用户名: 密码: 验证码:
可加工氟闪石玻璃陶瓷反应析晶法制备、析晶机理及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
提出了一种制备可加工氟闪石玻璃陶瓷的新工艺-反应析晶法:将合成氟云母晶体粉末直接与普通钠钙玻璃粉末混合,烧结制备成氟闪石玻璃陶瓷。与传统的熔融法和烧结法不同的是,玻璃陶瓷中的氟闪石晶体不是从母相玻璃中析出,而是在烧结过程中通过氟云母和玻璃间的反应析出。新工艺不仅简化了玻璃陶瓷的制备工艺,降低了生产成本,还能对废玻璃回收利用,是一项极有潜力的氟闪石玻璃陶瓷的制备新工艺。
     采用X射线衍射、扫描电镜和能谱仪等方法对氟闪石反应析晶机理、反应析晶影响因素、氟闪石玻璃陶瓷烧结机理、玻璃陶瓷组织和性能间的关系以及工艺参数对玻璃陶瓷性能的影响进行了系统研究。
     在烧结过程中,氟闪石晶体的形成由反应析出和长大两步组成。氟云母类型对氟闪石反应析晶有影响,玻璃类型对氟闪石反应析晶影响不大。氟闪石反应析晶量是氟云母加入量的一倍,反应析晶式为: KMg_3AlSi_3O_(10)F_2 + CaO + Na_2O + 5SiO_2→KNa_2CaAlMg_3Si_8O_(22)F_2提出了氟云母向氟闪石转变的晶体学模型。在氟闪石晶体反应析出阶段,玻璃中的NaO、CaO通过扩散进入氟云母晶体,使氟云母晶体中硅氧四面体平面网断裂形成硅氧四面体双链,导致氟云母晶体转变成氟闪石晶核;同时钾、镁、氟等元素从氟云母晶体向其周围玻璃中扩散促使玻璃的无规网络结构断开,导致玻璃中的硅氧四面体以链状形式在氟闪石晶核上析晶。在氟闪石晶体长大阶段,氟闪石晶体反应析出停止,氟闪石晶体含量不变,晶粒数量减少,晶粒平均直径与等温时间立方根成正比。氟闪石晶体通过小晶粒溶解重新在大晶粒上析出的方式长大,长大规律服从Ostwald熟化机制。氟云母加入量对反应析晶有很大影响,加入量小于20wt%,形成透辉石,加入30 wt%~40wt%,形成氟闪石,加入60wt%,氟云母和氟闪石共存,加入80wt%,大量的氟云母保留下来,仅有少量氟闪石形成。反应析晶产物受晶体中Si/O摩尔比控制,氟云母加入量影响了玻璃陶瓷中的玻璃含量,进而改变了进入氟云母晶体中的氧含量,导致晶体中Si/O摩尔比发生变化。氟闪石玻璃陶瓷烧结致密化主要是通过玻璃相的粘性流动来实现,加入氟云母晶体会阻碍玻璃相粘性流动,玻璃陶瓷相对密度随氟云母加入量增多而下降。提高烧结温度有助于改善玻璃陶瓷密度,但不能完全致密化。存在一适宜的烧结温度范围,在此温度范围内烧结可得到较高的密度。不同氟云母加入量的玻璃陶瓷的烧结温度范围不同,随氟云母加入量增加而提高。氟云母加入量小于50wt%,烧结机制为粘性流动烧结,在此范围内,氟云母加入量与玻璃陶瓷相对密度存在定量关系。
     氟云母加入量对氟闪石玻璃陶瓷的钻孔速率影响很大,其它工艺参数的影响较小,工艺参数对玻璃陶瓷力学性能的影响不同。通过方差分析,确定的氟闪石玻璃陶瓷最佳制备工艺为:30 wt%~35 wt%氟云母,玻璃粉粒度130目~150目,素坯成型压力150 MPa~200MPa,860℃~900℃烧结2h,按此工艺制备的氟闪石玻璃陶瓷具有良好的机械加工性和较高的力学性能,用普通的机械加工设备可以进行车削、钻孔、攻丝和铣削加工,能够车削出壁厚0.8mm的零件和完整的螺纹。
A novel route-reactive crystallization technology, directly mixing fluormica crystals with soda-lime glass powder and sintering, was proposed to fabricate machinable fluoramphibole glass-ceramics. The new technique is different from the traditional routes: melting and crystallizing and sintering crystallization, fluoramphibole crystals in the glass-ceramics were formed via a reaction between fluormica and glass powder during sintering process instead of a precipitation from parent glass. Therefore, not only the procedure of glass-ceramic preparation was simplified and the production cost was reduced, but also the recycled glass was utilized too, the new technique is a promising and potential route for fabricating fluoramphibole glass-ceramics.
     The mechanism of reactive crystallizing, the effects on the behaviors of reactive crystallizing, the mechanism of sintering, the correlation between microstructures and properties of glass-ceramics and the effects of processing parameters on the properties of glass-ceramics were systematically investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX).
