用户名: 密码: 验证码:
Ti基多孔材料的制备及基础应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:本论文的研究目的是结合工业应用需要,为提高材料的过滤通量和过滤精度,分别制备了大通量和梯度孔径TiAl金属间化合物多孔材料,并采用多种手段对TiAl金属间化合物多孔材料的孔结构性能、力学性能和抗腐蚀性能进行了深入研究。为提高多孔材料的抗腐蚀性能,制备了一种新型的Ti3AlC2金属陶瓷多孔材料,结合热力学计算,推测出Ti.A1.C各元素的反应扩散途径。重点考察了Al含量和烧结温度对制备Ti3AlC2金属陶瓷多孔材料的影响,探讨了Ti3A1C2多孔材料反应合成的孔隙形成机制。最后,将TiAl金属间化合物多孔材料成功地应用于粗TiCl4原料的固液分离过程,建立了TiCl4错流过滤模型。本研究的主要内容和获得的结论如下:
     分别以碳酸铵和尿素为造孔剂,制备了大通量TiAl金属间化合物多孔材料。研究了造孔剂含量对TiAl金属间化合物多孔材料孔径、透气度、孔隙率及体积膨胀率之间的影响。建立了TiAl金属间化合物多孔材料的孔隙度θs与造孔剂含量w,以及多孔材料的透气度和孔结构参数之间的关系式。定量研究了TiAl金属间化合物多孔材料孔隙率θ与抗拉强度σh的关系,满足巴尔申方程σb=Kσ0(1-θ)m。
     以不同粒度的Ti.Al元素混合粉为原料制备了不同孔径的TiAl金属间化合物多孔材料基体。随原料颗粒粒度增大,材料孔径和透气度亦增大。然后在基体表面喷涂,制备出梯度孔径TiAl金属间化合物多孔材料,研究了基体孔径与喷膜粒子粒径的匹配性,并建立了多孔基体表面孔内粉末堆积状态模型。以实验模型计算,当覆膜粒径D50≈(√2-1)dm,(dm为基体最大孔径)时,其透气度下降率为64.6%,与实验结果透气度真实下降率63%较为接近。进一步研究了膜层厚度对TiAl膜孔结构参数的影响,测试了膜层与基体的结合强度,结果显示可承受8MPa的冲击力,满足工业应用要求。
     以TiH2.Al、石墨为原料制备了Ti3AlC2金属陶瓷多孔材料,研究了Al含量对Ti3AlC2多孔材料物相组成及孔结构性能的影响。将TiH2:A1:石墨原料粉末按照原子比为3:n:2进行配比(n=0.7,0.8,0.9……1.4),随Al含量增大,其杂质峰TiC随Al含量呈现先减小后增大趋势,变化趋势与孔径和透气度一致。研究了Ti3AlC2金属陶瓷多孔材料孔隙形成机制。第一阶段为反应生成TiAl金属间化合物(主要物相组成为Ti3Al,TiAl),此时,孔隙率保持增长,而最大孔径和透气度几乎维持不变。第二阶段为TiC与TiAl、Ti3Al反应生成Ti3AlC2。此时,TiC会扩散进入TiAl金属间化合物中,TiC偏离原位,孔隙形成;同时,TiC进入TiAl金属间化合物后,原始TiAl金属间化合物体积会增大,进而挤压原来形成的孔隙,出现孔径和透气度减小而孔隙率增加的现象。当TiC完全扩散入TiAl金属间化合物后,TiC偏移原位起主要作用时,孔径、透气度和孔隙率都增加。研究了烧结温度对Ti3AlC2多孔材料孔隙的影响,发现孔隙增长主要由TiH2分解、Kirkendall偏扩散和最终相Ti3AlC2的转变过程有关。
     本研究制备的TiAl金属间化合物多孔材料在工业生产中成功地实现了粗TiCl4原料的固液分离。以TiAl金属间化合物多孔材料为过滤介质,结合过滤-反冲及反向过滤技术可以完全实现长期的密封式连续过滤粗TiCl4原料液过程,大幅度减轻或避免原料的损失和严重的环境污染,同时,TiAl金属间化合物多孔滤芯具有长期稳定的高通量和高过滤精度。以Altmann模型为依据,通过对边界层悬浮颗粒进行受力分析,计算出颗粒的临界沉降粒径为4.6-5.2μm,经试验验证,选用平均孔径为3.5μm的TiAl膜过滤材料效果最佳。结合Darcy定律,建立了TiCl4工业错流过滤模型。计算出膜孔堵塞阶段膜面阻力Rm=3.00×1011m-1,滤饼形成阶段膜面阻力Rc=1.73×1011m-1。对滤饼层固体颗粒进行清洗及再生,研究发现,反向过滤可以明显提高TiAl多孔材料的渗透通量。而采用化学清洗方式,其渗透通量可达到1.202m3/m2·h,效果最好。
Abstract:Previous works for fabricating porous TiAl intermetallics by Kirkendall have been reported.For industrial application requirements, high permeate flux porous TiAl and gradient pore size TiAl intermeallics were fabricated.The pore structure properties,mechanical properties and environment corrosion resistivities were further investigated by various advanced testing methods.In order to enhance the corrosion resistance performance of porous material,a novel porous Ti3AlC2ceramic was fabricated.A thermodynamic estimation method was proposed to speculate the reaction diffusion path of Ti,Al and C.The effects of Al content and reactive sintering temperature on porous Ti3AIC2ceramics, and pore forming mechanism were taken into consideration.Finally, the porous TiAl intermetallics were successfully applied in the solid-liquid separation of suspended TiCl4raw liquid in industry production procedure.More details were given as follows.
