solid-solid transition temperature of paraffins were established in this work based on the data from literatures.New correlations for the melting point and solid-solid transition temperature of treated paraffins were also established based on experimental results with differential scanning calorimeter (DSC),which show that these properties are both decreased after being treated with PPD.
     Based on the new correlations for fusion enthalpy,solid-solid transition enthalpy and solid-solid transition temperature of paraffins established in this work,a good calculation results as well as the reliability and precision of the models are demonstrated through a comparison calculation for three examples in the literature.The calculation results by these two models for the wax appearance temperature,the amount and composition of wax precipitated from oil with and without PPD at different temperatures have been compared with experimental observations.The predictions of the models agree well with the present experimental data.The calculation results indicated that the performance of wax precipitation models is strongly influenced by the thermodynamic properties of paraffins such as the fusion temperature and the solid-solid transition temperature etc.The results presented show that after adding PPD,the amount of wax precipitated from oils treated with PPD in the experimental range is lower than that from untreated oils,the wax precipitated from treated oils is richer in paraffins with higher melting point than that from untreated oils,which is consistent with the experimental phenomena of effect of pour point depressant on wax precipitaton.
引文
[1]Benallal A,Maurel P,Agassant J F.Wax deposit accumulation in"cylindrical coquette" geometry [J].C.R.Mecanique,2008,336:835-839.
    [2][苏]古宾B E著,陈祖泽译.高粘高凝原油和成品油管道输送[M].北京:石油工业出版社,1992.
    [3][加]罗杰M.巴特勒著,王秉章,咸玥瑛,李静等译.重油和沥青的热力开采工艺[M].北京:石油工业出版社,1994.
    [4]石油工业部管道科学研究院-石油工业部科学技术情报研究院(合编),谭礼荣(主编).原油的化学降凝和防蜡(译文集)[M].北京:石油工业科学技术情报所,1988.
    [5]李生华.减压渣油的物理结构及其热力学分析和应用[D].重庆:后勤工程学院博士后论文[D],1988.
    [6]W.E(Bill)Haines主编.金静芷译.油田化学发展论文集[C].北京:石油工业出版社,1991.
    [7]权忠舆.有关石油流变性与石油化学的讨论[J].油气储运,1996,15(10):1-6.
    [8]张付生,谢慧专,董丽坚.原油降凝降粘剂在原油开采和集输中的应用[J].精细石油化工,1999,6(21:28-30.
    [9]Song Y P,Ren T H,Fu X S,et al.Study on the relationship between the structure and activeties of alkyl methacrylate- laleic anhydride polymers as cold flow improvers in diesel fuels[J].Fuel Processing Technology,2005,86:641-650.
    [10]Al-Sabagh A M,Noor EL-Din M R,Morsi R E,et al.Styrene-maleic anhydride copolymer esters as flow improvers of waxy crude oil[J].Journal of Petroleum Science and Engineering,2009,65:139-146.
    [11]Taraneh J B,Rahraatollah G,Hassan A,et al.Effect of wax inhibitors on pour point and rheological properties of Iranian waxy crude oil[J].Fuel Processing Technology,2008,89;973-977.
    [12]Qian J W,Qi G R,Han D L,et al.Study on conformational transition of EVA random copolymer in selective solvent mixtures[J].European Polymer Journal,2003,75:375-379.
    [13]张金利.EVA型聚合物分子设计、合成与应用研究[D],天津大学博士学位论文,2003.
    [14]梁文杰,阙国和.我国原油减压渣油的化学组成与结构1.减压渣油的化学组成[J].石油学报(石油加工),1991,7(3):25-30.
    [15]Ferns S W,Cowles H C Jr,Hendersen L W.Composition of paraffin wax[J].Ind & Eng Chem,1929,21(3):1090-1092.
    [16]Speight J M.The Chemistry and Technology of Petroleum[C].3th,Marcel Dekker:New York,1999.
    [17]Koch K,Hartmann K D,Schreiber L,et al.Influences of air humidity during the cultivation of plants on wax chemical composition,morphology and leaf surface wettability[J].Environmental and Experimental Botany,2006,56:1-9.
    [18]Shisshkin Y L.A new quick method of determining the group hydrocarbon composition of crude oils ans oil heavy residues based on their oxidative distillation as monitored by differential scanning calorimetry and thermogravimetry[J].Thermochimica Acta,2006,440:156-165.
