用户名: 密码: 验证码:
原位反应烧结法制备熔盐/尖晶石基高温复合相变储热材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文综述了相变储热材料的特点及研究现状,讨论了高温相变储热材料的结构、性能及制备方法。对原位反应烧结法制备高温复合相变储热材料的影响因素进行了研究,研究了熔盐含量、熔盐配比以及石墨加入量对材料结构和性能的影响。
     以镁砂和刚玉为形成镁铝尖晶石陶瓷基体的原料,熔盐作为反应介质,同时作为相变材料,通过原位反应烧结法制备了熔盐/尖晶石基高温复合相变储热材料。研究了烧结温度、不同氧化镁/氧化铝配比、熔盐种类对熔盐/尖晶石基高温复合相变储热材料性能的影响,通过XRD、SEM等分析测试技术对材料进行表征。结果表明,适宜的烧结温度为1000℃,氧化镁/氧化铝配比为理论尖晶石配比,相变材料为KCl-KF复合盐,制备的高温复合相变储热材料性能较好。
     研究了熔盐含量对熔盐/尖晶石基高温复合相变储热材料性能的影响,通过DSC分析测定了材料的相变潜热,激光脉冲法测定了导热系数,并研究了材料在升温过程中的抗折强度。结果表明,熔盐含量为40%时,所制备的储热材料的相变潜热为70.98kJ/kg,蓄热密度为240kJ/kg(ΔT=100℃),储热性能较好;随着熔盐含量的增加,导热系数下降;材料的抗折强度随着测试温度的升高而变化,在600℃时出现最大值。
     改变复合熔盐的配比可以制备出适合不同使用温度的熔盐/尖晶石基高温复合相变储热材料,KF含量的增大,材料的耐压强度和抗折强度下降,导热系数减小。
     研究了熔盐浸出后陶瓷基体的性能,并对材料的封装进行了初步研究。结果表明,熔盐浸出后陶瓷基体具有一定的强度,其耐压强度随着材料制备过程中熔盐加入量的变化而变化;材料经过封装后减少了在循环使用中熔盐的蒸发流失。
     研究了添加石墨对熔盐/尖晶石基高温复合相变储热材料性能的影响,使用ANSYS对材料的放热过程进行了模拟。结果表明,添加石墨显著提高了材料的导热系数,但石墨含量增多不利于镁铝尖晶石的形成;材料的导热系数决定了材料的放热过程,导热系数越大,材料内部热量传递越快,温度差别越小,石墨添加量为10%的试样在600s时达到相变温度,而未加石墨的材料在1000s时才能达到该温度。
The properties and the current research status of phase change heat storage materials are introduced. Moreover, the preparation and properties of high-temperature composite phase change heat storage materials are also discussed. The factors of molten salt/spinel high-temperature composite phase change heat storage materials by in-situ sintering process are discussed. The influences of molten salt content, mixture ratio of molten salt and different additive graphite on the performance of molten salt/spinel high-temperature composite phase change heat storage materials are studied.
     Molten salt/MgAl2O4 spinel high-temperature composite phase change heat storage materials are prepared by in-situ sintering process, which is based on spinle ceramic substrate raw materials of magnesia and corundum powder, and molten salt as reaction medium. The influences of sintering temperature, different magnesia/alumina proportion and kinds of molten salt on the performance of molten salt/spinel phase change heat storage material are investigated. The materials are characterized by XRD and SEM. The result show that, the preparative materials show the better performance using KCl-KF complex salt as phase change materials at theoretical ratio when the appropriate sintering temperature is 1000℃.
     The influences of molten salt content on the performance of molten salt/spinel high-temperature composite phase change heat storage materials are studied. The materials’latent heat is measured by DSC thermal analysis, thermal conductivity is detected by laser flash method,and the flexural strength of the materials is also studied in the heating process. The results show that prepared materials show better heat storage performance, with phase change latent heat of 70.98kJ/kg, heat-storage density of 240 kJ/kg (ΔT = 100℃) under the condition of sintering temperature 1000℃, molten salt content 40%; Thermal conductivity decrease with the molten salt content increase. The flexural strength of samples reaches the maximum at 600℃, which increas with temperature raise.
     Molten salt/spinel high-temperature composite phase change heat storage materials are prepared by changing the mixture ratio of molten salt, which suit for different melting temperatures. KF content increase, compressive strength and flexural strength of samples decrease, thermal conductivity decrease, respectively.
