用户名: 密码: 验证码:
连续激光与30CrMnSiA钢等典型金属材料相互作用机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光与材料相互作用机理研究是激光应用的基础,也是伴随激光技术发展起来的一门新兴的学科,涉及材料、力学、化学和物理等多学科前沿交叉。通过实验测量反射率,研究激光辐照过程中激光吸收系数的变化,是开展激光与材料耦合效率研究并揭示其耦合规律与机理的重要手段之一
     本文在使用积分球测量激光与材料耦合效率过程中,发现金属材料被激光加热后,其热辐射发光对积分球的测量探测器存在明显的影响,从而使测量结果中引入了较大的误差,这一现象普遍存在于以往的测试工作中。通过对积分球测量的原理的深入分析,提出了消除金属材料热辐射发光对探测器干扰的方法,使测量精度得到较大提高。同时本文对积分球测量过程中可能产生误差的环节,也开展了较深入的分析,这一工作对于获取真实、可靠的激光与材料的耦合效率数据、提高测量精度是有指导意义的。
     基于上面改进的较高测量精度的激光与材料耦合效率测量方法,开展了~kW/cm2量级的1.06μm连续激光与30CrMnSiA钢的耦合效率的实验研究,通过改变激光辐照强度、激光辐照方式,和对反射率曲线上发生变化位置采用冻结方法研究材料组分变化等手段,对激光辐照下材料耦合效率的变化机理予以了较好的揭示和阐述。在此工作基础上还开展了激光与Ly12铝材料的耦合规律研究,提供了较可靠的实验数据。
     本文同时提出了温度场的反演方法,可以根据后表面的温度历史反推样品前表面在激光辐照下吸收系数发生变化的过程。这种方法弥补了实验只能给出光斑区平均吸收系数变化的不足,对后继高精度开展激光与材料耦合规律研究非常有帮助。基于该方法编写的一维程序反演的结果,与一维实验结果符合较好,说明这种方法是可行的。
     最后,利用金属膜理论与氧化膜生长理论初步建立反射率变化模型,并编写一维程序用于模拟反射率变化过程,得到了变化趋势与实验符合较好的结果。通过初步建立的反射率变化模型,解释了实验中出现的主要现象的物理机制,对激光与30CrMnSiA钢的相互作用的机理有较好的揭示。
The interaction between laser and materials forms the basis of laser applications with the development of laser technologies. It is a multidiscipline involving material science, mechanics, chemistry and physics, etc. The absorption coefficient of materials under laser irradiation, being representative of laser-material coupling efficiency, can be measured by means of reflectivity on material interface.
     When measuring the laser-material coupling efficiency using integrating sphere, we found that the thermal radiation of metals resulted from laser heating could significantly affect the detector in an integrating sphere, and therefore brought a large error to the measurement. Through an in-depth analysis on the measuring principle of integrating sphere, an approach is proposed in the thesis to eliminate the interference of thermal radiation of heated metal materials, so that the measurement accuracy is greatly improved. In addition, the measurement error of reflectivity using integrating sphere is analyzed systematically. This work has instructive significance in obtaining the true and reliable laser-material coupling efficiency data and improving the measurement accuracy.
     Based on the improved high-accuracy measurement of the interface reflectivity, the coupling power output efficiency between the 30CrMnSiA steel and the 1.06um CW laser of the order of~kW/cm2, is explored experimentally. By means of changing the intensity of laser irradiation, the mode of laser loading, and analyzing the variation of metal composition for those abrupt changes of material reflectivity, the mechanism of the coupling efficiency under laser irradiation is well revealed. Based on this work, the coupling rule between laser and Ly12 aluminum is also studied experimentally, and reliable data of reflectivity are obtained.
     Using the temperature distribution of rear surface which can be obtained experimentally, an inverse calculation, analogous to anti-integral method, is performed in the thesis to calculate the temperature variation on the front surface where laser irradiation is applied. The absorption coefficient obtained make up for the deficiency that experiment data are related to the absorption coefficient of a spot area in average. It is helpful to carry out the research on high-precision coupling rule between laser and materials in future. The one-dimensional calculations are given in the thesis. They are in good agreement with those of specially designed one-dimensional experiments.
