用户名: 密码: 验证码:
利用岩层的低温效应预冷井下入风流的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首先分析了国内外矿井高温问题的现状及其危害,指出井下高温热害严重地威胁着矿井的安全生产和工人的身心健康,已经成为制约地下矿山可持续发展的主要灾害之一。矿井内的高温高湿作业环境不仅会诱发各种疾病损害工人的身体健康,还会危害矿井的安全生产,降低工人的劳动生产率进而影响到矿山企业的经济效益。因此,进行矿井降温改善井下气候条件已经成为保障矿山安全生产的一项重要工作。
     本文较为详细地介绍了包括通风降温、人工制冷降温、人工储冷降温、低温岩层预冷以及个体防护等降温措施,总结了国内外学者在井下风流热交换方面的研究现状和发展水平,根据风流与围岩之间的热交换原理,考虑到理论模型的通用性,使之既描述了风流在水平巷道里与围岩的热交换过程,也描述了风流在倾斜井巷和竖直井筒里流动时与井巷围岩的热交换过程。
     利用岩层低温效应实现对矿井入风流的预冷降温的关键是计算风流与围岩之间的热交换量,其精确性及繁琐程度直接关系到矿井降温设计的合理性和经济性。由于巷道围岩的岩层是各向异性的,而且岩温和入风流温度是随季节和时间变化的,计算风流与巷道围岩之间的热交换量是一个非常复杂的问题。由于传统的计算方法大都需要进行大量的数值计算,且计算结果并不一定可靠,本文在计算风流与围岩间的冷、热和湿交换时,考虑到用作预冷井巷的废弃井巷中的空气湿度一般不大,为简化模型,忽略风流与井巷围岩间的湿交换,并且不考虑井巷内其它热源的影响,在热交换理论的基础上,应用传热学原理和井巷的调热圈理论,分析了围岩与风流之间的热交换过程,建立起较为合理的热交换模型并求出其解析解,应用于井下风温预测以及深井通风降温的设计和计算,利用岩层低温效应进行对入风流的自然冷却降温,实现矿井降温的节能降耗。
     在建立了风流与巷道围岩之间热交换理论模型的基础上,对金洲矿业集团金青顶矿区地温预冷井巷的实测数据进行了详细的分析,得出了具体的地温率和气温的变化规律以及变温带、恒温带和增温带的相对位置,并对地温预冷效果进行了经济性分析,为分析和验证模型提供了基础数据和条件。
     最后,利用金洲矿业集团金青顶矿区地温预冷井巷的实测数据和分析结果对模型进行了验证计算,从而为井巷围岩与风流间冷热交换的计算和井下风流温度预测提供了较为简便和准确的方法。同时,作为比较,运用本文的研究结果对上述预冷系统的冬季工况(地温预热工况)进行了计算和简单分析,结果表明,本文的研究结果对于矿山地温预热系统的设计和计算同样是适用的。
This paper first analyzes the domestic and international status quo of high temperature in mines and its harm, indicates that the high underground temperature badly threatens the safety of mine production and the physical and mental health of miners, the harm of high undergroud temperature has become one of the major disasters which constrain the sustainable development of underground mines.The high temperature and humidity in the mine operating environment will not only harm the health of miners by inducing various diseases, but also endanger the safety of mine production, lower labor productivity of workers in turn affect the economic benefits of mining enterprises. Thus, cooling air to improve air conditions underground mine has become an important work to guarantee safe production of mine.
     This paper intruduces some cooling measures in detail, including ventilation cooling, artificial refrigeration cooling, artificial cold storage cooling, pre-cooling using low temperature effect of rock stratum and individual protection, sums up the study status and development level of domestic and foreign scholars on heat exchange between airflow and wall rock in underground mine, according to the heat exchange principle between airflow and wall rock, derives a simplified model of heat exchange between airflow and wall rock. Taking the applicability of the theoretical modle into account, this model describes heat exchange process between airflow and wall rock in horizontal laneway as well as in oblique and vertical laneways.
     The key of using the low-temperature effect of rock stratum to pre-cooling the inlet airflow is calculating the quantity of heat exchange between airflow and wall rock of which the accuracy and complexity directly relates to the rationality and economy of mine cooling design. Because rock stratum is anisotropic, rock temperature and the temperature of inlet airflow are changing with seasons and time, it is a very complicated problem to calculate the quantity of heat exchange between airflow and wall rock. Because most of the traditional calculatition methods need for large cumbersome numerical calculation, and the results are not necessarily reliable. In this paper, because air humidity in abandoned laneways which are usually used as precooling laneways is not high in general, to simplify the modle, when calculating heat and wet exchange between wall rock and airflow, ignore wet exchange between airflow and wall rock and the influence of other heat sources. On the basis of heat exchange theories, using the principles of heat transfer and cooled zone theory of laneway, analyzes the heat exchange process between airflow and wall rock, and establishes a more reasonable heat exchange model for underground temperature forecast and design and calculation of ventilation cooling in deep mine.Using low-temperature rock stratum to cool the inlet airflow naturally achieves energy saving of mine cooling.
     On the basis of theoretical model of heat exchange between airflow and wall rock, this paper makes a detailed analysis on geothermal precooling data measured in Jinqingding mine area of Jinzhou Mining Group, and obtains specific varying law of original rock temperature and airflow temperature and relative position of zones of variable temperature, constant temperature and warming temperature, makes an economic analysis of geothermal cooling effect, which provides basic data and conditions for analyzation and validation of the model.