     The properties of ceramic substrate are studied after molten salt leaching, and the properties of the encapsulated samples are discussed initially. Results show that ceramic substrate has certain strength after molten salt leaching, and its compressive strength change with content of additive molten salt. Otherwise, evaporation loss of molten salt reduces during cycle using process after coating.
     The effects of additive graphite on the molten salt/spinel high-temperature composite phase change heat storage materials are studied. The exothermic processes of samples are simulated by input experimental data using ANSYS. The results showed that thermal conductivity of samples is effectively improved by adding graphite, but the increase of graphite content is not helpful for the formation of spinel. Thermal conductivity of samples dominates their exothermic process. The greater thermal conductivity, the faster samples heat transfer, and the smaller temperature difference. Materials with 10% graphite additive reached phase change temperature at 600s, while the materials with no graphite additive need 1000s reach that temperature.
引文
[1]崔海亭,袁休干,侯欣宾.蓄热技术研究及应用[J].化工进展,2002,21(1):23-25
    [2] Hughes P J, Klein S A, Close D J. Packed models for solar air heating and cooling system. ASME. Journal of Heat TRANSFER.1976,98(2):336-338
    [3] Saha H. Heat transfer characteristics solar thermal storage of filled cans as solar thermal storage medium: a comparative test data analysis. Abstract of Selected Energy Technology. 1979,113(9):213-219
    [4]李玉红,焦庆影,夏定国等.常低温相变储能材料的研究和应用[J].化学教育,2004,(10):9
    [5]尚燕,张雄.相变储能材料的应用及研究现状[J].材料导报,2005,(19):265-268
    [6]塔克曼G,吉利P V.蓄热技术及应用[M].北京:机械工业出版社,1989
    [7]张寅平.相变贮能-理论和应用[M].合肥:中国科学技术大学出版社,1996
    [8]陈爱英,汪学英.相变储能材料及其应用[J].洛阳工业高等专科学校学报,2002,(12):7-9
    [9] Sari A. Thermal performance of myristic acid as a phase change material for energy storage application [J]. Renewable Energy.2001.24(2):303-317
    [10] Xavier Py, Regeis Olives and Sylvain Mauran. International Journal of Heat[J]. Mass Transfer, 2001,44(14):2727-2737
    [11] Min Xiao, Bo Feng and Keoheng Gong. Solar Energy Materials and Solar Cells[J] , January 2002,43(1):103-108
    [12]邢宏龙,杜永,潘向萍.微胶囊相变材料及其在热红外隐身中的应用[J].山西化工,2006,26(5):29-32
    [13]时雨荃,蔡明健.纳米复合膜相变微胶囊的制备及性质[J].化学工业与工程,2006,23(3):2242-227
    [14] Hawladera,Uddina,Khinb M M. Microencapsulated PCM thermal-energy storage system[J].Applied Energy,2003,74:195-202
    [15]毛华军,晏华,谢家庆.微胶囊相变材料研究进展[J].功能材料,2006,37 (7):1022-1025
    [16] Feldman D,BanuD,Hawes DW. Development and application of organic phase change mixtures in thermal storage gypsum wallboard. Solar Energy Materials & Sola Cells,1995,36 (2):147-157
    [17]肖加余.高性能复合材料学[M].北京,化学工业出版社,2003
    [18]李庭寿,冯改山,戴龙大等.钢铁工业用节能降耗耐火材料[M],北京:冶金工业出版社,2000
    [19]余际星,曾有鹏.旋转型蓄热式换热器蓄热体材料的选择[J].工业炉,1996,18(2):37-40
    [20]李朝祥.陶瓷蓄热材料的开发研究[J],冶金能源:2002, 21(1):46-48
    [21]张仁元,柯秀芳,李爱菊.显热/潜热复合储能材料的研究[J].新能源,2000,33(12):29-31
    [22]张仁元,柯秀芳,李爱菊.无机盐/陶瓷基复合储能材料的制备和性能[J].材料研究学报,2000,14(6):653-656