    [19]McCall H M,Johnson R L.Paraffin Treatment in the well.Service Industry presented at the 31th Annual Southwestern Petroleum Short Course[C],Lubbock TX,April 25-26 1984.
    [20]Newbery M E,Addison G E,Barker K W.Paraffin Control in the Northern Michigan Niagaran Reef Tread[C].Paper SPE 12320 presented at the 1983 SPE Eastern Regiongal Meeting,Chamption,PA,Nov,9-11.
    [21]Woo G T,Garbis S J,Gray T C.Long-Term Control of Paraffin Deposition Exhibition[C],Housten,Sept,16-19.
    [22]Spiecker P M,Gawrys K L,Kilpatrick P K.Aggregation and solubility behavior of asphaltenes and their subfractions[J].Journal of Colloid and Interface Science,2003,267:178-193.
    [23]Gawel I,Bociarska D,Biskupski P.Effect of asphaltenes on hydroprocessing of heavy oils and residua[J].Applied Catalysis:General,2005,295:89-94.
    [24]Evdokimov I N,Eliseev N Y,Akhmetov B R.Asphaltene dispersions in dilute oil solutions[J].Fuel,2006,85:1465-1472.
    [25]李生华.减压渣油的物理结构及其热力学分析和应用[D].重庆:后勤工程学院博士后论文,1988.
    [26]Evdokimov I N.Bifurcated correlations of the properties of crude oils with their asphaltene content[J].Fuel,2005,84:13-28.
    [27]Falla F S,Larini C,Le Roux G A C,et al.Characterization of crude petroleum by NIR[J].Journal of Petroleum Science and Engineering,2006,51:127-137.
    [28]刘清林,权宗舆.含蜡原油热处理过程中若干组分的作用[J].石油学报,1986,7(1):12-15.
    [29]Kruka V R,Cadena E R,Long T E.Cloud-point determination for crude oils[J].J.Pet.Technol,1995(August),681-687.
    [30]罗塘湖.含蜡原油流变特征及其管道输送[M].北京:石油工业出版社,1991.
    [31]Victor A A.Prediction of wax deposition potential of hydrocarbon systems from viscosity-pressure correlation[J].Fuel,1997,76:1079-1083.
    [32]马殿坤.原油中蜡的沉积及其影响因素.油田化学[J],1988,1:64-70.
    [33]岳福山.关于原油中蜡的沉积过程.油田化学[J],1987,14(4):256-259.
    [34]Ahmed H,Michael A R.Paraffin deposition from crude oils:Comparison of laboratory results to field data[C],SPE 38776,1994.
    [35]杜新嫒,胡冬妮,兰利生.原油中蜡的沉积和影响沉积的因素及防蜡原理[J].新疆石油学院学报,1995,7(1):69-79.
    [36]Won K W.Thermodynamic for solid-liquid equilibria:Wax formation from heavy hydrocarbon mixtures.Thermodynamic and transport properties[C],Paper presented at the AIChE National Spring Meeting,Houston,Texas,March 1985.
    [37]Won K W.Thermodynamic for solid-liquid-vapor equilibria:Wax phase formation from heavy hydrocarbon mixtures[C].Paper presented at the 4th International Conference on Fluid Properties and Phase Equilibria for Chemical Process Design,Helsinger,Denmark,May 11-16,1986.
    [38]Pedersen K S,Skovborg P.Wax precipitation from North Sea crude oilsAThermodynamic modeling [J].Energy & Fuels,1991,5:924-935.
    [39]Thomas J B,Bennian D B,Bennion D W.Experimental and theoretical studies of solids Precipitation from reservoir fluid [C].SPE,Jan,1992.
    [40]Chung T H.Thermodynamic model for organic solid precipitation[C].NIPER-623,Sept,1992.
    [41]Deo M D,Miliaria A,Kumar R.Solids precipitation in reservoirs due to non-isothermal Injections[C].SPE 28967,1995,225-235.
    [42]Hansen J H,Fredenslund A,Pedersen K S,et al.A thermodynamic model for predicting wax formation in crude oils[J].AIChE J,1988,34(12):1937-1942.
