用户名: 密码: 验证码:
预制体结构对平板CVI过程及材料性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
炭/炭(C/C)复合材料具有密度低、高温强度良好、摩擦磨损性能优异等特点,作为一种新型高温结构材料广泛应用于航空航天以及军事领域。炭纤维预制体结构对CVI过程中气体的传质和C/C复合材料的性能有着重要的影响。通过调节预制体结构,寻求制备工艺简单、周期短、成本低及能够提高材料综合性能的化学气相渗透(CVI)方法,对C/C复合材料的研究具有重要的意义。
     本文采用无纬布/网胎针刺整体毡和针刺全网胎毡为预制体,借助自行研发设计的CVI炉制备了平板C/C复合材料。研究了预制体结构对CVI工艺致密化过程及基体热解炭微观结构的影响;测试了材料的力学性能、石墨化度、导热系数和电阻率,探讨了预制体结构对C/C复合材料力学性能、石墨化度、导热性能及导电性能的影响。主要结论如下:
     1预制体的孔隙形状、大小和分布状态影响反应气体的传质,对材料致密化过程有重要影响。随着纤维体积分数的增加,材料的增密速率及最终密度值逐渐减小;布毡比对整体毡材料的增密速率及最终密度影响很小,全网胎材料的增密速率及最终密度均大于整体毡;添加Si02晶须后材料的增密速率及最终密度均增大,添加CaSiO3日须后增密速率减小,最终密度相同。所有材料网胎中热解炭圆壳厚度大小在材料厚度方向呈内部小、两侧大的对称分布;增加纤维体积分数或增加布毡比,材料内部的热解炭增厚程度随之减小。
     2所得C/C复合材料基体热解炭结构全部为光滑层结构,即基体结构没有因预制体结构的改变而发生明显变化。加入晶须后,基体光学活性略有增强。A晶须的加入,会诱导热解炭呈锥状生长。
     3材料的石墨化度同时受纤维体积分数和基体热解炭含量的制约和影响,无纬布层内的纤维对应力石墨化贡献较大,添加晶须均可提高材料石墨化度。石墨化度是影响材料导热、导电性能的主要因素,预制体结构仅是辅助性的影响。
     4预制体结构对材料的弯曲和剪切力学性能有相同影响规律:纤维体积分数的过高和过低均会降低材料的强度;布毡比值的增大会提高材料的强度;加入Si02晶须降低材料的强度,加入CaSiO3晶须后强度略有提高。预制体结构对材料压缩性能的影响规律不一:材料的压缩强度随纤维体积分数增大而降低;与全网胎相比,布毡比变为1:1时,材料的垂直压缩强度降低22%,而后随布毡比的增大强度值逐渐增加;平行压缩强度随布毡比值增大而降低;添加晶须后压缩强度增加,添加A晶须的增幅较大。
     5除添加Si02晶须的整体毡材料,弯曲、剪切、垂直压缩断裂方式均为韧性断裂,添加SiO2晶须的材料和全网胎材料呈脆性断裂;所有材料的平行压缩断裂方式均呈脆性断裂。
Carbon fiber-reinforced carbon matrix composites (Carbon/carbon or C/C composites) have been widely used in the applications of aerospace and military fields as new materials associating with high performance, such as low density, high strength in high temperature and excellent friction and wear properties. The structure of the carbon fiber preform has an important influence on the gas transfer during the chemical vapor infiltration (CVI) process and the properties of C/C composites. It is of great significance for the research of C/C composites to find effective CVI method with simple process, short cycle, low cost and improved comprehensive properties of materials by controlling the preform structure.
     C/C composites plates with needle-punched felt as preforms were prepared in self-designed CVI furnace by methods of CVI. The effect of the preform structure on the densification process and the microstructure of matrix were studied. Meanwhile, mechanical properties, graphitization degree, coefficient of thermal conductivity and resistivity of materials were tested and the effect of the preform structure on the mechanical properties and physical properties of C/C composites were discussed in detail. The following results were obtained.
     1. The shape, size and distribution of pores in the preform influence the gas transfer and the densification process of composites. The densification rate and the final density of composites decrease with the increase of carbon fiber volume fraction. The densification rate and density of full mat are higher than integral needle-punched felt whose ratio of cloth to mat has little effect on them. The densification rate and density increase after joining SiO2 whisker and the densification rate decreases after joining CaSiO3 whisker whose final density is as the same as before. The distribution of circle thickness of pyrolytic carbon in mat of all materials is symmetrical smaller in the middle and bigger in the laterals. The thickness of pyrolytic carbon in the middle of materials decreases with the increase of fiber content or ratio of cloth to mat.