     During sintering process, the formation of fluoramphibole crystals consists of two steps: precipitation by the reactive crystallizing and growth. The types of fluormica crystals have a considerable effect on the reactive crystallization of fluoramphibole, and the types of glasses have no effect on it. The content of fluoramphibole crystal by the reactive crystallizing was double one of fluormica addition, the reactive crystallizing formula was as follow: KMg_3AlSi_3O_(10)F_2 + CaO + Na_2O + 5SiO_2→KNa_2CaAlMg_3Si_8O_(22)F_2
     A crystallography model describing the transformation from fluormica into fluoramphibole was proposed. During the precipitation of fluoramphibole crystals by the reactive crystallizing, the diffusion of Na2O and CaO from glass into fluormica results in the break of [SiO4]4- tetrahedron sheet structure of fluormica crystal, this makes the sheet structure change into a double chain [SiO4]4- tetrahedron structure and fluormica crystal into fluoramphibole crystal. At the same time, the diffusion of K, Mg, F from fluormica crystal to glass also makes the silicate network of the glass be broken, this facilitates [SiO4]4- tetrahedron in glass around fluormica crystal to be precipitated as a chain structure on the nuclei of fluoramphibole. During the growth of fluoramphibole crystal, the precipitation of fluoramphibole crystals stops, the content of fluoramphibole crystal remains unchangeable, the number of grain decreases continuously, and the diameter of grain is directly proportional to the cube root of isothermal time. Fluoramphibole grains grow through the dissolution of smaller grains, and then precipitation on larger grains, the mechanism of grain growth obeys the Ostwald ripening.
     The fluormica addition had a great effect on the reactive crystallization final phases, while the addition of fluormica was less than 20 wt%, diopside was formed via reactive crystallization; 40 wt% fluormica was added, fluoramphibole was formed; fluormica and fluoramphibole coexisted in compact with 60 wt% fluormica addition; a large amount of fluormica remained unchangeable and only a few of fluoramphibole was formed while 80 wt% fluormica addition. The reactive crystalline final phases are controlled by the O/Si mole ratio in crystals, the fluormica addition has an effect on the glassy phase content in the glass-ceramics, and which affects in turn the oxygen content migrated from glass into fluormica crystal, and finally this results in the change of the O/Si mole ratio in crystals. The densification of fluoramphibole glass-ceramics is mainly achieved by the viscous flow of the glassy phase during the sintering process. The addition of fluormica inhibited the viscous flow of the glassy phase, the relative densities of glass-ceramics decreased with increasing the fluormica content. Raising sintering temperature could improve the densification of glass-ceramics, however, a full densification couldn’t be achieved in the glass-ceramics containing fluormica crystals. A suitable sintering temperature range existed at which the higher densities of glass-ceramics can be obtained. The temperature range for each of the glass-ceramics with different fluormica content was different, and it increased with increasing fluormica content. While the addition of fluormica was less than 50 wt%, the sintering mechanism was a viscous flow one. In this range of fluormica content, there is a quantitative relationship between the fluormica addition and the relative density of glass-ceramic.
     The fluormica addition had a considerable effect on the drilling speed, and other processing parameters had small effect on it. The processing parameters had different effects on the mechanical properties of fluoramphibole glass-ceramics. The optimal processing parameters for fabricating fluoramphibole glass-ceramics obtained by the analysis of variance are listed below: 30 wt%~35 wt% fluormica additions, the size of 100 mesh~130 mesh for the glass particles, the forming pressure of 150MPa~200MPa for the green compact, the sintering temperature of 860℃~900℃and the firing time of 2 hours. The glass-ceramics fabricated by these optimal processing parameters had good mechanical properties and machinability, they could be turned, drilled, tapped and milled using ordinary metal working tools, and components with a thin wall thickness 0.8 mm and intact screws could be machined .