    [43]Zhou X,Thomas F B and Moore R G.Modeling of solid precipitation from reservoir fluid [J].Journal of Canadian Petroleum Technology,1996,35(10):37-45.
    [44]Coutinho J A P,Andersen S L,Stenby E H.Evaluation of activity coefficient models in prediction of alkane solid-liquid equilibria [J].Fluid Phase Equilibria,1995,103(1):23-39.
    [45]Coutinho J A P,Andersen S L,Stenby E H.Solid-liquid equilibrium of n-alkanes using the chain delta lattice parameter model [J].Fluid Phase Equilibria,1996,117(1):138-145.
    [46]Coutinho J A P.Predictive UNIQUAC:A new model for the description of multiphase solid-liquid equilibia in complex hydrocarbon mixtures [J].Ind.Eng.Chem.Res.1998,37:4871-4875.
    [47]Coutinho J A P,Ruffier-Meray V.Experimental measurements and thermodynamic modeling of paraffinic wax formation in undercooled solutions [J].Ind Eng Chem Res,1997,36(11):4977-4983.
    [48]Morawski P,Coutinho J A P,Domanska U.High pressure (solid+liquid) equilibria of n-alkanes mixtures:experimental results,correlation and prediction [J].Fluid Phase Equilibris,2005,230:72-80.
    [49]Coutinho J A P,Dauphin C,Daridon J L.Measurements and modeling of wax formation in diesel fuels [J].Fuel,2000,79(6):607-616.
    [50]Milhet M,Pauly J,Coutinho J A P,et al.Lquid-solid equilibria under high pressure of tetradecane + pentadecane and tetradecane + hexadecane binary systems [J].Fluid Phase Equilibria,2005,235:173-181.
    [51]Coutinho J A P,Goncalves C,Marruco I,et al.Paraffin crystallization in synthetic mixtures:Predictive local composition models revisited [J].Fluid Phase Equilibria,2005,233(1):28-33.
    [52]Peng D Y,Robison D B.A new two constant equation of state [J].Ind Eng Chem,1976,15(1):59-64.
    [53]Zhou X L.Experiment and modeling of solid precipitation from reservoir fluid[C],Calgary,Alberta,1994.
    [54]Pauly J,Daridon J L,Coutinho J A P,et al.Prediction of solid-fluid phase diagrams of light gases-heavy paraffin systems up to 200 MPa using an equation of state-G~E model [J].Fluid Phase Equilibra,2000,167(2):145-159.
    [55]Pauly J,Daridon J L,Coutinho J A P.Solid deposition as a function of temperature in the nC_(10) +(nC+)_(24)-n C_(25)-nC_26) system [J].Fluid Phase Equilibria,2004,224:237-244.
    [56]Pauly J,Daridon J L,Sansot J M,et al.The pressure effect on the wax formation in diesel fuel[J].Fuel,2003,82(5):595-601.
    [57]Pauly J,Daridon J L,Coutinho J A P.Crystallization of a multi-paraffinic wax in normal tetradecane under high pressure[J].Fuel,2005,84(4):453-459.
    [58]马庆兰,郭天民.油藏原油中石蜡沉积的模型化研究[J].石油大学学报(自然科学版),2001,25(5):91-94.
    [59]马庆兰,郭天民.用局部组成活度系数模型计算原油中石蜡沉积量[J].石油大学学报(自然科学版),2003,27(5):99-102.
    [60]梅海燕,张茂林,李闽等.石蜡沉积实验与模拟研究[J].新疆石油地质,2003,24(1):59-61.
    [61]梅海燕,张茂林,李士伦等.石蜡沉积预测方法[J].天然气工业,2003,23(3):92-94.
    [62]Riazi M R,Al-Sahhaf T A.Physical properties of heavy petroleum fractions and crude oils[J].Fluid Phase Equilibria,1996,117(2):217-224.
    [63]Leontaritis K J.PARA-Based(Paraffin-Aromatic-Resin-Asphaltene) reservoir oil characterizations[C].SPE 37252,1997,421-440.
    [64]Zuo J Y,Zhang D D.A thermodynamic model for wax precipitation.Paper presented at the 2~(nd)International Conf.on.Pet.and Gas Phase Behavior and Fouling[C],Denmark,August 27-31,2000.
