用户名: 密码: 验证码:
凝胶—发泡法制备多孔氧化铝隔热材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多孔陶瓷由于在化学稳定性、透过性、力学性质、抗高温氧化及抗热震等方面都具有十分优异的性能,而被广泛的应用于保温隔热材料、过滤器、催化剂载体、生物材料、燃料电池材料、热交换器等。
     多孔陶瓷用于保温隔热材料时,要求气孔以闭口孔为主,但传统的制备方法存在孔径不易控制、气孔分布不均匀等缺点。本文运用凝胶注模和发泡法相结合的方法,即凝胶—发泡法,成功的制备出了闭口孔率高、孔径小、气孔分布均匀的氧化铝多孔陶瓷。
     本文推导了热导率的计算公式,从理论上分析了热导率的影响因素;对凝胶—发泡法的机理进行了初步的研究,研究了发泡剂对凝胶形成的影响;研究了坯体的DSC—TG曲线,确定了排胶工艺;研究了固相含量、发泡剂添加量、烧结助剂的添加量、烧结温度对样品性能和结构的影响;分析了气孔率对热膨胀性能的影响。得到了以下结论:
     通过对热导率计算公式的分析表明:气孔率越高,测试温度越低,孔径越小,则氧化铝多孔陶瓷的热导率就越低,其隔热保温效果越好。
     由于氧阻聚效应,发泡剂的加入会对凝胶的形成产生一定的影响,从而使凝胶时间增加,凝胶强度降低。适当的增加有机单体、交联剂和引发剂的用量,可以在一定程度上减少凝胶时间,增加凝胶强度。
     有机物的分解温度区间为200℃-500℃,确定排胶工艺为从室温到200℃,升温速率为5℃/min;从200-500℃,升温速率3℃/min;500℃保温一小时
     浆料的固相含量为45%、发泡剂加入量为1%、烧结助剂加入量为1%、烧结温度为1500℃时,可制备出性能优异的多孔氧化铝陶瓷,此时氧化铝多孔陶瓷的气孔率为56%,其中闭口孔率为51%,抗弯强度为23MPa,气孔分布均匀,孔径约15~120μm。
     氧化铝多孔陶瓷的热膨胀系数与氧化铝陶瓷的热膨胀系数近似相等,气孔率的变化对多孔氧化铝陶瓷膨胀性能的影响并不明显。
Porous ceramics are widely used in thermal insulation materials, filters, catalyst supports, biological materials, fuel cell materials and heat exchangers because of their chemical stability, permeability, mechanical properties, high temperature oxidation and thermal shock, etc.
     When porous ceramics are used as thermal insulation material, their pores are usually closed pores. But there are many disadvantages in traditional preparation, such as difficultly to control pore size and uneven distribution. In this thesic, alumina porous ceramics were fabricated successfully by gel injection molding and foaming methods, and they were all high closed pore porosity, small aperture and uniformity distribution.
     Calculating formula of thermal conductivity were derived to analyze their influence factors. Gel-foaming mechanism were studied preliminarily, the gel formation was affected by foaming agent. The row was determined by using to DSC—TG. Properties and structure of sample were impacted by the solid content, foaming agent additive quantity, amount of additives and temperature.and thermal performance was impacted by porosity. The conclusions as follows:
     According to the analysis of thermal conductivity calculating formula:the higher porosity, the lower testing temperature was, while the smaller aperture of alumina porous ceramics, the less thermal conductivity was, and the better adiabatic effect.
     Gel formation was influenced by added foaming agent because of oxygen inhibitor effect, and gel time was increased, gel strength was decreased. Gel time was reduced and gel strength was increased to a certain extent, because of appropriate organic monomer, crosslinking agent and initiator.
     Temperature range of organic decomposition are from 200℃to 500℃, row glue craft as from room temperature to 200℃at 5℃/min, from 200℃~500℃at 3℃/min; and kept warm one hour at 500℃were determined.
     When the paste solid content was 45%, vesicant addition amount was 1%, sintering fertilizer addition amount was 1%, sintering temperature was 1500℃, the excellent porous alumina ceramic can be prepared, and their porosity was 56% including closed pore porosity 51%, bending strength was 23MPa, distribution uniformity, aperture about 15 120μm.
     The thermal expansion coefficient of A12O3 porous ceramics were approximately equal to alumina ceramics, and porosity was no effect on expansiveness of A12O3 porous ceramics.