     High permeate flux porous TiAl intermetallics were fabricated by space-holder of ammonium carbonate and urea, independently. The effect of space-holder addition amount on pore size,permeability, porosity and volume expansion were investigated systematically. According to the mass conservation law, the relation of porosity θS and space-holder amount w was established,and the relationships between permeability and pore structure parameters were investigated as well.The tensile strength of porous TiAl σb and porosity θ match the БaлъщиH equation σb=Kσ0(1-θ)m.
     Different pore size TiAl substrates were fabricated by powder metallurgy technique with different particle size of Ti,Al elemental powder. The results indicated that the pore size and permeability were increasing with particle size increase.The gradient porous TiAl intermetallics were prepared through spraying fine Ti/Al powders on porous TiAl substrate surface,and then the samples were sintered in vacuum furnace.The pore size of substrate and the particle size of powders were the main factors for the matching of substrate.The powder piling model was proposed to simulate the spraying membrane process, the result revealed that when the particle size D50≈(√2-1)dm,the decrease rate was64.6%,which was approximate to the experimental data63%.The relations between membrane thickness and pore structure parameters were considered. The porous TiAl membrane with uniformly pores, narrow pore size distribution has a metallurgical bonding with matrix, and can withstand8MPa impact force, which is satisfied the industrial demand.
     Porous Ti3AlC2was fabricated through reactive synthesis technique with TiH2, Al and graphite. The effect of Al content on the phase constitution and pore structure parameters was discussed. The phase TiC firstly decreased and then increased with increase of Al content, while the variation of pore size and permeability showed contradictory trends to that of TiC alteration. The pore forming mechanism is as follows:
     (1)At first, TiAl was formed previously by Ti and Al, during this stage, the permeability increased, while the pore size and permeability remained largely unchanged.
     (2) During the second stage, Ti reacted with C to synthesis TiC, and then TiC will diffuse into TiAl alloy to yield Ti3AlC2.With more and more TiC diffusing into TiAl, TiC will deviate its original position, the porosity will increase. At the same time, with TiC diffusing into TiAl, the volume of original TiAl could expand, that will extrude the pores produced by Kirkendall effect, so, the pore size and permeability decreased. When TiC diffused into TiAl completely, the effect of diffusion is the main factor, then the pore size and permeability increased as well.