引文
[1] P. F. James. Glass ceramics: New compositions and uses, J. Non-Cryst. Solids, 1995, 181(1-2 ): 1-15
    [2] P. D. Sarkisov, N. Y. Mikhailenko, L. A.Orlova. Glass Ceramic Materials in the context of contemporary material science, Glass Ceram., 2003, 60 (9): 261-265
    [3] Y.H.Yun, S.D.Yun, H.R.Park, et al. Preparation ofβ-wollastonite glass-ceramics, J. Mater. Syn. Proc., 2002,10 (4): 205-209
    [4] M.L. ?ve?oglu, B. Kuban, H. Ozer. Characterization and crystallization kinetics of a diopside -based glass-ceramic developed from glass industry raw materials, J. Euro. Ceram. Soc., 1997,17 (7): 957-962
    [5] P, H. Sinha, V. Peh, B.L. The effect of some processing parameters on the sinterability, micro- structures and properties of sintered cordierite glass ceramics, J. Mater. Proc. Tech., 1997, 63 (1-3): 604-609
    [6] E. El-Meliegy. Preparation and characterisation of low fusion leucite dental porcelain, Br. Ceram. Trans., 2003, 102(6): 261-264
    [7] D.U.Tulyaganov, M.J.Ribeiro, J.A. Labrincha. Development of glass-ceramics by sintering and crystallization of fine powders of calcium-magnesium-aluminosilicate glass, Ceram. Int., 2002, 28 (5): 515-520
    [8] Y. M. Sung. Sintering and crystallization of off-stoichiometric BaO-Al2O3-2SiO2 glasses, J. Mater. Sci., 2000, 35 (19): 4913-4918
    [9]杨觉明,张力同,周万城. BAS玻璃陶瓷的晶化行为与性能,材料研究学报,1998,12 (6):580-586
    [10] Mustafa, Emad A. A. Fluorophlogopite porcelain based on talc–feldspar mixture, Ceram. Int., 2001, 27 (1): 9-14
    [11] H. B. George. Chain silicate glass-ceramics, J. Non-Cryst. Solids., 1991, 129 (2):163-173
    [12]李湘玲,李光新,马新沛.云母微晶玻璃的裂纹愈合研究,无机材料学报,2003,18 (5):1119-1122
    [13] B. E. Yekta, S. Hasheminia, P. Alizadeh. Influence of TiO2, Cr2O3 and ZrO2 on sintering and machinability of fluorophlogopite glass ceramics, Br. Ceram. Trans., 2004, 103 (5): 235-237
    [14] B. E. Yekta, S. Hasheminia, P. Alizadeh. The effect of B2O3, PbO and P2O5 on the sintering and machinability of fluormica glass–ceramics, J. Euro. Ceram. Soc., 2005,25(6): 899-902
    [15] A. C. Fischer-Cripps. Role of internal friction in indentation damage in a mica-containing glass-ceramic, J. Am. Ceram. Soc., 2001, 84 (11): 2603-2606
    [16] B. Yu, K. Liang, S. Gu. Effect of the microstructure on the mechanical properties of CaO-P2O5-SiO2-MgO-F glass ceramics, Ceram. Int., 2003, 29 (6 ): 695-698
    [17]俞冰,梁开明,顾守仁. CaO—P2O5—MgO—SiO2一F系可切削生物微晶玻璃的制备,硅酸盐学报,2002, 30 (1): 103-106
    [18] S. Taruta, R. Obara, N. Takusagawa, et al. Effect of layer charge on chemical and physical properties of synthetic K-fluorine micas, J. Mater. Sci., 2005, 40 (21): 5597-5602
    [19] I. Akin1, G. Goller1. Effect of TiO2 addition on crystallization and machinability of potassium mica and fluorapatite glass ceramics, J. Mater. Sci., 2007, 42 (3): 883-888
    [20] G. Carl, S. Habelitz, C. Rüssel, et al. Mechanical properties of oriented mica glass ceramic. J. Non-Cryst. Solids, 1997, 220 (2-3): 291-298
    [21] B. D. Soo, N. K. Soo, C. J. Soung-Soon. Mechanical properties of mica glass-ceramics. J. Am. Ceram. Soc., 1995, 78 (5): 1217-22
    [22] D. G. Grossman. Machinable glass-ceramics based on tetresilicic mica. J. Am. Ceram. Soc., 1972, 55(9): 446-449
    [23] J. H. So, D. H. Green. Ultrasonic properties of fluorosilicate glass-ceramics at cryogenic temperatures, J. Mater. Sci., 2003, 38 (8): 2007– 2010
    [24] N. S. Bagdassarov. Viscoelastic behaviour of mica-based glass-ceramic aggregate, Phys. Chem. Min., 1999, 26 (2): 513-520
    [25] M. S. Bapna, H. J. Mueller, S. D. Campbell. Kinetic parameters for crystallization in DICOR? glass, Therm. Acta, 1996, 275 (2): 287-293
    [26] T. H?che, S. Habelitz, I. Avramov. Crystal morphology engineering in SiO2-Al2O3-MgO- K2O-Na2O-F mica glass-ceramics, Acta Mater., 1999, 47 (3): 735-744