     2. The microstructure of pyrolytic carbon of C/C composites is smooth laminar structure observed by the polarized optical micrographs which suggests that there is no direct relationship between matrix microstructure and preform structure. The optical activity of matrix slightly increases after joining whisker and joining SiO2 whisker may induce pyrolytic carbon with cone growth.
     3. The graphitization degree of composites is affected by fiber volume fraction and pyrolytic carbon content at the same time. Fibers in cloth have more significant contribution on the stress-graphitization and graphitization degree can be improved after joining whisker. Graphitization degree is the main effect factor on the thermal and electric conductivity properties, and the preform structure only have an auxiliary effect on them.
     4. The effect of preform structure on the flexural and shear mechanical properties of composites have the same rule. The high and low volume fraction of fiber can decrease the strength of composites and the strength of materials increase with the increase of ratio of cloth to mat. The strength decreases after joining SiO2 whisker but increase a little after joining CaSiO3 whisker. Their compressive mechanical strength decreases with the increase of fiber volume fraction. The vertical compressive strength decreases by 22% compared with full mat composites when the ratio of cloth to mat of integral felt is 1:1 and then increases with the increase of the ratio of cloth to mat, but the parallel compressive strength decreases with the increase of ratio of cloth to mat. The compressive strength increases after joining whisker, and the increase extent is higher after joining SiO2 whisker.
     5. The fracture model of the flexural, shear and vertical compressive is pseudo-plasticity except integral needle-punched felt of adding SiO2 whisker and full mat felts and composites joined SiO2 whisker have brittle fracture. Fracture model of parallel compressive of all the felts is brittle.
引文
[1]黄伯云,熊翔.高性能炭/炭航空刹车材料的制备技术[M].长沙:湖南科学技术出版社,2007:1
    [2]赵祖虎.C/C复合材料的进展[J].航天返回与遥感,1997,18(3):43-49
    [3]罗瑞盈,杨峥.炭/炭复合材料研究新进展[J].炭素技术,1997,(3):36-40
    [4]李贺军.炭/炭复合材料[J].新型炭材料,2001,16(2):79-80
    [5]Golecki I. Rapid Vapor-Phase Densification of Refractory Composites[J]. Materials Science and Engineering,1997, (20):37-124
    [6]Torsten Windhorst, Gordon Blount. Carbon-carbon composites:a summary of recent developments and applications[J]. Materials & Design,1997,18(1):11-15
    [7]段建军,李瑞珍,解惠贞.炭/炭复合材料在半导体制造行业的应用[J].炭素,2007,(1):12-15
    [8]Buckler J D. Development of Ultra-High Temperature Testing Equipment and Some Mechanical and Thermal Properties of Advanced Carbon-carbon Composites[J]. Ceramic Bulletin,1988,67(2):364