     Finally, the fabricated porous TiAl intrmetallics material was successfully applied to the solid-liquid separation of suspended TiCl4raw liquid in industry procedure. The sealed, continuous and long-term filtration procedure was realized using the filtration-backwash technology and porous TiAl intrmetallics tubes as filtration elements, which can alleviate dramatically or even avoid raw material loss and severe environment pollution. The filtration tubes exhibited long-term,stable and high flux and filtration accuracy.
     The deposition characteristic can be described by the forces balance of a particle in the immediate vicinity of the membrane or cake layer given by Altmann and Ripperger, and the calculated particle deposition size is4.6-5.2μm.Membrane with average pore size of3.5μm was selected for TiCl4filtration.
     According to Darcy equation, the process of filtration is divided into two stages:at the initial stage of filtration, the particles which are equal to the pore size rush into pore quickly, causing the porosity of membrane decreases, filtration resistance increases and filtration flux decreases as well.At the second stage, fine particles are deposited at the membrane even for high cross-flow velocity and contribute to cake layer formation. During the pore-blocking stage, the membrane resistance is3.00×1011m-1. Compared with all these physical methods, the adhesive force binds particles together and makes cake layer strong and dense that reverse filtration is an effective method to remove cake layer. However, chemical cleaning method is a better method for the alternative, the flux grew quickly and reached a steady state of1.202m3/m2·h.
引文
[1]R. Faiz, K. Li. Olefin/paraffin separation using membrane based facilitated transport/chemical absorption techniques [J]. Chem. Eng. Sci.,2012,73:261-284.
    [2]D.L. Gin, R.D. Noble. Designing the next generation of chemical separation membranes [J]. Science,2011,332:674-676.
    [3]L. Zeng, C. Gao. The prospective application of membrane distillation in the metallurgical industry [J]. Membrane Technology,2010,2010:6-10.
    [4]I. Sires, E. Brillas. Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies:a review [J]. Environ. Int.,2012,40:212-229.
    [5]R. Baker. Membrane technology and applications [M], John Wiley & Sons,2012.
    [6]I. Tokarev, S. Minko. Stimuli-Responsive Porous Hydrogels at Interfaces for Molecular Filtration, Separation, Controlled Release, and Gating in Capsules and Membranes [J]. Adv. Mater.,2010,22:3446-3462.
    [7]D.F. Sanders, Z.P. Smith, R. Guo, et al., Energy-efficient polymeric gas separation membranes for a sustainable future:A review [J]. Polymer,2013,54:4729-4761.
    [8]S. Garaj, W. Hubbard, A. Reina, et al., Graphene as a subnanometre trans-electrode membrane [J]. Nature,2010,467:190-193.
    [9]A.L. Ahmad, W.A. Harris, B.S. Ooi. Removal of dye from wastewater of textile industry using membrane technology [J]. Jurnal Teknologi,2012,36:31-44.
    [10]D. Rana, T. Matsuura, S. Sourirajan. Physicochemical and engineering properties of food in membrane separation processes [J]. Engineering Properties of Foods, 2010,381-460.
    [11]余翔.膜技术的应用[J].科技信息(科学教研)2007,32:305.
    [12]徐又一,徐志康.高分子膜材料[M].北京:化学工业出版社,2005.
    [13]时均,袁权,高从增.膜技术手册[M].北京:化学工业出版社,2001.
    [14]刘培生.多孔材料引论[M].清华大学出版社,2004.
    [15]S. Chou, L. Shi, R. Wang, et al., Characteristics and potential applications of a novel forward osmosis hollow fiber membrane [J]. Desalination.2010,261: 365-372.
    [16]M.A. Goulet, R.M. Khorasany, C. De Torres, et al., Mechanical Properties of Catalyst Coated Membranes for PEM Fuel Cells [J]. J. Power Sources,2013, 234:38-47.
    [17]D. Horvath, K. Berkesi, K. Varga, et al., Development and application of the in situ radiotracer thin gap method for the investigation of corrosion processes. I. Adaptation of the thin gap method for the application of porous surfaces [J]. Electrochim. Acta,2013,109:468-474.