    [27] S. Habelitz, T.H?che, R. Hergt. et. al. Microstructural design through epitaxial growth in extruded mica glass-ceramics, Acta Mater., 1999, 47 (9): 2831-2840
    [28]周俊琪,游晓红,解波.玻璃陶瓷铸造法成形形核过程的研究,铸造设备研究,1997, 5: 13-16
    [29] V. Saraswsti. Machinable mica-based glass-ceramics. J. Mater. Sci., 1992, 27 (2): 429-432
    [30] J. Tian, X. G. Cao, Y. Zhang, C. Wang. Effect of fluorine content on the crystallization of fluorsilicic mica glass, J. Mater. Sci., 2002, 37 (6): 1789-1792
    [31]乔冠军,王永兰,金志浩,等.以Ba云母为主晶相的可切削玻璃陶瓷,无机材料学报, 1996, 11 (1): 29-32
    [32] K. Greene, M. J. Pomeroy, S. Hampshire, et al. Effect of composition on the properties of glasses in the K2O–BaO–MgO–SiO2–Al2O3–B2O3–MgF2 system, J. Non-Cryst. Solids, 2003, 325 (1-3):193-205
    [33] T. Uno, T.Kasuga, K.Niihara. High-strength mica-containing glass-ceramics. J. Am. Ceram. Soc., 1991, 74 (12): 3139-3141
    [34] T. Uno, T. Kasuga. Microstructure of Mica-based nanocomposite glass-ceramics. J. Am. Ceram. Soc. 1993, 76(2): 539-541
    [35]李红,苟立,冉均国.以钙云母为主相的可切削微晶玻璃的显微结构和性能,功能材料,2001, 5: 541-542
    [36] S. Taruta, K. Mukoyama, S. S. Suzuki, K. Kitajima, N. Takusagawa. Crystallization process and some properties of calcium mica–apatite glass-ceramics, J. Non-Cryst. Solids, 2001, 296 (3): 201-211
    [37]方平安,吴召平.锂云母微晶玻璃中的晶相与显微结构演变,硅酸盐通报, 2002, 21(5): 3-7
    [38]方平安,吴召平.锂云母微晶玻璃热膨胀性能的研究,硅酸盐学报, 2002, 30 (1): 73-76
    [39] A. Gebhardt, T. H?che, G. Carl, I. I. Khodos. TEM study on the origin of cabbage-shaped mica crystal aggregates in machinable glass-ceramics, Acta Mater., 1999, 47 (17): 4427-4434
    [40]秦小梅,孙祥云,苏雷,等. ZrO2-云母复相微晶玻璃的微观组织研究,金属学报, 2003, 39 (2): 145-149
    [41]周俊琪,张敏则,王永兰.热处理工艺对一种可切削玻璃陶瓷性能的影响,热加工工艺,1997, 3: 30-31
    [42] D. S. Baik, K. S. No, J. S. Chun, H. Y. Cho. Effect of the aspect ratio of mica crystals and crystallinity on the microhardness and machinability of mica glass-ceramics. J. Mater. Proc. Tech., 1997, 67 (1-3): 50-54
    [43] A. R. Boccaccini. Machinability and brittleness of glass-ceramics, J. Mater. Proc. Tech., 1997, 65 (1-3): 302-304
    [44]田清波. SiO2-Al2O3-MgO-F系可加工玻璃陶瓷制备工艺、相变机理及性能研究,东北大学博士论文, 2002: 55-73
    [45] L.Heymann, E.Noack, L. Kaempfe. An experimental study on the influence of shear on the flow behavior, spontaneous crystallization, microstructure and mechanical properties of a fluorophlogopite glass-ceramic, Mater. Sci. Eng. A, 1995, 196 (1-2): 261-273
    [46]何峰,许超,袁坚,等. CaO-Al2O3-SiO2系统微晶玻璃的成分、结构与性能.武汉工业大学学报, 1998, 20 (2): 20-23
    [47]马新沛,李光新,沈莲,等.单轴热压加载下云母微晶玻璃的晶体定向排列,西安交通大学学报,2003,37 (7): 726-730
    [48]程慷果,万菊林,粱开明.云母微晶玻璃的热压强化和韧化,硅酸盐学报, 1998, 26 (3): 403-406
    [49] J. B. Davis, D. B. Marshall, et al. Machinable Ceramics Containing Rare-Earth Phosphates, J. Am. Ceram. Soc., 1998, 81 (8): 2169-2175
    [50] Z. J. Zhou, Z. F. Yang, Q. M. Yuan. Preparation of machinable Y-TZP/LaPO4 composite ceramics by precursor infiltration, Journal of Rare Earth., 2002, 3: 197-203
    [51] Y. L. Li, G. J. Qiao, Z. H. Jin. Machinable Al2O3/BN composite ceramics with strong mechanical properties, Mater. Res. Bull., 2002, 37 (8): 1401-1409
    [52] R. G. Wang, W. Pan, J. Chen, et al. Microstructure and mechanical properties of machinable Al2O3/LaPO4 composites by hot pressing, Ceram. Int., 2003, 29 (1): 83-89
    [53] R. G. Wang, W. Pan, J. Chen, et al. Synthesis and sintering of LaPO4 powder and its application, Mater. Chem. Phys., 2003, 79 (1): 30-36
    [54] D. B. Marshall, P. E. D. Morgan, et al. High-temperature stability of the Al2O3-LaPO4 system, J. Am. Ceram. Soc., 1998, 81 (4): 951-956
    [55] A. A. Francis, R. D. Rawlings, R. Sweeney and A. R. Boccaccini. Crystallization kinetic of glass particles prepared from a mixture of coal ash and soda-lime cullet glass, J. Non-Cryst. Solids, 2004, 33 (2): 187-193
    [56] A. Karamanov, G. Taglieri, M. Pelino. Iron-rich sintered glass-ceramics from industrial wastes, J. Am. Ceram. Soc., 1999, 82 (11): 3012-3016
    [57] R. D. Rawlings, J. P. Wu and A. R. Boccaccini. Glass-ceramics: Their production from wastes—A Review, J. Mater. Sci., 2006, 41(3): 733-761
    [58]徐景春,马鸿文.利用钾长石尾矿制备β-硅灰石微晶玻璃的研究,硅酸盐学报, 2003, 31 (2): 179-183
    [59]杨梅,邓寅生,邢学玲.煤炭固体废物烧制微晶玻璃时气孔产生的主要因素及解决方法,陶瓷学报, 2005, 26 (2): 129-132