    [9]李贺军,曾燮榕,李克智.炭/炭复合材料研究应用现状及思考[J].炭素技术,2001,(5):24-27
    [10]高燕,宋怀河,陈晓红.C/C复合材料的研究进展[J].材料导报,2002,16(7):44-47
    [11]周玉祥,许越,滕玉洁,等.炭/炭复合材料的摩擦磨损性能及应用[J].炭素技术,2003,(4):31-33
    [12]于澍,李溪滨,刘根山,等.最终热处理对炭/炭复合材料摩擦磨损性能的影响.航空材料学报,2004,24(1):23-27
    [13]邹林华,黄伯云,黄启忠,等.国外C/C复合材料摩擦学的研究现状[J].摩擦学学报,2001,21(2):157-160
    [14]杨尊社,曲德全,魏振昌.C/C复合材料摩擦性能研究[J].炭素技术,2000,(6):16-18
    [15]霍肖旭,曾晓梅,刘红林.炭/炭复合材料及炭纤维增强塑料在固体火箭喷管上的应用[J].炭素技术,2001,(3):23-26
    [16]尹健,熊翔,张红波,等.固体火箭发动机喷管用C/C复合材料的研究进展[J].粉末冶金材料科学与工程,2003,8(3):231-236
    [17]张晓虎,孟宇,张炜.碳纤维增强复合材料技术发展现状及趋势[J].纤维复合 材料,2004,(1):50-58
    [18]杨茜.二维碳布叠层C/C复合材料弯弯疲劳性能研究:[硕士学位论文].西安:西北工业大学,2007:12-14
    [19]李雅锑,苏君,明崔红,等.C/C复合材料的预制体技术的发展[J].炭学·文集,2000,(14):77-83
    [20]陈腾飞,黄伯云,刘根山,等.航空刹车用C/C复合材料坯体结构的研究[J].矿冶工程,2002,22(1):69-71
    [21]CHEN Jian-xun, XIONG Xiang, HUANG Qi-zhong, et al. Densification mechanism of chemical vapor infiltration technology for carbon/carbon composites[J]. Trans. Nonferrous Met. SOC. China,2007, (17):519-522
    [22]龙莹.预制体孔隙结构对CVI过程及材料性能的影响:[硕士学位论文].长沙:中南大学,2008:16-17
    [23]汤中华.用定向流动热梯度CVI工艺制备航空刹车用C/C复合材料的研究:[博士学位论文].长沙:中南大学,2003:4-7
    [24]孟松鹤,韦利明,许承海,等.三维C/C复合材料的压缩性能及破坏机制[J].复合材料学报,2009,26(6):91-96
    [25]Buckley J D. Edie D D. Carbon-carbon materials and composites[M]. USA:Noyes Publications,1993:127-129
    [26]嵇阿琳,李贺军,崔红,等.炭纤维网胎表面改性[J].固体火箭技术,2009,32(6):673-676
    [27]张旺玺,王艳芝,王成国,等.聚丙烯腈基炭纤维的制备工艺过程和纤维结构研究[J].化工科技,2001,9(5):12-15
    [28]HU Zhi-biao, LI He-jun, FU Qian-gang, et al. Fabrication and tribological properties of B2O3 as friction reducing coatings for carbon-carbon composites [J]. NEW CARBON MATERIALS,2007,22(2):131-134
    [29]张秀莲,徐志淮,李贺军.碳纤维表面处理对单向C/C复合材料强度的影响[J].机械科学与技术,2003,22(3):484-486
    [30]张守阳,李贺军,孙军.填充剂对二维C/C复合材料室温力学性能的影响[J].西安交通大学学报,2001,35(11):1175-1179
    [31]Shi R, Li H J, Yang Z. Deposition mechanism of pyrolytic carbons at temperature between 800-1200℃[J]. Carbon,1997,35(12):1789-1792
    [32]翟更太,郝露霞,岳秀珍.表面氧化处理对炭纤维及炭/炭复合材料力学性能的影响[J].新型炭材料,2007,13(4):50-54
    [33]夏莉红,黄伯云,张福勤.C/C复合材料致密化工艺的研究进展[J].材料导报, 2008,22(5):107-110
    [34]孙乐民,李贺军,张守阳,等.沥青基碳/碳复合材料及其研究现状[J].机械科学与技术,2000,19(1):113-116
    [35]汤中华,邹志强.C/C复合材料致密化工艺研究新进展[J].粉末冶金材料科学与工程,1999,4(4):289-294
    [36]范本勇,陈宁,张宝东,等.CVI法制备先进陶瓷基复合材料[J].现代陶瓷技术,2004,25(3):33-35
    [37]Hoffman W P, Vastola F J, Walker Jr P L. Pyrolysis of Propylene over Carbon Active Sites I. Kinetics[J]. Carbon,1985,23(2):151-156
    [38]Stanley Middleman. The Interaction of Chemical Kinetics and Diffusion in the Dynamics of Chemical Vapor Infiltration[J]. J. Mater. Res,1989,4(6):548-556
    [39]白瑞成,李贺军,徐向阳等.一种制备C/C复合材料的高效等温ICVI工艺[J].航空学报,2005,26(2):254-256