    [18]X. Sun, Z. Kang, X. Zhang, et al., A comparative study on the corrosion behavior of porous and dense NiTi shape memory alloys in NaCl solution [J]. Electrochim. Acta,2011,56:6389-6396.
    [19]K.P. Lee, T.C. Arnot, D. Mattia, A review of reverse osmosis membrane materials for desalination-development to date and future potential [J]. J. Membrane. Sci., 2011,370:1-22.
    [20]A.L. LaFrate, D.L. Gin, R.D. Noble. High water vapor flux membranes based on novel diol-imidazolium polymers [J]. Ind. Eng. Chem. Res.2010,49: 11914-11919.
    [21]O.K. Farha, Y.S. Bae, B.G. Hauser, et al., Chemical reduction of a diimide based porous polymer for selective uptake of carbon dioxide versus methane [J]. Chem. Commun.,2010,46:1056-1058.
    [22]H. Yang, J.M. Mudrik, M.J. Jebrail, et al., A digital microfluidic method for in situ formation of porous polymer monoliths with application to solid-phase extraction [J]. Anal. Chem.,2011,83:3824-3830.
    [23]A. Ibrahim, F. Zhang, E. Otterstein, et al., Processing of porous Ti and Ti5Mn foams by spark plasma sintering [J]. Mater. Design.,2011,32:146-153.
    [24]K. Zhuo, M.G. Jeong, C.H. Chung. Highly Porous Dendritic Ni-Sn Anodes for Lithium-ion Batteries [J]. J. Power Sources.2013,244:601-605.
    [25]J. Albo, T. Yoshioka, T. Tsuru. Porous Al2O38/TiO2 tubes in combination with 1-ethyl-3-methylimidazolium acetate ionic liquid for CO2/N2 separation [J]. Sep. Purif. Technol.2014,122:440-448.
    [26]D. Arifin, V.J. Aston, X. Liang, et al., CoFe2O4 on a porous Al2O3 nanostructure for solar thermochemical CO2 splitting [J]. Energy & Environmental Science, 2012,5:9438-9443.
    [27]江垚.Ti-Al金属间化合物多孔材料的研究[D].长沙:中南大学,2008.
    [28]L. Wu, J. Yao, H. Yuehui, et al., The corrosion behavior of porous Ni3Al intermetallic materials in strong alkali solution [J]. Intermetallics,2011,19: 1759-1765.
    [29]S. Meille, M. Lombardi, J. Chevalier, et al., Mechanical properties of porous ceramics in compression:On the transition between elastic, brittle, and cellular behavior [J]. J. Eur. Ceram. Soc,2012,32:3959-3967.
    [30]Q. Tang, J. Gong. Effect of porosity on the microhardness testing of brittle ceramics:A case study on the system of NiO-ZrO2 [J]. Ceram. Int.2013,39: 8751-8759.
    [31]陈刚,沈培智,高海燕等.真空烧结Fe-Al多孔材料的元素挥发及其对孔结构的影响[J].粉末冶金材料科学与工程,2010,15:229-235.
    [32]M.S. Venkatraman, I.S. Cole, B. Emmanuel. Corrosion under a porous layer:A porous electrode model and its implications for self-repair [J]. Electrochim. Acta, 2011,56:8192-8203.
    [33]李婷婷,彭超群,王日初等.Fe-Al, Ti-Al和Ni-Al系金属间化合物[J].中国有色金属学报,2011,21:784-795.
    [34]吴靓,董虹星,贺跃辉.Ni3Al金属间化合物多孔材料的抗盐酸腐蚀性能[J].中国有色金属学报,2010,20:1558-1565.
    [35]J. Peng, Z. Liu, P. Xia, et al., On the interface and mechanical property of Ti/Al-6% Cu-0.5% Mg-0.4% Ag bimetal composite produced by cold-roll bonding and subsequent annealing treatment [J]. Mater. Lett.,2012,74:89-92.