    [60]张焕祥.黑色尾砂微晶玻璃产生色差的研究,新型建筑材料, 1995, 8: 9-14
    [61]肖汉宁,彭文琴,高荣华,等.用钢铁工业废渣制备高耐磨微晶陶瓷,陶瓷工程(增刊), 1999: 108-111
    [62]诸培南,郭景坤,杨涵美,等. Li2O-MgO-CaO-Al2O3-SiO2系微晶玻璃烧结反应形成的相关系和显微结构,玻璃与搪瓷,1994, 22 (4): 1-6
    [63] W. H?land, V. Rheinberger, M. Schweiger. Control of nucleation in glass ceramics, Philo. Trans.: Math., Phys. Eng. Sci., 2002, 361 (1804): 575-589
    [64] M. I. Budd. Sintering and crystallization of a glass powder in the MgO-Al2O3-SiO2-ZrO2 system. J. Mater. Sci., 1993, 28 (4): 1007-1014
    [65]王艳丽,沈菊云,陈学贤等.粉体烧结法制备堇青石基微晶玻璃的研究,玻璃与搪瓷, 2001, 29 (2): 18-21
    [66] K. Sujirote, R. D. Rawlings, P. S. Rogers. Effect of fluoride on sinterability of a silicate glass powder, J. Euro. Ceram. Soc., 1998, 18 (9): 1325-1330
    [67]陈禾,梁开明,顾守仁,等. CaO-Al2O3-SiO2系烧结微晶玻璃的初始相变,陶瓷研究, 1998, 13 (1): 3-6
    [68]何峰,邓志国. CaO-Al2O3-SiO2系统玻璃颗粒的烧结过程研究,硅酸盐通报,2003, 23 (1): 26-29
    [69] S. Sridharan, M. Tomozama. Toughning of glass-ceramics by both transformable and transformed zirconia, J. Non-cryst. Solids., 1995, 182 (3): 262-270
    [70]邓再德,曾惠丹,英廷照.硅灰石型烧结微晶玻璃及其应用前景,玻璃与搪瓷, 2001, 29 (1): 42-45
    [71] M. O. Prado, E. D. Zanotto. Glass sintering with concurrent crystallization, C. R. Chimie 2002, 5: 773–786
    [72] M. Ferraris, E. Verne. Viscous phase sintering of particle-reinforced glass matrix composites, J. Euro. Ceram. Soc., 1996, 16 (4): 421-427
    [73] W.Winter, Sintering and crystallization of volume- and surface-modified cordierite glass powders, J. Mater. Sci., 1997, 32 (6): 1649-1655
    [74] M. T. Shirazawa. Method of manufacturing readily machinable high strength glass ceramics, 1991, USA patent, 5061308
    [75]梁开明,程慷果,段仁官,等.云母微晶玻璃/Y-TZP复相材料的制备和力学性能,无机材料学报,1998, 13 (3): 315-319
    [76]田清波,翟玉春,王修慧,等. SiO2-Al2O3-MgO-F系玻璃陶瓷的烧结析晶(II)——粒度和成型压力对组织和性能的影响,中国陶瓷, 2001, 37 (4): 1-3
    [77] M. B. To?i, R. Z. Dimitrijevi, M. M. Mitrovi. Crystallization of leucite as the main phase in glass doped with fluorine anions, J. Mater. Sci., 2002, 37 (11): 2293-2303
    [78]李江,曹小刚,王忠义,等.烧结温度对不同粒度氟硅云母玻璃陶瓷收缩率及微观形貌的影响,实用口腔医学杂志, 2005, 21(2): 191-194
    [79]吴舜,王忠义,曹小刚,等. B2O3、P2O5对氟硅云母玻璃陶瓷烧结性能的影响,实用口腔医学杂志, 2004, 20 (2): 151-154
    [80]余舜,万隆,张世英. ZnO对烧结法制备云母微晶玻璃的影响,中国陶瓷工业, 2004, 11(6): 31-33
    [81]殷海荣,王明华,方俊.溶胶-凝胶制备Li2O-Al2O3-SiO2微晶玻璃的研究进展,硅酸盐通报, 2006, 25 (4): 146-150
    [82]陈国华,刘心宇.尖晶石玻璃复合材料的制备和性能研究,功能材料与器件学报, 2005, 11 (4): 456-460
    [83] J. J. Shyu, C. T. Wang. Effect of particle size on the sintering of Li2O-Al2O3-4SiO2 borosilicate glass composites, J. Mater. Sci., 1996, 31(21): 5603-5607
    [84] A. A. El-Kheshen, M. F. Zawrah. Sinterability, microstructure and properties of glass/ceramic composites, Ceram. Int., 2003, 29 (3): 251-257
    [85] M. F. Zawrah, E. M. A. Hamzawy, Effect of cristobalite formation on sinterability, microstructure and properties of glass/ceramic composites, Ceram. Int., 2002, 28 (2): 123-130
    [86] S. Taruta, T. Hayashi, K. Kitajima. Preparation of machinable cordierite/mica composite by low-temperature sintering, J. Euro. Ceram. Soc., 2004, 24 (10-11): 3149-3154
    [87] A. E. Shilo, E. K. Bondarev, S. A. Kukharenko. Sintering of low-melting glass powders and glass-abrasive composites, Sci. Sinter., 2003, 35 (3): 117-124
    [88] V. S. Y. Choi, J. M. Ahn. Viscous sintering and mechanical properties of 3Y-TZP reinforced LAS glass-ceramic composites, J. Am. Ceram. Soc., 1997, 80 (12): 2982-2986
    [89] R.C.C. Monteiro, M Lima. Effect of compaction on the sintering of borosilicate glass/alumina composites, J. Eur. Ceram. Soc., 2003, 23 (11): 1813-1818
    [90] K. L.Page, D. J.Duquette. The Oxidation behaviour of carbon reinforced glass matrix composites, Ceram. Int., 1997, 23 (3): 209-213
    [91] T.Seiichi, S.Hiroki, S.Masahiro and K.Kunio. Preparation and mechanical properties of machinable spinel/mica composites, J. Ceram. Soc. Jap., 2005, 113 (1314): 185-187
    [92] R. E. Dutton, M. N. Rahaman. Sintering, creep and electrical conductivity of model glass-matrix composites, J. Am. Ceram. Soc., 1992, 75 (8): 2146-2154
    [93] E. M. Hamzawy, A. A. El-Kheshen, M. F. Zawrah. Densification and properties of glass/cordierite composites, Ceram. Int., 2005, 31(3):383-389