    [65]Leelavanichkul P,Deo M D,Hanson F V.Crude oil characterization and regular solution approach to thermodynamic modeling of solid precipitation at low pressure[J].Petroleum Science and Technology,2004,22(8):973-990.
    [66]Kanc M,Djabourov M,Voile J L.Rhcology and structurc of waxy crude oils in quiescent and under shearing conditions[J].Fuel,2004,83:1591-1605.
    [67]江体乾.工业流变学[M].北京:化学工业出版社,1995.
    [68]Grant S,et al.Pipeline transporation of high pour point new Zealand using pour point depressant[C].SPE 15656,1986.
    [69]Pilehvari A,Saadevandi B,Halvaci M,et al.Oil/water emulsions for pipeline transport of viscous crude oils[C].SPE 18218,1988.
    [70]Jiang C Y,Xu M,Xi X,et al Poly-Acrylic acid derivatives as diesel flow improver for paraffin-based Daqing diesel.[J].Journal of Natural Gas Chemistry,2006,15:217-222.
    [71]Gu H H and Shen B X.QSAR research of the activity of span surfactants as wax antisettling additives for diesel[J].Energy & Fuels,2006,20:1579-1583.
    [72]Riberio N M,Pinto A C,Quintella C M,et al.The role of additives for diesel and diesel blended fuels:A review[J].Energy & Fuels,2007,21:2433-2455.
    [73]Kudaibergenov S E,Didukh A G,Ibraeva Z E,ctal.A regular,hydrophobically modified polyampholyte as novel pour point depressant[J].Journal of Applied Polymer Science,2005,98:2101-2108.
    [74]Li H Y,Zhang J J.A generalized model for predicting non-Newtonian viscosity of waxy crudes as a function of temperature and precipitated wax[J].Fuel,2003,82:1387-1397.
    [75]Kuzmic A E,Radosevic Marko,Bogdanic G,et al.Flow improver additives for gas condensate[J].Fuel,2007,86:1409-1416.
    [76]Hafiz A A,Khidr T T.Hexa-triethanolamine oleate esters as pour point depressant for waxy crude oils[J].Journal of Petroleum Science and Engineering,2007;56:296-302.
    [77]Wu C J,Zhang J L,Li W,et al.Artificial neural network model to predict cold filter plugging point of blended diesel fuels[J].Fuel Processing Technology,2006,87:585-590.
    [78]蒋庆哲,宋昭峥,葛际江等.降凝剂对蜡晶晶格参数的影响[J].中国石油大学学报(自然科学版).2006,30(1):118-122.
    [79]Kuzmic A E,Radosevic M,Bogdanic G,et al.Studies on the influence of long chain acrylic esters polymers with polar monomers as crude oil flow improver additives[J].Fuel,2008,87:2943-2950.
    [80]Ding X Z,Qi G R,Yang S L.Thermodynamic analysis for the interaction of polyacrylate with wax in heptane[J].Polymer,1999,40(14):4139-4142
    [81]Jacques L Z,Jiri M,Zdenek C.New limiting drag reduction and velocity profile asymptotes for nonpolymeric additives systems[J].AICHE J,1996,42(12):3544-3546.
    [82]Virk P S et al.Additive equivalence during turbulent drag reduction[J].AICHE J,1997,43(12):3257-3259.
    [83]Lester C B.The basics of drag reduction[J].Oil & Gas J,1985,4(2):51-56.
    [84]Lester C B.Here's how drag-reducing agent can out-weight looping or boosting[J].Oil & Gas J,1985,18(2):66-68.
    [85]Lester C B.How active,passive drag affect DRA injections[J].Oil & Gas J,1985,4(3):107-110.
    [86]Gan X P,Wu Y T,Liu L,et al.Electroless copper plating on PET fabrics using hypophosphite as reducing agent[J].Surface and Coatings Technology,2007,201:7018-7023.
    [87]Lesueur D.The colloidal structure of bitumen:Consequences on the rheology and on the mechanisms of bitumen modification[J].Advances in Colloid and Interface Science,2009,145:42-82.
    [88]王彪.原油降凝剂发展概况[J].精细石油化工,1989,32(5):43-53.
    [89]Wilburn B E.Methacrylate pour point depressants and compositions[P].U S 4956111,1990.