    [36]W. Deng, X.L. Guo, B. Xie, et al., The 3d Electrons and Microdefects in Binary Ti-Al Alloys Studied by Positron Annihilation [J]. Advanced Materials Research, 2012,399:99-102.
    [37]J. Zhang, P.X. Zhu, S.G. Zhou, et al., First-Principles Calculation of Intermetallics on Novel Anode Materials [J]. Advanced Materials Research, 2013,815:73-79.
    [38]A. Gogia, T. Nandy, D. Banerjee, et al., Microstructure and mechanical properties of orthorhombic alloys in the Ti-Al-Nb system [J]. Intermetallics,1998,6: 741-748.
    [39]T. Kawabata, T. Tamura, O. Izumi. Effect of Ti/Al ratio and Cr, Nb, and Hf additions on material factors and mechanical properties in TiAl [J]. Metallurgical Transactions A,1993,24:141-150.
    [40]R.R. Zope, Y. Mishin. Interatomic potentials for atomistic simulations of the Ti-Al system [J]. Phys. Rev. B 2003,68:024102.
    [41]J. Lin, L. Zhao, G. Li, et al., Effect of Nb on oxidation behavior of high Nb containing TiAl alloys [J]. Intermetallics,2011,19:131-136.
    [42]H. Wu, P. Zhang, H. Zhao, et al., Effect of different alloyed layers on the high temperature oxidation behavior of newly developed Ti2AlNb-based alloys [J]. Appl. Surf. Sci.2011,257:1835-1839.
    [43]S. Chen, L. Li, Y. Chen, et al., Joining mechanism of Ti/Al dissimilar alloys during laser welding-brazing process [J]. J. Alloy. Compd.2011,509:891-898.
    [44]T. Dudziak, H. Du, P. Datta, et al., Enhanced sulphidation/oxidation resistance of Ti-45Al-8Nb alloy by nanostructured CrAlYN/CrN coatings at 750° C [J]. Materials and Corrosion,2014,65:45-60.
    [45]J.P. Lin, Y.F. Liang, F. Yang, et al., Effect of Nb Addition on the Corrosion Behavior of Porous TiAl Based Alloys in Aqueous Environments [J]. in:Mater. Sci. Forum., Vol.747, Trans Tech Publ,2013:57-62.
    [46]I. Mwamba, L. Cornish, E. vander Lingen. Effect of platinum group metal addition on microstructure and corrosion behaviour of Ti-47.5 at.% Al [J]. Corrosion Engineering, Science and Technology 2014,49:180-188.
    [47]Y. He, Y. Jiang, N. Xu, et al., Fabrication of Ti-Al Micro/Nanometer-Sized Porous Alloys through the Kirkendall Effect [J]. Adv. Mater.,2007,19: 2102-2106.
    [48]Y. Khoptiar, I. Gotman, E.Y. Gutmanas. Pressure-Assisted Combustion Synthesis of Dense Layered Ti3AlC2 and its Mechanical Properties [J]. J. Am. Ceram. Soc, 2005,88:28-33.
    [49]S. Guo, Q. Kang, J. Liu, et al., Fabrication of Ti3AlC2 ceramic material by mechanical alloying [J]. Rare Metals,2010,29:376-379.
    [50]钱旭坤.Ti3AlC2的燃烧合成及其性能研究[D].黑龙江:哈尔滨工业大学,2010.
    [51]马淑芬.自蔓延高温合成Ti3AlC2的结构形成机理研究[D].兰州:兰州理工大学,2009.
    [52]X. Wang, Y. Zhou. Layered Machinable and Electrically Conductive Ti2AlC and Ti3AlC2 Ceramics:a Review [J]. J. Mater. Sci. Technol.2010,26:385-416.
    [53]X. Hu, W. Chen, Y. Huang. Fabrication of Pd/ceramic membranes for hydrogen separation based on low-cost macroporous ceramics with pencil coating [J]. Int. J Hydrogen. Energ,2010,35:7803-7808.
    [54]赵卓玲,冯小明.Ti3AlC2陶瓷材料的研究进展[J].材料热处理技术,2010,6:72-75.