     Finally, a reflectivity model is established by using the metal-film theory and the growth of oxide film theory. Also a one-dimensional program is composed and used to simulate the reflectivity variation in the process of laser irradiation. The trend of calculated results is in good agreement with that of experimental results. Through establishing the reflectivity model, we explain the variation of reflectivity in the experiments, and furthermore reveal the mechanism of the interaction between laser and 30CrMnSiA steel.
引文
[1]孙承纬,陆启生,范正修,等.激光辐照效应[M].北京:国防工业出版社,2002.
    [2]C. D. Boley, A. M. Rubenchik. Simulations of target interactions with pulsed, high-energy solid state lasers[C].17th Annual Solid State and Diode Laser Technology Review, Albuquerque, NM, June 8-10,2004.
    [3]R. P. Abbott, C. D. Boley, S. N. Fochs, et al. High-power solid-state laser:lethality testing and modeling[C].25th Annual Army Science Conference, Orlando, FL, November 27-30,2006.
    [4]C. D. Boley, S. N. Fochs, A. M. Rubenchik. Lethality effects of high-power solid-state laser[J]. Journal of Directed Energy, UCRL-JRNL-234510, September 11,2007.
    [5]R. M. Yamamoto, J. M. Parker, C. D. Boley, et al. Laser-Material interaction studies utilizing the solid-state heat capacity laser[C].20th Annual Solid State and diode Laser Technology Review, Los Angeles, CA, June 26-28,2007.
    [6]C. D. Boley, S. N. Fochs, A. M. Rubenchik. Large-spot material interactions with a high-power solid-state laser beam[J]. Journal of Directed Energy, UCRL-JRNL-406423, August 6,2008.
    [7]C. D. Boley, K. P. Cutter, S. N. Fochs, et al. Study of laser interaction with thin targets[C]. Sixth Annual High Energy Laser Lethality Conference, Monterey, CA, April 6-10,2009.
    [8]G. de Vries, J. F. Beek, G. W. Lucassen, et al. The effect of light losses in double integrating spheres on optical properties estimation[J]. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL.5, NO.4, JULY/AUGUST 1999.
    [9]S. V. Garnov, V. I. Konov, O. G. Tsarkova. High temperature measurements of reflectivity and heat capacity of metals and dielectrics at 1064nm[J]. SPIE, Vol.2966 0277-786X/149-156(1997).
    [10]Chenxi Li, Huijuan Zhao, Jierong Ma, et al. Improved double-integrating-spheres system for multi-wavelength optical properties measurement:investigation and application[J]. SPIE Vol. 7176 71760J/1-8(2009).
    [11]I. Lindseth, A. Bardal, R. Spooren. Reflectance measurements of aluminium surfaces using integrating spheres[J]. Optics and Lasers in Engineering 32(2000) 419-435.
    [12]Tjeerd O. Klaassen, John H. Blok, J. Niels Hovenier, et al. Scattering of sub-millimeter radiation from rough surfaces:absorbers and diffuse reflectors for HIFI and PACS. Proceedings of SPIE Vol.4850(2003).
    [13]Reshmi Basu, Sergio Diaz, Brian J. F. Wong, et al. Temperature and Wavelength Dependent Scattering of Light during Slow Heating of Porcine Septal Cartilage[J]. Proceedings of SPIE Vol.4617(2002).
    [14]GuiBing Wang, ChunYan Wang, YongQiang Zhang, et al. The absorptivity of low-carbon steel under Nd:YAG CW laser loading[J]. Proc. of SPIE Vol.7131 71311N/1-6(2009).
    [15]Michel Autric. Thermomechanical effects in Laser-Matter Interaction[C]. Part of the SPIE Conference on High-Power Laser Ablation, Santa Fe, New Mexico, April 1998.
    [16]Anna Wonaschu#tz, Regina Hitzenberger, Heidi Bauer, et al. Application of the integrating sphere method to separate the contributions of Brown and Black Carbon in Atmospheric Aerosols[J]. Environ. Sci. Technol.,2009,43(4),1141-1164, January 22,2009
    [17]Leonard Hanssen. Integrating-sphere system and method for absolute measurement of transmittance, reflectance, and absorptance of specular samples[J]. APPLIED OPTICS, Vol. 40, No.19, July 1 2001.