引文
[1]刘海燕.蛋白质发泡法制备氧化锆多孔陶瓷[D].天津大学.2007
    [2]韩永生,李建保,魏强民.多孔陶瓷材料应用及制备的研究进展[J].材料导报,2002,16(3):26—29
    [3]马文,沈卫平,董红英等.多孔陶瓷的制造工艺及进展[J].粉末冶金技术,2002,20(6):365—368
    [4]刘珩,安黛宗,萧劲东.多孔陶瓷的制各和应用研究进展[J].江苏陶瓷,2003,36(4):9.12
    [5]朱时珍,赵振波,刘庆国.多孔陶瓷材料的制各技术[J].材料科学与工程,1996,14(3):33.39
    [6]贾天敏,江度,刘素英等.过滤器净化金属液机理及含过滤器的浇涛系统设计[J].铸造,1998,5:22.26
    [7]James F Zivers, Paul Eggcrstcdt Impact of char and ash fines oil porous ceramictilter life[J]. Ceram BulL1991,70(1):108
    [8]Mary, Anne, Thomas E. Assessment of porous ceramic materials for hot gasfiltration application [J]. Ceramic,1991,70(9):1491-1450
    [9]Job Y. M. Characterization of ceramic composite membrane tilters for hot gas cleaning. [J]. Powder Technology,1991, (1); 55-62
    [10]陈玲.环保工程用微孔陶瓷的制备工艺[J].佛山陶瓷.2001,(4):11—14
    [11]李飞舟.有机泡沫浸渍法制备氧化铝多孔陶瓷的研究[D].西安:长安大学材料科学,2007
    [12]李宪景,陈子富,秦金海等多孔陶瓷过滤器在硝酸过滤上的应用[J].化工设备与防腐蚀,2005,(1):11.12
    [13]臧估,金志浩,王永兰等.微孔碳化硅过滤材料的研究[J].西安交通大学学报,2000,34(12):56.58
    [14]Van Swaaij, J. W. VeMsink, RM. J. vail Damme, A catalytically active membrane reactor for fast exothermic heterogeneously eatalysed reactions[J]. ChemicalEngineering 2000,107(5):19
    [15]Cerroni L, Filocamo R Fabbri M, et al. Growth ofosteoblast—like cells on porous hydroxyapafite ceramics:all in vitro study [J]. Biomolecular Engineering,2002,19:119-124
    [16]牛金龙,张镇西,蒋大宗.多孔羟基磷灰石生物陶瓷的合成和特性研究进展[J].生物医学工程学杂志,2002,19(2):302—305
    [17]Engin N Ozgur, Tas, A Cuneyt Manufacture of Macroporons Calcium Hydroxyapatite Bioceramics[J]. Eur. Ceram. Soc.,1999.19:2569-2572
    [18]Montanaro L, Jorand Y. Fantozzi G, et al. Ceramic foams by power processing [J], Journal of the European Ceramic Society,1998,18:1339-1350
    [19]Nettleship I. Application of porous ceramics [J] Key Engineering Materials,1996,122-124: 305.324
    [20]宋超.多孔陶瓷的制备及特性研究[D].长春理工大学,2006
    [21]任雪潭,曾令可,王慧.泡沫陶瓷制备工艺的探讨[J].材料科学工程,2001,19(1):102—103
    [22]Bao X, Nangrejo M R Edirisinghe M J. Preparation of silicon carbide foams using polymeric precursor solutions [J] Journal of Materials Science,2000,35:4365-4372
    [23]Sepulveda P. Gelcasting foams for porous ceramics [J] The Amercian ceramic Society Bulletin,1997,76(10):61-65
    [24]李双.冷等静压法制备大孔径多孔陶瓷管研究[D]..淄博:山东理工大学,2009
    [25]马彦.先驱体法制备多孔陶瓷研究[D].长沙:国防科学技术大学,2006
    [26]李立新.氧化铝泡沫陶瓷的制备及性能研究[D].西安:长安大学材料科学,2009
    [27]陈俊彦.最新精细陶瓷技术[M].中国矿冶出版社,1986.81.
    [28]韩永生,李建保,魏强民.多孔陶瓷材料应用及制备的研究进展[J].材料导报,2002,16(3):26—29.
    [29]Berthold N, Sabine T, Rainer S, et al. Porous bore replacement materials[P]. US Pat, No.5650 108,1997-07-22.
    [30]Keisuke I, Akiral A. Dental material[P]. US Pat, No.5869548,1999-02-09.
    [31]金宗哲,卫正,黄丽荣.微米多孔陶瓷板及制备方法[P].中国专利,No.CN1657501.2005-08-24.