    [90]Mishra M K,Raymond G.Pour point depressants via anionic polymerization of methacrvlicmonomers [P].U S 5834408,1998.
    [91]李传宪,张春光,孙德军.降凝剂与原油组分相互作用的影响因素及降凝剂发展[J].化学通报,2002,12:819-823.
    [92]宋昭峥,葛际江,张贵才等.高蜡原油降凝剂发展概况[J].石油大学学报(自然科学版),2001.25(6):117-122.
    [93]胡和贵,戚国荣,高建厂等.不同分子结构星形降凝剂对油品降凝、降粘性能的影响[J].石油学报(石油加工),2000,16(1):40-46.
    [94]宋昭峥,葛际江,张贵才等.高蜡原油降凝剂发展概况[J].石油大学学报(自然科学版),2001.25(6):117-122.
    [95]欧风.使用产品应用技术[M].石油工业出版社,1984.
    [96]王丽萍.降凝剂的降凝性能与热稳定性能[J],润滑油,2001.16(5):32-34.
    [97]向文成.烷基萘的原料和产品色度对降凝效果的影响[J].润滑油,1998,13(4):28-32.
    [98]高树刚,安红,李爽.柴油降凝剂研究进展[J].化学工程师,2007,146(11):37-40.
    [99]王东,赵晓非,马春曦等.高蜡原油复配降凝剂的研究[J].精细石油化工进展,2007,12(8):31-34.
    [100]罗哲鸣.原油流变性及其测量[M].山东:石油大学出版社,1994.
    [101]Standard D2500,Standard Test Method for Cloud Point of petroleum oils[P].ASTM,1991.
    [102]Pedersen K S.Prediction of cloud point temperature and amount of wax precipitation[C].SPEPF,Feb.1995.
    [103]姚连增.晶体生长基础[M].合肥:中国科学技术大学出版社,1995.
    [104]何行范,原油体系有机固熔物沉积研究[D],西南石油学院,2001.
    [105]王丽娟,赵宗昌,陈五花等.降凝剂对模拟油中蜡析出的影响[J].油气储运,2008,27(2):22-26.
    [106]敬加强.含蜡原油结构抑制机理研究[J].西南石油学院学报,2004.26(3):71-75.
    [107]Li L,Yucel G.Prediction of molecular weight and density of n-alkanes(C_6-C_(44))[J].Analytica Chimica Acta,2005,15:94-97.
    [108]Vendeuvre C,Bertoncini F,Duval L,et al.Comparison conventional gas chromatography and comprehensive two-dimensional gas chromatography for the detailed analysis of petrochemical samples[J].Journal of Chromatography,2004,1056:155-162.
    [109]宋昭峥,柯明,蒋庆哲等.降凝剂对原油蜡相变的影响[J].石油化工高等学校校报,2005,18(2):40-43.
    [110]Srivastava S P,Tandon R S,Verma P S,et al.Phase transitions in middle-distillate waxes:effect of a pour point depressant additive[J].Fuel,1995,74(6):928-931.
    [111]Ahmed K Aboul-Gheit,Thanaa Abd-el-Moghny,M.M.Al-Eseimi.Characterization of oils by differential scanning calorimetry[J].Thermochimica Acta,1997,306:127-130.
    [112]张付生,王彪.几种原油降凝降粘剂作用机理的红外光谱和X射线衍射研究[J].油田化学,1995,12(4):347-352.
    [113]Srivastava S P,Tandon R S.Crystallization behaviour of n-paraffins in Bombay-high middle-distillate wax/gas[J].Fuel,1992,71(5):533-537.
    [114]Zhang J L,Wu C J,Li W,et al.Study ob performance mechanism of pour point depressants with differential scanning calorimeter and X-ray diffraction methods[J].Fuel,2003,82(11):1419-1426.
    [115]Letoffe J M,Claudy P,Kok M V,et al.Crude oils:characterization of waxes precipitated on cooling by DSC and thermomicroscopy[J].Fuel,1995,74(6):810-817.
    [116]Radlinski A P,Barre L,Espinat D.Aggregation of n-alkanes in organic solvents[J].Journal of Molecular Structure,1996,383(1):51-56.
    [117]Moussa K.Morphology of paraffin crystals in waxy crude oils cooled in quiescent conditions and under flow[J].Fuel,2003,82(2):127-135.