    [18]张永强,王贵兵,陶彦辉.大气和真空环境下连续激光对金属材料加热效率的对比分析[J].应用激光,2010,35(5):414-416.
    [19]王煜,郑春弟,李平,等.辅助积分球开口壁厚对双球法测量漫反射比的影响及修正[J].照明工程学报,2003,14(3).
    [20]范毅,戴景民,褚载祥.积分球反射率测量铌的发射率随温度的变化[J].上海交通大学学报,2003,37(2).
    [21]陆耀东,史红民,齐学,等.积分球技术在高能量测量中的应用[J].强激光与粒子束,2000,12(s0).
    [22]张永强,王伟平,唐小松,等.两种纤维增强复合材料与连续激光耦合规律[J].强激光与粒子束,2007,19(10).
    [23]杨礼兵,刘绪发,张可星,等.铝靶激光反射率的动态研究[J].强激光与粒子束,1994,6(1).
    [24]裘国红.提高积分球反射计测量准确度的方法[J].计量技术,2000,No.2
    [25]R. Lapka, P. OelHafen, U. M. Gubler, et al. Comparison of optical reflectivity measurements, electron spectroscopy, and band-structure calculations of binary transition-metal alloys[J]. PHYSICAL REVIEW B, VOLUME 31, NUMBER 12, JUNE 15,1985.
    [26]Tuomas Poikonen, Pasi Manninen, Petri Karha, et al. Multifunctional integrating sphere setup for luminous flux measurements of light emitting diodes[J]. REVIEW OF SCIENTIFIC INSTRUMENTS 81,023102(2010).
    [27]Tsofar Maniv. Raman scattering arising from reflectivity modulation by impurities located near the surface of a metal[J]. RHYSICAL REVIEW B, VOLUME 26, NUMBER 6, SEPTEMBER 15,1982.
    [28]J. D. Hoyland, D. Sands. Temperature dependent refractive index of amorphous silicon determined by time-resolved reflectivity during low fluence excimer laser heating[J]. JOURNAL OF APPLIED PHYSICS 99,063516(2006).
    [29]K. M. A. EL-Kader. Time-resolved reflectivity technique:improvement and applications[J]. INTERNATIONAL JOURNAL OF PHOTOENERGY, Vol.1,1999.
    [30]张俊杰,王震.反射率的垂直入、反射测量法[J].宇航计测技术,29(6),2009.
    [31]高学燕,周殿华,周山,等.积分球的光功率波形变换理论[J].光学学报,22(4),2002.
    [32]汤顺青,朱正芳.积分球的系统误差分析[J].计量技术,2005.No 12.
    [33]周学艳,韩福利,杨进华.基于FTIR光谱辐射计的激光反射率测量方法研究[J].长春理工大学学报,Vol.31,No.1,2008.
    [34]路大举,万敏,杨锐,等.空间目标表面材料反射率的测量[J].强激光与粒子束,20(8),2008.
    [35]毛祥光.球面反射率测量系统[E].浙江:浙江大学,2006.
    [36]齐超,李岩,齐赛.双向反射率测量中锁相放大器的设计[J].光学与光电技术,6(1),2008.
    [37]吴丽雄,王立君,林新伟,等.用于材料反射率测量的共轭反射计设计与分析[J].光学精密工程,18(12),2010.
    [38]焦路光,赵国民.1.319um处45#钢反射率随温度变化的研究实验[J].应用光学,30(6),2009.
    [39]王桂吉,罗飞,赵剑衡,等.1.06um连续Nd-YAG激光辐照45#钢靶实验研究[J].爆轰波与冲击波,2,2004.
    [40]R. A. Castelli, P. D. Persans, W. Strohmayer, et al. Optical Reflection Spectroscopy of Thick Corrosion Layers on 304 Stainless Steel[C]. LM-06K035, March 23,2006.