    [32]Schwartzwalder A.V.somess[P], U.S.Pat, No.3090094.1963
    [33]张晓飞.发泡—凝胶法制备多孔陶瓷小球的研究[D].中南大学,2006
    [34]A. F. M. Leenaars, K. Keizer, A. J. Burggraaf. The preparmion and characterization of temperature thermally stable alumina composite membranes[J]. Mater. Sci:19(1984)1077-1088
    [35]彭珍珍,蔡舒,吴厚政.陶瓷的凝胶注模成型及其研究现状[J].硅酸盐通报2004,23(1):67—71.
    [36]谢志鹏,黄勇,杨金龙,等.精密陶瓷部件的无毒性凝胶注模成型工艺[P].专利号:CN98119376.1999-5-5.
    [37]谢志鹏,杨金龙等.琼脂糖凝胶大分子在陶瓷原位凝固成型中的应用[J].硅酸盐学报,1999,27(1):18—19
    [38]Bengisu M, YilmazE. Gel—easting of A12O3 and ZrO2 using chitosangels[J]. Ceramsice international,2002,28(4):431-438.
    [39]杨金龙,黄勇,王树海等.精细陶瓷工艺现状及趋势[J].材料导报,1995,24(3):35-44.
    [40]李国栋.精细陶瓷胶态成型新工艺[J].襄樊大学学报,1997,8(1):60-64.
    [41]聂妍.陶瓷注射成型技术进展[J].山东陶瓷,2003,26(2):10-15.
    [42]赵亮.高分子添加剂在陶瓷泥浆干燥坯体中分散状况的浸液光学投射显微研究[J].硅酸盐学报,1997,25(3):144—-145
    [43]刘学建.氮化硅陶瓷直接凝固注模成型的凝固动力学[J].无机材料学报,2000,15(5):862—866.
    [44]王瑞刚,吴厚政,陈玉如等.陶瓷浆料稳定分散发展[J].陶瓷学报,1999,20(1):35—40.
    [45]刘晓光.水基料浆凝胶注模法制备氧化错陶瓷刀具的研究[J].陶瓷学报,2004,25(3):145—148.
    [46]杨金龙.高性能陶瓷胶态成形工艺研究进展[J].硅酸盐学报,2006,34(9):368—395.
    [47]毛秀明,黄翔,文力多孔陶瓷管式露点间接蒸发冷却器实验台设计研究[J].制冷与空调,2010(24):23—26
    [48]卢寿慈.工业悬浮液性能、调制及加工[M].化学工业出版社,北京,2003:165—-169
    [49]高镰,孙静,刘阳桥.纳米粉体的分散极其表面改性[M].北京:化学工业出版社,2003:59-62
    [50]赵振国.胶体与表面化学[M].化学工业出版社,北京,2004:164—167.
    [51]马文有,田秋,曹茂盛等.纳米颗粒分散技术研究进展[J].中国粉体技术,2002,8(3):28—31
    [52]SehneiderH, J.Schreuer, et al.Strueture and pro Pertie so fmullite Areview[J]. Joumal of the Euro Pean Ceramie Soeiety,2008,28(2):329-344
    [53]罗发,周万城,焦桓等.莫来石陶瓷的制备及其微波介电性能研究[J].西北工业大学学报,2004,Vo1.22(1):116-119
    [54]余娟丽,王红洁,张健.神经网络在制备氮化硅多孔陶瓷中的应用[J].稀有金属材料与工程,2010(39):464468
    [55]刘振群.硅酸盐工业热工过程及设备仁[M].北京:中国建筑工业出版社,1982.186-207
    [56]李家亮.CVD法在多孔陶瓷基体上制备氮化硅涂层的显微结构及性能研究[D].武汉理工大学,2008
    [57]向芸,徐小勇.Zr02对堇青石多孔陶瓷吸水率和显气孔率的影响[J].萍乡高等专科学校学报,2009(26):81—82
    [58]黄学辉,肖文文.多孔PZT的制备与性能研究[J].压电与声光,2009(31):535—540
    [59]刘刚,何桢.多孔陶瓷过滤制品渗透率的研究[J].材料与冶金学报,2009(8):301—304
    [60]邓超,张小亮,黄彦.多孔陶瓷基体表面的凝胶修饰及钯膜的制备[J].南京工业大学学报(自然科学版),2010(32):92—97
    [61]李俊峰,林红,李建保.高温过滤支撑体用SiC基多孔陶瓷的制备与表征[J].稀有金属材料与工程,2009(38):122—125