    [94] A. R. Boccaccini, E. A. Olevsky. Processing of platelet-reinforced glass matrix composites: effect of inclusions on sintering anisotropy, J. Mater. Proc. Tech., 1999, 96 (1): 92-101
    [95]程慷果,万菊林,梁开明. TiO2对氟金云母微晶玻璃析晶行为的影响,清华大学学报(自然科学版), 1997, 37 (6): 74-77
    [96]段仁官,梁开明.玻璃分相形貌和玻璃陶瓷力学性能之间的关系,西南交通大学学报,1998,33 (1): 61-66
    [97]何莉萍,唐绍裘,杜海清.氧化钛添加量对微晶玻璃系统中晶化过程及材料性能的影响,材料科学与工艺, 1997, 15 (3): 79-82
    [98]段仁官,梁开明. CaO-Al2O3-SiO2系统玻璃晶化时首析晶相及TiO2的作用机理预测和研究,硅酸盐学报, 1997, 25 (3): 305-311
    [99]李酽,王龙伟. Al2O3·CaO·SiO2系统玻璃陶瓷的晶化及结构特征,陶瓷工程, 1998, 32 (6): 1-3
    [100] Saraswati. Additive induced crystallization of mica phase in K2O-SiO2-MgO-F glass-ceramic, J. Non-cryst. Solids., 1990, 122 (2): 111-120
    [101]赵永红,李光新,马新沛. MgO-Al2O3-SiO2系高强度微晶玻璃的晶化行为与力学性能,硅酸盐学报, 2003, 31 (4) : 413-416
    [102] E. Yu. Guseva, M. N. Gulyukin. Effect of fluoride additives on glass formation in the SiO2–CaO–Al2O3 system, Inorg. Mater., 2002, 38 (9): 962-965
    [103] S. Likitvanichkul, W. C. Lacourse. Effect of fluorine content on crystallization of canasite glass-ceramics, J. Mater. Sci., 1995, 30 (24): 6151-6155
    [104]张术根,韦奇,王大伟.以Fe2O3作晶核剂的尾矿玻璃陶瓷晶化研究,硅酸盐通报1999, 19 (4): 76-80
    [105]王开泰. CaO-Al2O3-SiO2系白色微晶玻璃中的晶相及其演变,无机材料学报,1996, 11 (2): 215-218
    [106]杜新民,沈定坤.在Ni2O3作用下钾钙铝硅玻璃的核化机理,玻璃与搪瓷,1992, 20 (5): 11-15
    [107] E .M. A. Hamzawy, H. Darwish. Crystallization of sodium fluormica Na (Mg, Zn,Ca)2.5Si4O10 F2 glasses, Mater. Chem. Phys., 2001, 71(1):70-75
    [108]田清波,王玥,尹衍升.氧化锆含量对SiO2-MgO-Al2O3-K2O-ZrO2-F玻璃析晶性能的影响,硅酸盐学报, 2005, 33 (2): 245-248
    [109] M. Goswami, A. Sarkar, T. Mirza. Study of some thermal and mechanical properties of magnesium aluminium silicate glass ceramic, Ceram. Int., 2002, 28 ( 6): 585-592
    [110] K. G. Cheng, J. L. Wan, K. M. Liang. Crystallization of R2O–MgO–Al2O3–B2O3–SiO2–F (R=K+, Na+) glasses with different fluorine source, Mater. Lett., 2001, 47 (1-2): 1-6
    [111] G. J. Qiao, Y. L. Wang, Z.h. Jin, et al. Mechanical and environmental factors in the cyclic and static fatigue of a machinable glass-ceramic. Int. J. Fat., 1996, 18 (8): 523-527
    [112]田清波,翟玉春,王修慧,等. SiO2-MgO-Al2O3-F系玻璃陶瓷的析晶,材料科学与工程,2001, 19 (2): 66-68
    [113]黄文山,褚培南.锂云母型微晶玻璃晶化过程中显微结构的变化,硅酸盐学报, 1983, 11 (4): 430-433
    [114]陈伟民,陈楷,陈扬枝. K2O-MgO-SiO2-CaF2微晶玻璃的晶相演变规律,无机材料学报1998, 13 (5): 725-727
    [115]李红,冉均国,苟立. CaO-MgO-Al2O3-SiO2-F系可切削微晶玻璃的晶化机理研究,材料科学与工程, 2002, 20 (1): 28-31
    [116]刘世权,许淑惠,袁怡松,等. Na2O-ZnO-CaO-Al2O3-SiO2烧结微晶玻璃的试制,玻璃与搪瓷,1995, 23 (6): 5-8
    [117]赵前,汤李缨. Na2O和K2O对CaO-Al2O3-SiO2-RO2-ZnO红色微晶玻璃若干性能的影响,硅酸盐通报,1998, 17 (6): 21-24
    [118] J. J. Shyu, H. H. Lee. Sintering, crystallization, and properties of B2O3/P2O5-doped Li2O?Al2O3?4SiO2 glass-ceramics, J. Am. Ceram. Soc., 1995, 78 (8): 2161-2167
    [119] S. Likitvanichkul, W. C. Lacourse. Apatite–wollastonite glass-ceramics part I Crystallization kinetics by differential thermal analysis, J. Mater. Sci., 1998, 33 (24): 5901-5904
    [120] R. Keding, C. Rüssel. Electrochemical nucleation for the preparation of oriented glass ceramics, J. Non-Cryst. Solids, 1997, 219: 136-141
    [121] K. Ralf, S. D?rte, R. Christian. Oriented fluororichterite/diopside glass-ceramics prepared by electrochemically induced nucleation, J. Non-cryst. Solids, 2001, 283 (1-3): 137-143
    [122] G. von der G?nna, K. Ralf, C. Rüssel. Oriented growth of mullite from a glass melt using electrochemical nucleation, J. Non-Cryst. Solids, 1999, 243 (2-3): 109-115
    [123] R. Keding. Oriented strontium fresnoite glass-ceramics prepared by electro-chemically induced nucleation, J. Mater. Sci., 2004, 39 (4): 1433-1435
    [124]王培铭.无机非金属材料学,上海,同济大学出版社, 1999, 234-240
    [125] G .E. Harlow, S. S. Sonrenson,于海侠.玉:产状及交代作用成因,岩石矿物学杂志, 2002, 21(增刊): 120-123
    [126]吴瑞华,李雯雯,白峰.新疆和田玉岩石学特征及其扫描电镜研究,岩石学报,1999, 4:638-644
    [127]高雅春,耿谦.透闪石的结构特征及其在釉面砖生产中的作用,陶瓷,2003, 3: 47-49
    [128]朱云海,陈能松,王国灿,等.东昆中蛇绿岩中单斜辉石、角闪石矿物成分特征及及岩石学意义,地球科学—中国地质大学学报, 1997, 22 (4): 363-368
    [129] D. Y. Pushcharovskil, Y. S. Lebedeva, I. V. Pekov, et al. Crystal structure of magnesioferrikatophorite, Crystal. Reports, 2003, 48 ?(1): 16-24 ?