    [41]Marc Jobin, Raphael Foschia, Francois de Mestral, et al. Surface and mechanical properties of laser melted maraging steel [J]. Proceeding of EuroPM 2009, Copenhagen,12-14 October 2009.
    [42]王贵兵,罗飞,刘仓理,等.大气环境下重复频率激光辐照45#钢反射率变化分析[J].强激光与粒子束,18(2),2006.
    [43]赵剑衡,王贵兵,张世文,等.激光辐照下双层钢板接触界面对传热的影响[J].强激光与粒子束,14(3),2002.
    [44]刘绪发,李齐民,刘常龄.LY12铝平面靶对1.06um激光反射率的测量[J].强激光与粒子束,4(2),1992.
    [45]王禹皓,李春,付秀华,等.可见光范围镀铝反射率的研究[J].长春理工大学学报,Vol.32,No.1,2009.
    [46]K. MUNDRA and T. DEBROY. Calculation of Weld Metal Composition Chang in High-Power Conduction Mode Carbon Dioxide Laser-Welded Stainless Steels[J]. METALLURGICAL TRANSACTIONS B, VOLUME 24B/145-155, FEBRUARY 1993.
    [47]Zhaoyang Chen, Annemie Bogaerts. Laser ablation of Cu and plume expansion into 1 atm ambient gas[J], JOURNAL OF APPLIED PHYSICS 97,063305(2005).
    [48]S. H. Jeong, R. Greif, R. E. Russo. Numerical modeling of pulsed laser evaporation of aluminum targets[J], Applied Surface Science 127-129(1998) 177-183.
    [49]N. M. Bulgakova, A. V. Bulgakov. Pulsed laser ablation of solids:transition from normal vaporization to phase explosion[J]. Appl. Phys. A 73,199-208(2001).
    [50]郑艳丽,杜太焦,束庆邦,等.不同气流环境下激光辐照金属材料温升的数值模拟[J].强激光与粒子束,22(11),2010.
    [51]张家雷,谭福利,仝延锦.激光辐照下充压柱壳的破坏能量阈值数值模拟[J].强激光与粒子束,22(5),2010.
    [52]张健,黄晨光.外部流场对激光加热运动目标影响的数值模拟[J].强激光与粒子束,19(11),2007.
    [53]王贵兵,刘仓理.芳纶纤维复合材料对激光的吸收特性研究[J].强激光与粒子束,15(11),2003.
    [54]张永强,王贵兵,唐小松,等.两种纤维增强复合材料连续激光烧蚀阈值测量及吸收特 性分析[J].强激光与粒子束,21(2),2009.
    [55]张永强,王伟平,唐小松,等.两种纤维增强复合材料与连续激光耦合规律[J].强激光与粒子束,19(10).2007.
    [56]L Lavisse, P Berger, M Cirisan, et al. Influence of laser-target interaction regime on composition and properties of surface layers grown by laser treatment of Ti plates[J]. J. Phys. D:Appl Phys.42(2009).
    [57]J. XIE, A. KAR. Laser Welding of Thin Sheet Steel with Surface Oxidation[J]. WELDING RESEARCH SUPPLEMENT,343-348, October 1999.
    [58]Wesley Odell Gordon. Metal Oxide Nanoparticles:Optical Properties and Interaction with Chemical Warfare Agent Simulants[M]. Blackburg, Virginia, November 06,2006.
    [59]Tomohiko Nakajima, Tetsuo Tsuchiya, Toshiya Kumagai. Pulsed laser-induced oxygen deficiency at TiO2 surface:Anomalous structure and electrical transport properties[J]. Journal of Solid State Chemistry,182(2009),2560-2565.
    [60]J. Jasinski, K. E. Pinkerton, I. M. Kennedy. et al. Surface oxidation state of combustion-synthesized γ-Fe2O3 nanoparticles determined by electron energy loss spectroscopy in the transmission electron microscope[J]. Sensors and Actuators B 109(2005) 19-23.
    [61]Julien Malherbe, Herve Martinez, Beatriz Fernandez, et al. The effect of glow discharge sputtering on the analysis of metal oxide films[J]. Spectrochimica Acta Part B 64(2009) 155-166.