    [23]黄金,张仁元,李爱菊.无机盐/陶瓷基复合储能材料的制备技术[J].新技术新工艺,2004,7:49-51
    [24] D Steinei, et al.Development and Investigation of Thermal Energy Storage System s for the Media Temperature Range[C].Proceedings IECEC Meeting,1995:193-198
    [25]李朝祥.陶瓷蓄热材料的开发研究[J],冶金能源,2002,21(1):46-48
    [26]徐桂兰.高温用特殊复合材料[M].北京,冶金工业出版社,2002
    [27]宋婧,曾令可,税安泽等.复合蓄热材料的研制与应用[J].硅酸盐通报,2007,26(1):173-176
    [28] Randy J. Petri Estela T ong. High Temperature Composite Thermal Storage Systems for Industrial Application[C]. Proceedings of 20th Energy Technology Conference, Washington, DC, 1985
    [29] Randy J, petri Estela T Ong and Terry D Claar.High-temperature salt/ceramic thermal storage phase-change[C]. Proceedings 18th IECEC Meeting,1983:1796-1774
    [30] Terry Claar. D et al. Composite Salt Ceramic Media for Thermal Energy Storage Application[C], Proceedings 17th IECEC Meeting,1982:2043-2048
    [31] A Gluck,R Tamme,H.Kalfa,et al.Development and Testing of Advanced TES materials for SolarThermal Central Receiver Plant,Proceeding,Solar Word Congress,1991,2:1943-1948
    [32] E Hahne, U Taut and Y Grob.Salt Ceramic Thermal Energy Storage for Solar Thermal Central Receiver Plants[J]. Proceedings,Solar Word Congress,1991,2:1943-1948
    [33] R Tamme. et. al. Energy storage development for solar thermal Process[J]. Solar Energy Materials, Dec2,1991:386-396
    [34]祁先进.金属基相变复合蓄热材料的实验研究[D].昆明,昆明理工大学,2005
    [35]祁先进,王华,王胜林等.金属基与熔融盐复合蓄热材料的制备与性能研究[J].工业加热,2005,34(1):8-10
    [36] Wang Hua, He Fang,Dai Yong nian, et al.Preparation and characterizations of a heat storage material combining porous metal with molten salt [J]. Proceeding of the international conference onpower engineering, 2003, 3(11): 9-13
    [37]王华,何方,胡建航等.燃料工业炉用陶瓷与熔融盐复合蓄热材料的制备[J].工业加热,2004, 4:20-22
    [38]邹向.储热用高温相变复合材料[J].新能源,1995, 17 (12): 27-29
    [39]李爱菊,王毅,张仁元.工业窑炉用陶瓷基定形储能材料的研究[J].硅酸盐通报,2007,26(3):547-551
    [40]李爱菊.无机盐/陶瓷基复合储能材料制备、性能及其熔化传热过程的研究[D].广东,广东工业大学,2004
    [41]张兴雪. MgO基陶瓷基高温复合相变蓄热材料的制备和性能研究[D].昆明,昆明理工大学,2007
    [42]王胜林.高温相变蓄热材料的制备及性能研究[D].昆明:昆明理工大学,2007
    [43]余晚福,张正国,王世平.固-液相变蓄热强化传热的实验研究[J].新能源.2000,22(2):34-45
    [44]郭茶秀,张务军,魏新利.新型高温潜热储能系统的性能研究[J].热力发电,2007(7):13-20
    [45] L. F. Cabeza, H. Mehling, S. Hieble, F. Ziegler. Heat transfer enhancement in water when used as PCM in thermal energy storage [J].Applied Thermal Energineering. 2002, (22):1141~1151
    [46] S. M. Hasnain. Review on sustainable thermal energy storage technologies,Part l: Heat storage materials and techniques[J]. Energy Conveys Mgnt 1998;39:1127~1138
    [47]肖敏,龚克成.良导热、形状保持相变蓄热材料的制备及性能[J].太阳能学报,2001,22(4):427-431
    [48] Jun Fukai, Makoto Kanou.Thermal conductivity enhancement of energyStorage media using carbon fibers [J].Energy Conversion & Management.2000(41): 1543-1556
    [49] R Tamme. et al.Energy storage development for solar thermal Process. Solar Energy Materials, Dec2, 1991:386-396
    [50] Zhen-XiangGong.Cyclic heat transfer in a novel storage unit of multiple phase change materials[J].Applied Thermal Engineering.1996,16(11): 807-815