    [130]唐延龄,刘德权,周汝洪.论透闪石玉命名及分类,矿物岩石, 1998, 18 (4): 17-21
    [131]廖任庆,朱勤文.中国各产地软玉的化学成分分析,宝石和宝石学杂志,2005, 7 (1): 25-30
    [132]翁臻培,张庆麟.软玉猫眼的新发现,上海大学学报(自然科学版), 2001, 7 (2): 137-141
    [133]卢保奇,亓利剑,夏义本,等.四川软玉(透闪石玉)猫眼的矿物学研究,岩石矿物学杂志,2004, 23 (3): 268-272
    [134]冯晓燕,张蓓莉.青海软玉的成分及结构特征,宝石和宝石学杂志, 2004, 6 (4): 7-9
    [135] IMA—CNMMN角闪石专业委员会全体成员.角闪石命名法—国际矿物学协会新矿物及矿物命名委员会角闪石专业委员会的报告,岩石矿物学杂志,2001, 20 (1): 84-100
    [136]樊先平,洪樟连,翁文剑.无机非金属材料科学基础,杭州,浙江大学出版社, 2004: 30-74
    [137]程贤春,石萍.透闪石瓷质外墙砖研制及反应机理探讨,装饰装修材料, 1998, 6: 33-34
    [138]王献忠.透闪石在工艺美术陶瓷中的应用,萍乡高等专科学校学报, 2002, 4: 48-50
    [139]陈国安.透闪石作陶瓷原料的试验研究,矿产保护与利用, 1998, 1: 23-24
    [140]颜国庆.新型陶瓷原料——透闪石,萍乡高等专科学校学报, 1996, 4: 45-47
    [141]王秀峰,苏良赫.透闪石质和透辉石质锦砖饶成机理分折,陶瓷,1994, 5: 10-13
    [142]汪济奎.一种新型的填料透闪石在HDPE中的应用研究,塑料技术, 1995, 2: 1-4
    [143]高歌,钦曙辉,马荣堂,陈桂芬. ABS/透闪石复合材料的研究,高分子材料科学与工程,1998,14 (1): 114-116
    [144]闰高发.微粉透闪石在耐油海绵胶料中的应用,特种檬胶制品,1999,20 (5): 32-36
    [145]孙传敏.用天然矿物透闪石制备硅酸钙镁晶须,成都理工大学学报(自然科学版), 2005, 32 (1): 65-71
    [146] N. K. Bozhiilov, D. M. Jenkins, D. R. Veblen. Pyribole evolution during tremolite synthesis from oxides, Am. Min., 2004, 89 (1): 74-84
    [147] J. Najorka, M. Gottschalk. Crystal chemistry of tremolite-tschermakite solid solutions, Phys. Chem. Min., 2003, 30 (2): 108-124
    [148] H. Yang, J Konzett, C.T. Prewitt, et al. Single-crystal structure refinement of synthetic M4K-substituted potassic richterite, K(KCa)Mg5Si8O22(OH)2, Am. Min., 1999, 84 (4): 681-684
    [149] M. Lupulescu. Studies of New York amphiboles, Roc. Min., 2004,79: 257-259
    [150] W. E. Stephens. Polycrystalline amphibole aggregates (clots) in granites as potential I-type restite: an ion microprobe study of rare-earth distributions, Austral. J. Earth Sci., 2001, 48: 591-601
    [151] D. M. Quirion, D. M. Jenkins. Dehydration and partial melting of tremolitic amphibole coexisting with zoisite, quartz, anorthite, diopside, and water in the system H2O-CaO-MgO- Al2O3-SiO2, Contrib. Min. Petrol., 1998, 130: 379-389
    [152] A. Gianfagna, R. Oberti. Fluoro-edenite from Biancavilla (Catania, Sicily, Italy): Crystal chemistry of a new amphibole end-member, Am. Min., 2001, 86 (11/12): 1489-1493
    [153] J. L. Robert, V. G. Della. The OH-F substitution in synthetic pargasite at 1.5 kbar, 850℃. Am. Min., 2000, 85 (7/8): 926-931
    [154] M. Gottschalk, M. Andrut. Structural and chemical characterization of synthetic (Na,K)-richterite solid solutions by EMP, HRTEM, XRD and FTIR spectroscopy. Phys. Chem. Min., 1998, 25 (2): 101-111
    [155] M. Andrut, M. Gottschalk, S. Melzer, et al. Lattice vibrational modes in synthetic tremolite-Sr-tremolite and tremolite-richterite solid solutions, Phys. Chem. Min., 2000, 27 (5): 301-309
    [156] J. L. Robert, V. G. Della. Near-infrared study of short-range disorder of OH and F in monoclinic amphiboles, Am. Min., 1999, 84 (1/2): 86-91
    [157] M. D. Welch, S. Liu, J. Klinowski. 29Si MAS NMR systematics of calcic and sodic-calcic amphiboles, Am. Min., 1998, 83 (1/2): 85-96
    [158] A. Sharma. Experimentally derived thermochemical data for pargasite and reinvestigation of its stability with quartz in the system Na2O-CaO->MgO-Al2O3-SiO2-H2O, Contrib. Min. Petrol., 1996, 125 (2/3): 263-275
    [159] I. L. Denry, J. A. Holloway. Effect of magnesium content on the microstructure and crystalline phases of fluoramphibole glass-ceramics, J. Biomed. Mater. Res. (Appl Biomater) 2000,53: 289-296
    [160] I. L. Denry, J. A. Holloway. Effect of sodium content on the crystallization behavior of fluoramphibole glass–ceramics, J. Biomed. Mater. Res., (Appl Biomater) 2002, 63 (1): 48-52
    [161] M. Mirsaneh, I. M. Reaney, P. V. Hatton, et al. Characterization of high-fracture toughness K-fluorrichterite-fluorapatite glass ceramics, J. Am. Ceram. Soc., 2004, 87 (2): 240-246
    [162] M. Mirsaneh, I. M. Reaney, P. F. James, et al. Effect of CaF2 and CaO substituted for MgO on the phase evolution and mechanical properties of K-fluorrichterite glass ceramics, J. Am. Ceram. Soc., 2006, 89 (2): 587-595