    [40]肖鹏,徐永东,张立同,等.高温陶瓷基复合材料制备工艺的研究[J].材料工程,2002,(2):41-43
    [41]Weigang Zhang, Klaus J. Huttinger. Chemical Vapor Infiltration of Carbon~revised Part Ⅰ:Model Simulations[J]. Carbon,2001, (39):1013-1022
    [42]Zijun Hu, Klaus J. Huttinger. Chemical Vapor Infiltration of Carbon-revised Part Ⅱ:Experimental Results[J]. Carbon,2001,(39):1023-1032
    [43]于澍,黄启忠,黄伯云.炭/炭复合材料化学气相沉积工艺进展[J].粉末冶金材料科学与工程,2006,11(5):262-267
    [44]Hyeok Je Jeang, Hee Dmg Dark, Jae Do Lee, et al. Densification of carbon/carbon deposited by pulse chemical vapor infiltration. Carbon,1996,34(3):417-421
    [45]Delhaes P. Chemical Vapor Deposition and Infiltration Processes of Carbon Materials[J]. Carbon,2002, (40):641-657
    [46]Sundar Vaidyaraman, W. Jack Lackey. Forced flow-thermal gradient chemical vapor infiltration for fabrication of carbon/carbon [J]. Carbon,1995,33(9): 1211-1215
    [47]史启桢,王惠,冉新权,等.快速液相沉积法碳/碳复合材料的致密化工艺[J].西北大学学报,2002,32(4):325-328
    [48]艾艳玲,李铁虎.快速致密化制备C/C复合材料的新发展[J].材料导报,2005,19(7):90-93
    [49]McAllister P, Wolf E E. Ni-catalyzed carbon infiltration of carbon-fiber substrates[J]. Carbon,1992,30(2):189-200
    [50]Richard E Zielinski, Dana T Crow. An iron catalyst for CVD of methane on carbon fibers[J]. Carbon,1992,30(2):295-299
    [51]李伟,陈振华,张明,等.炭/炭复合材料致密化工艺研究进展[J].炭素,2007,(4):14-18
    [52]钟涛生,易茂中,葛毅成,等.碳纤维增强碳基复合材料增密方法及其特点[J].金属热处理,2009,34(2):111-114
    [53]Lieberman M L, Pierson H O. Effect of gas phase conditions on resultant matrix pyrocarbons in carbon/carbon composites[J]. Carbon,1974, (12):233-241
    [54]Reznik B, Huttinger K J. On the terminology for pyrolytic carbon[J]. Carbon,2002, (40):621-624
    [55]Granff B. Kinetics of graphitization of carbon-felt/carbon-matrix composites[J]. Carbon,1974, (12):405-416
    [56]Barry Granoff. Characterization of carbon-carbon composites[J]. Carbon,1974, (12):681-683
    [57]黄伯云,肖鹏,陈康华.复合材料研究进展(上)[J].材料天地,2007,(2):46-48
    [58]熊翔.炭/炭复合材料制动性能研究[博士学位论文].长沙:中南大学,2004:28-32
    [59]Je J H, Lee Jaiyong. A Study on the Deposition of Pyrolytic Carbons from Hydrocarbon [J]. Carbon,1984,22(6):563-567
    [60]Lahaye J, Badie P, Ducret J. Mechanism of Carbon Formation during Steam Cracking of Hydrocarbons [J]. Carbon,1977, (15):57-62
    [61]Hoffman W P, Vastola F J, Walker Jr P L. Pyrolysis of Propylene over Carbon Active Sites Ⅱ. Pyrolysis Products[J]. Carbon,1988,26(4):485-491
    [62]张福勤.航空刹车用C/C复合材料石墨化度的研究:[博士学位论文].长沙:中南大学,2002:1,79-91
    [63]日本炭素材料学会编.新炭素材料入门[M].上海:中国金属学会炭素材料专业委员会编译,1999:26
    [64]成会明,张名大,周本镰.短炭纤维/树脂炭复合材料石墨化行为的研究[J].炭素技术,1989,(2):7-10
    [65]陈洁,熊翔,肖鹏.高导热C/C复合材料的研究进展[J].材料导报,2006,(20):431-435