    [55]王家华,方双全,刘莹莹等.三元层状Ti3AlC2陶瓷的研究进展[J].第十五 届全国复合材料学术会议论文集(上册),2008.
    [56]韩永生,李建保,魏强民.多孔陶瓷材料应用及制备的研究进展[J].材料导报,2002,16:26-29.
    [57]鞠银燕,宋士华,陈晓峰.多孔陶瓷的制备,应用及其研究进展[J].硅酸盐通报,2007,26:969-974.
    [58]杨刚宾,蔡序珩,乔冠军等.多孔陶瓷制备技术及其进展[J].河南科技大学学报(自然科学版),2004,25:99-103.
    [59]A.R. Studart, U.T. Gonzenbach, E. Tervoort, et al., Processing routes to macroporous ceramics:a review [J]. J. Am. Ceram. Soc,2006,89:1771-1789.
    [60]R.M. German. Sintering theory and practice, Sintering Theory and Practice, by Randall M. German [M].568. ISBN 0-471-05786-X. Wiley-VCH, January 1996. 1996,1.
    [61]U. Soy, A. Demir, F. Caliskan. Effect of bentonite addition on fabrication of reticulated porous SiC ceramics for liquid metal infiltration [J]. Ceram. Int.2011, 37:15-19.
    [62]S.M. Naga, A.M. El Kady, H.F. El Maghraby, et al., Novel porous Al2O3-SiO2-TiO2 bone grafting materials:Formation and characterization [J]. J. Biomater.,2014,28:813-824.
    [63]Z. Zivcova, E. Gregorova, W. Pabst, et al., Thermal conductivity of porous alumina ceramics prepared using starch as a pore-forming agent [J]. J. Eur. Ceram. Soc,2009,29:347-353.
    [64]K. Prabhakaran, A. Melkeri, N. Gokhale, et al., Preparation of macroporous alumina ceramics using wheat particles as gelling and pore forming agent [J]. Ceram. Int.,2007,33:77-81.
    [65]A. Kolk, J. Handschel, W. Drescher, et al., Current trends and future perspectives of bone substitute materials-From space holders to innovative biomaterials [J]. J. Cranio. Maxill. Surg 2012,40:706-718.
    [66]M. Alizadeh, M. Mirzaei-Aliabadi. Compressive properties and energy absorption behavior of Al-Al2O3 composite foam synthesized by space-holder technique [J]. Mater. Design.2012,35:419-424.
    [67]L. Montanaro, Y. Jorand, G. Fantozzi, et al., Ceramic foams by powder processing [J]. J. Eur. Ceram. Soc,1998,18:1339-1350.
    [68]P. Sepulveda, J. Binner. Processing of cellular ceramics by foaming and in-situ polymerisation of organic monomers [J]. J. Eur. Ceram. Soc,1999,19: 2059-2066.
    [69]M. Zawrah, R. Khattab, L.G Girgis, et al., Effect of CTAB as a foaming agent on the properties of alumina ceramic membranes [J]. Ceram. Int.,2013,40: 5299-5305.
    [70]X. Chen, A. Lu, G Qu. Preparation and characterization of foam ceramics from Red mud and Fly ash using sodium silicate as foaming agents [J]. Ceram. Int. 2012,39:1923-1929.
    [71]S. Sakka. Handbook of sol-gel science and technology.1. Sol-gel processing [M]. Springer,2005.
    [72]A. Bottino, A. Comite, G. Capannelli. Synthesis of mesoporous alumina-titania membranes by the sol-gel method [J]. Asia-Pacific Journal of Chemical Engineering 2010,5:242-248.
    [73]S. Wu, J. Luo, S. Cao. Microwave dielectric properties of B2O3-doped ZnTiO3 ceramics made with sol-gel technique [J]. J. Alloy. Compd.,2010,502:147-152.