     Finally, the model is validated utilizing geothermal precooling data measured in Jinqingding mine area of Jinzhou Mining Group and the analysis results of these data, so a comparatively simple and accurate method for calculation of heat and cold exchange between wall rock and airflow is provided. At the same time, as a comparison, the winter condition (geothermal preheating condition) of the precooling system above is calculated and simply analyzed using the research fruit of this paper. The result shows that, the research fruit of this paper are also appropriate for design and calculation of geothermal preheating system.
引文
[1]冯兴隆,陈日辉.国内外深井降温技术研究与发展[J].云南冶金,2005,34(5):7-9.
    [2]矿山安全条例.国务院颁布.1982年7月1日起实施.
    [3]杨甫定.高温矿井是否进行增风降温的判别[J].中国学术期刊电子出版社,1994-2007:9-11.
    [4]谭海文.金属矿山深井热源分析与矿井通风[J].中国矿业,2006,15(11):59-62.
    [5]王英敏.矿内空气动力学与矿井通风系统[M].冶金工业出版社,1994:377-396.
    [6]岑衍强,侯祺棕.矿内热环境工程[M].武汉工业大学出版社,1995:73-100.
    [7]余恒昌.矿山地热与热害治理[M].煤炭工业出版社,1991:195-200.
    [8]丁成华.孟加拉国巴拉普库利亚煤矿井下热害综合治理[J].建井技术,2004,25(6):1-3.
    [9]王宁等.米克尔地下金矿的通风冷却系统[J].世界采煤快报,1996,12(13):6-8.
    [10]朱建国.金属矿山井下热源分析[J],湖南地质,2003,22(2):153-155.
    [11]Chris Reay.Cooling A Mine:The Inside Story[J].SA Mechanical Engineer,2003,54(4):23-24.
    [12]D J Brake.The application of refrigeration in mechanised mines[J].The AusIMM Proceedings,2001,306(1):1-9.
    [13]黄颖华,沈斐敏.高温矿井降温技术研究动态[J].安全技术,2006,11:29-31.
    [14]陈国安.矿井热害产生的原因、危害及其防治措施[J].中国安全科学学报,2004,14(8):3-5.
    [15]李莉等.矿井热害分析及其防治[J].煤矿现代化,2006,2:34-35.
    [16]王勇.深井热害防治探讨[J].煤矿安全,2003,34(10):38-40.
    [17]彭担任等.高温矿井热害的防治[J].矿业安全与环保,1999,(6):45-47.
    [18]王文等.矿井热害的治理[J].矿业安全与环保,2002,29(3)31-32.
    [19]司千字.高温矿井的热环境处理[J].江苏煤炭,1999,3:23-24.
    [20]刘何清等.矿井降温技术述评[J].金属矿山,2005,6:43-44.
    [21]林传军.利用下行风技术治理深井高温热害[J].矿业安全与环保,2005,32(1):53-54.
    [22]刘璐等.关于改善矿井环境气候的探讨[J].煤炭工程,2005,12:47-49.
    [23]刘忠宝等.高温矿井降温空调的概况及进展[J].真空与低温,2002,(3):130-135.
    [24]赵以蕙.矿井通风与空气调节[M].江苏徐州:中国矿业大学出版社,1996.
    [25]赵国彦等.压缩空气对井下热环境的降温效果研究[J].安全与环境学报,2001,1(6):22-23.
    [26]何满潮等.储冷对井治理深部矿井热害研究[J].煤田地质与勘探,2006,34(5):23-25.
    [27]金学玉.利用恒温水源进行矿井降温[J].煤矿安全,2004,35(6):7-9.
    [28]肖黎明等.当前国内高温矿井热害状况及其防治措施[J].中国学术期刊电子出版社,1994-2007:28-30.
    [29]陈喜山,王剑波,梁晓春.热湿矿井通风降温系统的研究与应用[J],金属矿山.2003(11):43-66.
    [30]杨洪新.低温岩层预冷入风流技术研究与应用[J].金属矿山,2001,295(1):52-53.
    [31]林睦曾.岩石热物理学及其工程应用[M].重庆:重庆大学出版社,1991:22-24.
    [32]王均,黄尚瑶,黄歌山等.中国地温分布的基本特征[M].北京:地震出版社,1990:67-84.
    [33]侯祺棕,沈伯雄.调热圈半径及其温度场的数值解算模型[J].湘潭矿业学院学报,1997,12(1):9-16.
    [34]周西华,单亚飞等.井巷围岩与风流的不稳定换热[J].辽宁工程技术大学学报,2002,21(3):264-265.
    [35]杨世铭.传热学[M].高等教育出版社,1992,200-205.
    [36]A.H.舍尔巴尼等.矿井降温指南[M].煤炭工业出版社,1982:164-177.
    [37]邱信立.工程热力学[M].北京:中国建筑工业出版社,1989.
    [38]同济大学数学教研室.高等数学第四版下册.高等教育出版社,1996,342-343.
    [39]吴强等.Study on Temperature Field of Surrounding Rock with BEM[J].Journal of China University of Mining &Technology,2001,11(1):6-9.
    [40]杨胜强,孙兆东.等.三河尖高温矿井风流热力参数测定及变化规律分析[J].江苏煤炭,1995,3:41-57.
    [41]汪峰,王雷等.高温矿井风流热力参数测定及其变化规律和热湿源的分析[J].煤矿现代化,2004,60:51-53.
    [42]王景刚,乔华,冯如彬等.深井降温的技术经济分析[J].河北建筑科技学院学报,2000,17(1):23.
    [43]C T Twort,I S Lowndes and S J Pickering.An application of thermal exergy analysis to the development of mine cooling systems[J].Proc Instn Mech Engrs Vol 216 Part C:J Mechanical Engineering Science.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700