    [118]林宪杰,成广兴,李霞等.原油降凝剂研究的进展[J].黄淮学刊,1996,12(3):51-54.
    [119]仲维卓,华素坤.晶体生长形态学[M].北京:科学出版社,1999.
    [120]郭翠梨,张金利,王一平.柴油低温流动改进剂的研究进展[J].化学工业与工程,1999,16(3):157-162.
    [121]樱井俊男.石油产品添加剂[M].北京:石油工业出版社,1980.
    [122]瞿浩川,朱同荣,许白敏.聚丁二酰亚胺型润滑油降凝剂的研究[J].石油学报(石油加工),1999,15(3):68-75.
    [123]王彪,张怀斌,张付生等.一种新型原油降凝剂的研究[J].石油学报(石油加工),1998,19(2):97-102.
    [124]Pedersen K S,Ronningsen H P.Influence of wax inhibitors on wax appearance temperature,pour point,and viscosity of waxy crude oils[J].Energy &Fuels,2003;17(2):321-328.
    [125]李克华.降凝剂及其降凝机理.[J]石油与天然气化工,1993,22(1):44-49.
    [126]SY/T 0522-93原油析蜡点测定旋转粘度计法[P],石油工业出版社(北京),1993
    [127]敬加强,高凝高粘原油流变性及其降凝降粘机理研究[D],西南石油学院,1999.
    [128]龚汉林.粮食粘度的测定-毛细管粘度计测定法[J].粮食储藏,1986,3:10-14.
    [129]Beens J,Brinkman Udo A T.The role of gas chromatography in compositional analyses in the petroleum industry[J].Trends in analytical chemistry,2000,19(4):260-275.
    [130]杨红.石蜡碳分布及正构烷烃含量测定[J].石油化工高等学校校报,2003,16(4):35-39.
    [131]Marie E,Chevalier Y,Eydoux F,et al.Control of n-alkanes crystallization by ethylene-vinyl acetate copolymers[J].Journal of Colloid and interface science,2005,290(2):406-418.
    [132]杨涛,王吉得,奚惠民.高蜡原油降凝降粘剂作用机理的探讨[J].精细石油化工进展,2008,9(3):36-40.
    [133]李鸿英,黄启玉,张劲军等.用差示扫描量热法确定原油的含蜡量[J].石油大学学报(自然科学版),2003,27(1):60-66.
    [134]毕梅华.CE原油降凝剂的研制及应用[J].油田地面工程,1992,11(4):44-46.
    [135]Broadhurst M G.An analysis of the solid phase behavior of the normal paraffins[J].Res Nat Bur Stand,1962,66:241-249.
    [136]Chevallier V,Petitjean D,Dirand M,et al.Mixtures of numerous different n-alkanes:2.Studies by X-ray diffraction and differential thermal analysis with increasing temperature[J].Polymer,1999,40(8):2129-2137.
    [137]潘竟军,张炎,韩晓强.差示扫描量热法测定原油含蜡量的研究[J].石油天然气学报(江汉石油学院学报),2005,27(6):934-936.
    [138]De Castro Machado A L,Lucas E F.Poly(ethylene-co-vinyl acetate)(EVA) copolymers as modifiers of oil wax crystallization[J].Petroleum Science & Technology,1999,17:1029-1041.
    [139]Chichakli M,Jessen F W.Crystal morphology in hydrocarbon systems[J].Industrial Engineering Chemistry,1967,59(5):86-98.
    [140](匈)M·费罗因德.石蜡产品的性质、生产及应用[M].北京,加工出版社,1988.
    [141]原油的化学降凝和防蜡译文集[M].石油工业部管道科学研究院,1987.
    [142]Zuo X L.Experimental of cloud point temperature from reservoir fluid.Calgary,Alberta,1994.
    [143]梅海燕.油气体系有机固相沉积机理与热力学模型研究[D].中国科技大学,1999.
    [144]Chen W H,Zhao Z C,Wang L J.Thermodynamic phase equilibria of wax precipitation in crude oils[J].Fluid Phase Equilibria,2007,255(1) 31-36.
    [145]Ji H Y,Tohidi B,Danesh A,et al.Wax phase equilibria:developing a thermodynamic model using a systematic approach[J].Fluid Phase Equilibria,2004,216(2):201-217.