    [74]GJ. Jiang, H. Shen, L.L. Ding, et al., Fabrication of Silicon Carbide Reticulated Porous Ceramics through Organic Foam Infiltration Process [J]. Mater. Sci. Forum., Vol.745, Trans Tech Publ,2013:646-651.
    [75]H.H. Han, S.H. Ryu, S. Nakao, et al., Gas Permeation Properties & Preparation of Porous Ceramic Membrane by CVD Method Using Siloxane Compounds [J]. J. Membrane. Sci.,2012,431:72-78.
    [76]G Fischerauer, M. Forster, R. Moos. Sensing the soot load in automotive diesel particulate filters by microwave methods [J]. Measurement Science and Technology,2010,21:035108.
    [77]Y. Dong, X. Liu, Q. Ma, et al., Preparation of cordierite-based porous ceramic micro-filtration membranes using waste fly ash as the main raw materials [J]. J. Membrane. Sci.,2006,285:173-181.
    [78]B. Nandi, R. Uppaluri, M. Purkait. Preparation and characterization of low cost ceramic membranes for micro-filtration applications [J]. Appl. Clay. Sci.,2008, 42:102-110.
    [79]K. Sakashita. Honeycomb Filter and Exhaust Gas Purification Device [P], Google Patents,2008.
    [80]J. Adler. Ceramic diesel particulate filters [J]. International Journal of Applied Ceramic Technology,2005,2:429-439.
    [81]刘培生,黄林国.多孔金属材料制备方法[J].功能材料,2002,33:5-8.
    [82]谈萍,汤慧萍,王建永等.金属多孔材料制备技术研究进展[J].稀有金属材料与工程,2006,35:433-437.
    [83]汤慧萍,谈萍,奚正平等.烧结金属多孔材料研究进展[J].稀有金属材料与工程,2006,35:428-432.
    [84]顾临,邱世庭,赵扬.烧结金属多孔滤材技术综述[J].流体机械,2002,30:30-34.
    [85]方玉诚,王浩,周勇等.粉末冶金多孔材料新型制备与应用技术的探讨[J].稀有金属,2005,29:791-796.
    [86]D. Leitlmeier, H.P. Degischer, H. J. Flankl. Development of a foaming process for particulate reinforced aluminum melts [J]. Adv. Eng. Mater.,2002,4:735-740.
    [87]Z. L. Song, L. Q. Ma, Z. J. Wu, et al., Effects of viscosity on cellular structure of foamed aluminum in foaming process [J]. J. Mater. Sci.,2000,35:15-20.
    [88]D. Yang, D. He, S. Yang. Thermal decomposition kinetics of titanium hydride and Al alloy melt foaming process [J]. Science in China Series B:Chemistry, 2004,47:512-520.
    [89]D. Yang, B. Hur. The relationship between thermal decomposition properties of titanium hydride and the Al alloy melt foaming process [J]. Mater. Lett.,2006, 60:3635-3641.
    [90]X. Zhang, Y. Li, Y. Liu, et al., Fabrication of a bimodal micro/nano porous metal by the Gasar and dealloying processes [J]. Mater. Lett.,2012,92:448-451.
    [91]王志阳,沈以赴.Gasar工艺及其衍生技术的研究进展[J].金属功能材料2010,17:91-95.
    [92]L.Y. Aguirre Perales, I. H. Jung, R.A. Drew. Foaming behavior of powder metallurgical Al-Sn foams [J]. Acta Mater.,2012,60:759-769.
    [93]L. Wang, Z. Hua, J. Ma, et al., Effects of Mg addition on foam stability of Al foams made by powder metallurgy route [J]. Powder Metall.2011,54:385-388.
    [94]V. Salvini, A. Luz, V. Pandolfelli. Foam Sprayed Porous Insulating Refractories [J]. Refractories Worldforum,2012,4:93-97.
    [95]P. Quadbeck, K. Kummel, R. Hauser, et al., Structural and Material Design of Open-Cell Powder Metallurgical Foams [J]. Adv. Eng. Mater.,2011,13: 1024-1030.