    [62]党海军,秦启宗.脉冲激光烧蚀金属氧化物的物理化学过程及反应机理[J].量子电子学报,Vol.21, No.2, April.2004.
    [63]Lin Dong, Yuhai Hu, Fei Xu, et al. A study on the surface properties of ceria-supported Tungsten and Copper Oxides[J]. J. Phys. Chem. B,2000,104,78-85.
    [64]R. Alexandrescu, I. Morjan, M. Scarisoreanu, et al. Development of the IR laser pyrolysis for the synthesis of iron-doped TiO2 nanoparticles:Structural properties and photoactivity[J]. Infrared Physics & Technology,53(2010)94-102.
    [65]Georges Raseev, Doina Bejan. Multipole surface Plasmon resonance of an aluminium surface[J]. Optics Communications 283(2010) 3976-3984.
    [66]Zili Wu, Sheng Dai, Steven H. Overbury. Multiwavelength Raman Spectroscopic Study of Silica-Supported Vanadium Oxide Catalysts[J]. J. Phys. Chem. C 2010,114,412-422.
    [67]Joseph Dvorak, Hai-Lung Dai. Optical reflectivity changes induced by absorption on metal surfaces:The origin and applications to monitoring adsorption kinetics[J]. JOURNAL OF CHEMICAL PHYSICS, VOLUME 112, NUMBER 2, JANUARY 8,2000.
    [68]Xuezeng Zhao, Zhao Gao. Surface roughness measurement using spatial-average analysis of objective speckle pattern in specular direction[J]. Optics and Lasers in Engineering, 47/1307-1316,2009.
    [69]张永强,王贵兵.大气环境中不同温度下30CrMnSiA钢吸收率的点测量[J].激光技术,2010,34(4):517-519.
    [70]D. Bergstrom, J. Powell, A. F. H. Kaplan. A ray-tracing analysis of the absorption of light by smooth and rough metal surfaces [J]. Journal of Applied Physics, Vol.101, No.11, pp.113504/1-11(2007).
    [71]D. Bergstrom, A. Kaplan, J. Powell. Mathematical Modelling of Laser Absorption Mechanisms in Metals:A Review, in:Proceedings of the 16th Meeting on Mathematical Modelling of Materials Processing with Lasers (M4PL16), Igls, Austria(2003).
    [72]陆建等.激光与材料相互作用物理学[M].机械工业出版社,1996年11月.
    [73]葛绍岩,那鸿悦.热辐射性质及其测量[M].科学出版社,1989年.
    [74]A Guide to Integrating Sphere Theory and Applications[Z]. Techguide.
    [75]D. Bergstrom, A. Kaplan, J. Powell. Laser Absorption Measurements in Opaque Solids[Z].
    [76]Hongsong Li, Kenneth E. A Practical, Comprehensive Light Reflection Model[Z]. Torrance. Citeseer(2005).
    [77]J. M. Lee, K. G. Watkins. Laser removal of oxides and particles from copper surfaces for microelectronic fabrication[J]. Optics Express Special focus issue, Vol.7, No.2, pp 69-76, 2000.
    [78]Ursu I., Apostol I., Craciun D., et al. On the influence of surface condition on air plasma formation near metals irradiated by microsecond tea CO2 laser pulses[J]. J. Phys. D:Appl. Phys.,17, p709,1984.
    [79]Max Born, Emil Wolf. Principles of Optics:Electromagnetic Theory of Propagation, Interference and Diffraction of Light, Seventh (Expanded) Edition[M]. Cambridge University Press in 1999.
    [80]David Bergstrom. The Absorption of Laser Light by Rough Metal Surfaces[D]. Mid Sweden University, Sweden,2008.
    [81]William P. Latham and Jorge E. Beraun. Laser effects research and modeling to support high energy laser system Proc[J]. SPIE Vol.4376,2001.
    [82]贺佳,谭福利,赵剑衡.强激光辐照金属材料烧蚀效应的数值模拟[J].强激光与粒子束,2009.
    [83]中国腐蚀与防护学会.金属高温氧化和热腐蚀[M].北京:化学工业出版社,2003.4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700