    [163] I. L.Denry, J. A. Holloway. Elastic constants, Vickers hardness, and fracture toughness of fluorrichterite-based glass–ceramics, Dental Mater., 2004, 20 (3): 213-219
    [164]马新沛,李光新,沈莲.低熔点可切削微晶玻璃的组织和性能,无机材料学报, 2000, 15 (2): 365-370
    [165] Norman M. P. Low. The effects of temperature, pressure and water on the preparation of glass-mica composite material, J. Mater. Sci., 1980, 15 (10): 2497-2507
    [166] Norman M. P. Low. Fabrication of cellular structure composite material from recycled soda-lime glass and phlogopite mica powders, J. Mater. Sci., 1980,15(6): 1509-1517
    [167] T. Yamaguchi, F. Kuniyoshi, K. Kitajima. Grinding effects of host crystals on formation and properties of titania pillared fluorine micas, J. Mater. Sci., 1999, 34 (14): 3685-3693
    [168] T. T. King, W. Grayeski, R. F. Cooper. Thermochemical reactions and equilibria between fluoromicas and silicate matrices: A petromimetic perspective on structural ceramic composites, J. Am. Ceram. Soc., 2000, 83 (9): 2287-2296
    [169]饶东升.硅酸盐物理化学,北京,冶金工业出版社, 980: 21-24
    [170] A.I. Berezhnoi, A.S. Krasnikov. A Method for determining the quantitative content of phases in glass Ceramics, Glass Ceram., 2004, 61(5-6): 180-182
    [171]林金辉.多相体系中非晶态二氧化硅的X射线衍射定量分析,矿物岩石,1997, 17 (4): 22-25
    [172]刘新波.含非晶质混合物相的X射线衍射定量分析方法研究,海洋地质与第四纪地质,1996, 16 (2): 111-118
    [173] G. H. Beall. Design and properties of glass-ceramics, Annu. Rev. Mater. Sci., 1992, 22: 91-119
    [174] Kawai, A. Yanakava. Machinability of high-strength porous silicon nitride, J. Ceram. Soc. Jap., 1998, 106 (11): 1135-1139
    [175] J. J. Shyu, M. T. Chiang. Sintering and phase transformation in B2O3/P2O5-doped Li2O?Al2O3?4SiO2 glass-ceramics, J. Am. Ceram. Soc., 2000, 83 (3): 635-638
    [176] P. P?curariu, D. Li??, R. I. Laz?u, et al. Kinetics of crystallization processes in some glass ceramic products, J. Therm. Anal. Cal., 2003, 72 (3): 823-830
    [177] C. Leonelli, T. Manfredini, M. Paganelli, et al. Crystallization of some anorthite-diopside glass precuersors, J. Mater. Sci., 1991, 26 (18): 5041-5046
    [178] G. D. Ventura, J. L. Robert, J. Sergent, et al. Constraints on F vs. OH incorporation in synthetic
    [6]Al-bearing monoclinic amphiboles, Euro. J. Min. 2001, 13 (5): 841-847
    [179] R. W. Luth. Experimental study of the system phlogopite-diopside from 3.5 to 17GPa. Am. Min., 1997, 82 (11-12): 1198-1209
    [180]戴金辉,葛兆明.无机非金属材料概论,哈尔滨,哈尔滨工业大学出版社,1999: 15-18
    [181] A. B.Laura, F. C. Reid. Reaction-layer interfaces in SiC-fiber-reinforced glass-ceramics: A high-resolution scanning transmission electron microscopy analysis, J. Am. Ceram. Soc.,1990, 73 (10): 2916-2921
    [182] A. Stamboulis, R.G. Hill, R.V. Law. Structural characterization of fluorine containing glasses by 19F, 27Al, 29Si and 31P MAS–NMR spectroscopy, J. Non-Cryst. Solids, 2005, 351 (40 -42): 3289-3295
    [183] J. W.马丁, R. D.多尔蒂,李新立译.金属中显微结构的稳定性,北京,科学出版社, 1984: 161-201
    [184] R. Müller, A. Abu-Hilal, L, S. Reinsch. Coarsening of needle-shaped apatite crystals in SiO2 ? Al2O3 ? Na2O ? K2O ? CaO ? P2O5 ? F glass, J. Mater. Sci., 1999, 34 (1): 65-69
    [185]章为夷.等温球化处理过程中球状碳化物的Ostwald长大现象,材料科学与工艺, 1993, 1 (4): 44-48
    [186] F. S. Shiau, T. T. Fang, T. H. Leu. Effect of particle-size distributio on the microstructural evolution in the intermediate stage of sintering, J. Am. Ceram. Soc., 1997, 80 (2): 286-290
    [187] D. U. Tulyaganov, M. J. Ribeiro, J. A. Labrincha. Development of glass-ceramics by sintering and crystallization of fine powders of calcium-magnesium-aluminosilicate glass, Ceram. Int., 2002, 28 (5): 515-520
    [188] A. R. Boccaccini. Sintering of glass matrix composites containing Al2O3 platelet inclusions, J. Mater. Sci., 1994, 29 (16): 4273-4278
    [189] A. A. El-Kheshen. Effect of alumina addition on properties of glass/ceramic composite, Br. Ceram. Trans., 2003, 102 (5): 205-209
    [190]章为夷.利用废玻璃制备建筑用微晶玻璃板材的方法,中国发明专利,ZL200410104277.5,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700