    [146]Jean-Pierre C.Temperatures and enthalpies of(solid+solid) and(solid+liquid) transitions of n-alkanes[J].J Chem Thermodynamics,2002,34(8):1255-1277.
    [147]Lira-Galeana C,Firoozabadi A,Prausnitz J M.Thermodynamics of Wax Precipitation in Petroleum Mixtures[J].AIChE Journal 1996,42(1):239-248.
    [148]Pan H,Firoozabadi A,Fofland P.Pressure and Composition Effect of Wax Precipitation:Experimental Data and Model Results[M].SPE 26740,1996,579-592.
    [149]宋昭峥,柯明,蒋庆者等.降凝剂对原油蜡相变的影响[J].石油化工高等学校学报,2005,18(2):40-43.
    [150]Chen W H,Zhang X D,Zhao Z C,et al.UNIQUAC model for wax solution with pour point depressant[J].Fluid Phase Equilibria,2009,280:9-15.
    [151]程振锋,刘庆林.聚合物溶液热力学模型的评述[J].化学进展,2005,17(1):40-44.
    [152]Pan H Q,Firoozabadi A,Fotland P.Pressure and composition effect on wax precipitation:Experimental data and model results[J].SPE 36740,SPE Prodcution Facilities,1997,11:250-259.
    [153]Boukouvalas C,Spiliotis N,Coutsikos P,et al.Prediction of vapor-liquid equilibrium with the LCVM model:a linear combination of the Vidal and michelsen mixing rules coupled with the original UNIFAC[J].Fluid phase equilibria,1994,92(1):75-106.
    [154]罗明检,马沛生,夏淑倩.超额Gibbs自由能-状态方程模型计算和预测相平衡的进展[J].石油化工,2005,34(7):694-698.
    [155]Huron M J,Vidal J.New mixing rules in simple equations of state for representing vapor-liquid equilibria of strongly non-ideal mixtures[J].Fluid Phase Equilibria,1979,3:255-271.
    [156]韩晓红,陈光明,王勤等.状态方程研究发展[J].天然气化工.2005,30(5):52-60.
    [157]Soave G.Equilibrium constants from a modified Redlich- Kwong equation of state[J].Chemical Engigeering Science,1972,27:1197-1203.
    [158]Wenzel H and Schmidt G.A modified Van ser Waals equation of state for the representation of phase equilibria between solid,liquid and gases[J].Fluid Phase Equilibria,1980,5:3-17.
    [159]Patel N C and Teja A S.A new cubic equation of state for fluids and fluid mixtures[J].Chemical Engineering Science,1982,36:463-473.
    [160]Gao W Z,Robert L,Robinson J,et al.Improved correlations for heavy n-paraffin physical properties[J].Fluid Phase Equilibria,2001,179(1):207-216.
    [161]Twu C H.An internally consistent correlation for predicting the critical properties and molecular weights of petroleum and coal-tar liquids[J].Fluid Phase Equilibria,1984,16:137-150.
    [162]韩晓红,陈光明,王勤.LCVM型混合规则用于多参数状态方程以及关联混合物气液相平衡 [J].高校化学工程学报,2006,20(2):159-163.
    [163]Wong D S H,Sandlers S I A.Theoretically correct mixing rule for cubic equation of state[J].AIChE J,1992,38:671-680.
    [164]Michelsen M L.A method for incorporating excess Gibbs energy models in equations of state[J].Fluid Phase Equilibria,1990,60:47-58.
    [165]Michelsen M L.A modified Huron-Vidal mixing rule for cubic equation of state[J].Fluid Phase Equilibria,1990,60:213-219.
    [166]Holderbaum T,Gmehling J.PSRK:A group contribution equation of state based on UNIFAC[J].Fluid Phase Equilibria,1991,70:251-265.
    [167]Abrams D S,Prausnitz J M.Statistical thermodynamics of liquid mixtures:A new expression for the excess Gibbs energy of partly or completely miscible systems[J].AICHE J,1975,21:116-128.
    [168]Gopinathan N,Saraf D N.Predict heat of vaporization of crudes and pure components Revised Ⅱ[J].Fluid Phase Equilibria,2001,179(1):277-284.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700