    [51] Ayers G H,Fletcher L S.Review of the thermal conductivity of graphite—reinforced metal matrix composites[J].Journal of Thermophysics and Heat Transfer.1998.12(1):10~17
    [52] Son C H, Morehouse J H. An experimeotal investigation of solid-solid phase change materials for solar thermal storage [J]. Journal of solar energy materials,1991,133:244~249
    [53]丁剑红,张寅平,王馨等.掺杂对定形相变材料导热系数的影响[J].太阳能学报,2005,26 (6):853-856
    [54]管春华,朱华.储冰球相变传热数值计算及分析[J].浙江大学学报,1993.33(l):85-89
    [55]李海梅,顾元宪.平面相变热传导问题等效热容法的有限元解.大连理工大学学报.2000,40(1):45-49
    [56]邢玉明,崔海亭,袁修干.太阳能吸热器换热管蓄热数值模拟与试验研究[J],太阳能学报:2003 24(3). 325-329
    [57]王华,何方,胡建杭等.新型陶瓷与熔融盐复合蓄热材料放热特性数值模拟[J],中国稀土学报:2002,(20):223-227
    [58] Gong Z X,Mujumdar A S ,finite element analysis of cyclic heat transfer in a shell-and-tube latent heat energy storage exchange[J],Applied thermal engineering ,1997, 17(6),583-591
    [59] M Costa,A Oliva,C D Peerez Segarra,There-dimensional numerical study of melting inside an isothermal horizontal cylinder,Numer. Heat Transfe, Part A 1997(32):531-553
    [60]王维邦.耐火材料工艺学[M].北京,冶金工业出版社,2003:163
    [61]韩兵强,李楠.高能球磨法在纳米材料研究中的应用[J].耐火材,2002,36(4):240~242
    [62] Kong L B,Ma J,Huang H. MgAl2O4 spinel phase derived from oxide mixture activated by a high energy ball milling process[J]. Mater Lett,2002,56:238~243
    [63] Kim W,Saito F. Effect of grinding on synthesis of MgAl2O4 spinel from a powder mixture of Mg(OH)2 and Al(OH)3[J]. Powder Technology,2000, 113:109~113
    [64]李小明,杨志红.自分散低温烧成镁铝尖晶石制品的研究[J].陶瓷工程,1997,31(1):6-9
    [65] Ping L R, Azad A M, Dung T W. Magnesium aluminate (MgAl2O4) spinel produced via self-heat-sustained (SHS) technique [J]. Mater Res Bull, 2001, 36:1417-1430
    [66]杜景云,马北越,陈敏等.反应烧结法合成镁铝尖晶石耐火材料[J].耐火材料:2005,39(6):445-447
    [67] Bailey J T, Russel Jr R. Sintered spinel ceramics [J]. Am Ceram Soc Bull, 1968, 47(11):1025-1029
    [68]朱仁发,谭乐成,王金安等.调变组分对流化催化裂化助剂脱硫性能的影响[J]华东理工大学学报(自然科学版) 2000,26(2):149-153
    [69]马亚鲁.化学共沉淀制备镁铝尖晶石粉末的研究[J].无机盐工业,1998,30(1):3-4
    [70]陈万兵.熔盐法合成镁铝尖晶石[D].武汉,武汉科技大学,2007
    [71]谢刚.熔融盐理论与应用[M].北京:冶金工业出版社,1998
    [72]梁英教,车荫昌.无机物热力学数据手册[M].沈阳:东北大学出版社,1996
    [73] Inman D,Legey J.C and spencer R.A potentiometric study of alumina solubility and the influence of complexing by fluoride ions in LiCl-KCl[J].APPl.Electrochem,1978(8):273-276
    [74]李如椿,陈永强,陈嘉庚.工艺因素对合成镁铝尖晶石性能的影响[J].河北理工学院学报,2005,27(3):73-77
    [75]贾德昌,宋桂明等.无机非金属材料性能[M].北京:科学出版社,2008
    [76] Ito.T. Kojima. N and Nagashima. A. Redetermination of the viscosity of molten NaCl at elevated temperature [J].Thermophys, 1989(10):819-831
    [77] J. M. Sangster and A. D. Pelton. Critical Coupled Evaluation of Phase Diagrams and Thermodynamic Properties of Binary and Ternary Alkali Salt Systems [J]. Journal of Physics E: Scientific Instruments.1987,16 (3):590-561
    [78]张朝晖. ANSYS8.0热分析教程与实例解析[M],北京:中国铁道出版社,2005
    [79] Saeed Moaveni.Finite element analysis theory and application with ANSYS [M],Second Edition. Publishing House or Electronics Industry,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700