    [62]郝佳瑞,贾旭宏,严春杰.硅藻土/高岭土复合多孔陶瓷的制备[J].非金属矿,2009(32):26—29
    [63]巫红平,吴任平,于岩.黄绵丽硅藻土基多孔陶瓷的制备及研究硅[J].酸盐通报,2009(28):641-45
    [64]刘坚,许云书,熊亮萍.含前驱体SiC粉体低压成型低温烧结SiC多孔陶瓷[J].中国粉体技术,2009(15):28—30
    [65]邵颖峰,贾德昌,周玉.孔隙率对20%BN/Si3N4复合多孔陶瓷力学与介电性能的影响[J].稀有金属材料与工程,2009(38):479—482
    [66]于景媛,李强,李春微.离心成型技术制备孔梯度分布的氧化锆多孔陶瓷[J].材料导报:研究篇,2009(23):88—91
    [67]刘振,王琦,田陆飞.利用不同造孔剂制备Al2O3多孔陶瓷[J].山东陶瓷,2009(32):30—33
    [68]吴建锋,梁凤,徐晓虹.镁渣多孔陶瓷滤球气孔率的调控[J].陶瓷学报,2010(31):20—24
    [69]王伟宸,刘伟.偶联剂N-β-(氨乙基)-γ-氨丙基三甲氧基硅烷对多孔陶瓷的表面改性[J].北京化工大学学报(自然科学版),2010(37):16—20
    [70]关振铎.无机材料物理性能[M].北京:清华大学出版社
    [71]杨道媛,毋娟,朱凯等.从热传导机理看隔热材料的选取与设计原则[J].材料导报,2009,23(6):75—78
    [72]祁志军,董永芳,王德福.通过窑炉热平衡测定探求节约能源的措施[J].电瓷避雷器,1996,151(3):23~25
    [73]高力明.陶瓷窑炉热工理论研究进展的回顾与瞻望[J].中国陶瓷工业,2001,8(1):25—32
    [74]刘海燕.蛋白质发泡法制备氧化锆多孔陶瓷[D].天津:天津大学,2007
    [75]徐祖耀,郭可信,叶恒强等[M].现代功能材料导论.北京:科学出版社,1983.84-95
    [76]SehlegelE, HaeusslerK. Miero Porosity and itsusein highly effieient ther malinsulating materials [J]. Ceramaie Forum Intemational,1998,76(8):7-10
    [77]朱惠人,白洛林,张丽,等.多孔隔热壁温度场气动传热祸合计算方法[J].航空动力学报,2003,18(3):230—234
    [78]Tendo, Sugiura, MSalamaki, HTakizawa. Sintering and meehanieal ProPerties of beta-Wbllatonite[J].Joumal of Materials Seienee,1994,29(6):1501-1506
    [79]宛良德,刘振群,吴卫生.陶瓷窑炉热工技术中的不稳定传热计算[J].陶瓷,1994,60(2):14—16
    [80]朱国朝,白敏丽,邱东,等.隔热排气道气缸盖的性能优化计算[J].大连理工大学学报,1999,39(5):644—647
    [81]陈淑祥,倪文,朱林.纳米孔超级绝热材料及其制备技术[J].纳米科技与产业,2003,117(8):72—75
    [82]杨涵崧,赵淑金,李国晶.排液法测定多孔陶瓷材料开孔率的探讨[J].实验室科学,2009(5):71—72
    [83]李飞舟.气孔率可控氧化铝多孔陶瓷制备工艺的研究[J].陶瓷,2009(2):24—26
    [84]张志金,王扬卫,于晓东.三维网络SiC多孔陶瓷增强铝基复合材料的制备[J].稀有金属材料与工程,2009(38):499—501
    [85]马景陶.氧化铝陶瓷多聚体系凝胶注模成型[D].清华大学,2003
    [86]刘伟渊.高气孔率、高强度多孔氧化铝陶瓷的制备及表征[D].清华大学.2009
    [87]胡利,明唐婕,陈玉峰.水基料浆冷冻浇注成型多孔陶瓷孔结构研究[J].人工晶体学报,2009(38):515—524
    [88]Potoczek, M. Gelcasting of alumina foams using agarose solutions[J]. Ceram. Int.,2008,34, 661-667.
    [89]韩少维.TiB<,2>多孔陶瓷的制备研究[D]武汉理工大学,2007
    [90]刘坚,许云书,熊亮萍.先驱体聚合物粘结法制备SiC纳米多孔陶瓷[J].无机化学学报,2009(25):823—827

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700