    [66]Luo Ruiying, Liu Tao, Li Jinsong, et al. Thermophysical properties of carbon/carbon composites and physical mechanism of thermao expansion and thermal conductivity[J]. Carbon,2004, (42):2887
    [67]邱海鹏.高导热炭荃复合材料的制备及其热传导机理的研究:[博士学位论文].太原:中国科学院山西煤炭化学研究所,2003:63
    [68]杨玉蓉,仲亚娟,华中,等.PAN基炭纤维的石墨化度表征及与电阻率的关系[J].吉林师范大学学报,2008,(3):138-140
    [69]华中,王月梅.PAN基炭纤维中SP2杂化的C-C原子键距对电阻率影响的研究[J].炭素,2003,(3):39-41
    [70]Xiao Min, et al. The influence of thermal treatment conditions on the structures and electrical conductives of graphite oxide [J]. New Carbon Mater,2004,19(2): 92
    [71]Shui X, Chung D D L. Electrical resistivity of submicron-diameter carbon-filament compacts[J]. Carbon,2001,39(11):1717-1722
    [72]束德林,陈九磅,凤仪.工程材料力学性能[M].北京:机械工业出版社,2008:206-227
    [73]吴凤秋.炭/炭复合材料的力学性能及其断裂机理的研究:[硕士学位论文].长沙:中南大学,2002:15-25
    [74]石荣,胡赓祥,李贺军,等.热解炭基1 D-C/C力学性能的织构影响及断裂模式[J].上海交通大学学报,1998,32(2):65-68
    [75]罗瑞盈.预制体结构对炭/炭复合材料力学性能的影响[J].炭素技术,1997,(2):15-18
    [76]白瑞成,李贺军,付业伟,等.预制体孔隙结构对炭/炭复合材料ICVI制备工艺的影响[J].碳素技术,2005,24(3):24-27
    [77]张守阳,李贺军,唐松.沉积表面粗糙度对热解炭组织结构的影响[J].炭素技术,2000,(5):11-15
    [78]张伟刚.化学气相沉积—从烃类气体到固体炭[M].北京:科学出版社,2007:105-116
    [79]陈腾飞,黄伯云,刘根山,等.坯体结构对炭/炭复合材料增密速率的影响[J].材料工程,2002,(8):3-9
    [80]Gupte S M, Tsamopoulos J A. Densification of Porous Materials by Chemical Vapor Infiltration[J]. J Electrochem Soc,1989,136(2):555-561.
    [81]陈腾飞.炭纤维坯体结构及增密方式对炭炭复合材料界面及性能的影响研究:[博士学位论文].长沙:中南大学,2003:65-66
    [82]李江鸿,张红波,熊翔,等.纤维体积分数对炭/炭复合材料石墨化度的影响[J].中国有色金属学报,2004,9(3):255-257
    [83]Christopher Byrne, Zhiyuan Wang. Influence of thermal properties on friction performance of carbon composites[J]. Carbon,2001, (39):1789-1801
    [84]Fitzer E, Manocha L M. Carbon reinforcements and carbon-carbon composites[M]. Berlin:Springer,1998:237-262
    [85]Zhen Mei, Chung D D L. Thermal history of carbon-fiber polymer-matrix composite, evaluated by electrical resistance measurement[J]. Thermochimica acta, 2001,369(1-2):87-93
    [86]华中,仲亚娟,于万秋.PAN基炭纤维的电阻率与炭化温度的关系[J].吉林师范大学学报,2005,(2):1-2
    [87]张福勤,黄启忠,黄伯云,等.C/C复合材料石墨化度与导电性能的关系[J].新型炭材料,2001,16(2):45-48
    [88]高莹,黄启忠,王秀飞,等.模压成形制备高电阻率炭材料[J].粉末冶金材料科学与工程,2006,11(3):172-175
    [89]吕振林,熊流峰,高积强,等.反应烧结碳化硅的显微组织气孔率及电阻率[J].西安交通大学学报,1999,33(4):48-51
    [90]熊翔,黄伯云,肖鹏.准三维C/C复合材料的压缩性能及其破坏机理[J].中南大学学报,2004,35(5):702-706
    [91]肖春,朱光明,侯卫权,等.热解碳含量对C/C复合材料性能的影响[J].火箭推进,2005,31(6):45-49
    [92]袁秦鲁,李玉龙,李贺军,等.C/C复合材料压缩破坏的应变率效应研究[J].无机材料学报,2007,22(2):311-314
    [93]孙万昌,李贺军,卢锦花,等.不同层次界面对C/C复合材料断裂行为的影响[J].无机材料学报,2005,20(6):1457-1462
    [94]Ruiying Luo, Caili Yang, Jiwei Cheng. Effect of preform architecture on the mechanical properties of 2D C/C composites prepared using rapid directional diffused CVI processes[J]. Carbon,2002, (40):2221-2228

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700