    [96]D. Zhang, S. Zhou, Y. Fan, et al., Preparation of dense Pd composite membranes on porous Ti-Al alloy supports by electroless plating [J]. J. Membrane. Sci., 2012,387:24-29.
    [97]王峰,奚正平,汤慧萍等.Fe-Al合金多孔材料研究进展[J].粉末冶金技术,2010,28:463-466.
    [98]刘冠颖,方玉诚,郭辉进等.烧结金属多孔材料在微反应器中的应用[J].粉末冶金工业,2010,32-35.
    [99]李东英.我国的钛工业[J].有色冶炼,2000,29:1-6.
    [100]C. Leyens, M. Peters. Titanium and titanium alloys:Fundamentals and applications [M]. Wiley Online Library,2003.
    [101]R. Boyer. Attributes, characteristics, and applications of titanium and its alloys [J].JOM 2010,62:21-24.
    [102]R. Kane, S. Craig, A. Venkatesh. Titanium Alloys for Oil and Gas Service:A Review [J]. Corrosion,2009,22-26.
    [103]Y. Liu, L. Chen, H. Tang, et al., Design of powder metallurgy titanium alloys and composites[J]. Materials Science and Engineering:A,2006,418:25-35.
    [104]徐庆,许荣萍,刘宝忠.钛制设备在工业中的应用[J].钛工业进展,2009,26:40-43.
    [105]莫畏,邓国珠,罗方承.钛冶金:第二版[M].北京:冶金工业出版社,1998.
    [106]李宏伟,孙天生,许卓.沉降在四氯化钛生产中的作用[J].钛工业进展,2005,22:45-46.
    [107]刘晓宁,李铁忠,刘咏梅等.浅析滤布的应用及发展[J].山东纺织科技,2009.2:016.
    [108]王丽丽,刘国荣.常用过滤材料的分类总结及性能测试[J].过滤与分离,2008,1:42-44.
    [109]许元巨.耐腐蚀性优异的过滤布纤维Ricem [J].产业用纺织品,1996,14:31-31.
    [110]朱永爱,刘国荣.编织滤布自身性能对过滤的影响[J].过滤与分离,2009,19:34-37.
    [111]李新娥.工业过滤布的生产及应用领域[J].毛纺科技,2004,7:46-49.
    [112]代广平,姬忠礼,魏耀东.袋式过滤器过滤初期阶段滤袋压力特性的实验研究[J].化工机械2009,535-538.
    [113]Companies team up to create refractory cloth filters [J]. Filtr. Separat.2008,45:10.
    [114]K. L. Tung, Y. L. Li, K. T. Lu, et al., Effect of calendering of filter cloth on transient characteristics of cake filtration, Sep. Purif. Technol.2006,48:1-15.
    [115]Filter cloths offer improved energy efficiency [J]. Filtr. Separat.2011,45:10.
    [116]Fabric reinforcement of nonwoven filter cloths [J]. Filtr. Separat.2010,45: 36-39.
    [117]Pile cloth used for filter media [J]. Filtr. Separat.2005,35:13.
    [118]R. Wakeman. The influence of particle properties on filtration [J]. Sep. Purif. Technol.2007,58:234-241.
    [119]S.M. Badawy, H.H. Sokker, S.H. Othman, et al., Cloth filter for recovery of uranium from radioactive waste [J]. Radiat. Phys. Chem.2005,73:125-130.
    [120]J.-N. Baleo, P.L.C. Subrenat. Numerical simulation of flows in air treatment devices using activated carbon cloths filters [J]. Chem. Eng. Sci.2000,55: 1807-1816.
    [121]A. Subrenat, J. Baleo, P. Le Cloirec, et al., Electrical behaviour of activated carbon cloth heated by the joule effect:desorption application [J]. Carbon,2001, 39:707-716.
    [122]M. Ramos, P. Bonelli, S. Blacher, et al., Effect of the activating agent on physico-chemical and electrical properties of activated carbon cloths developed from a novel cellulosic precursor [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2011,378:87-93.
    [123]Y. He, Y. Jiang, N. Xu, et al., Fabrication of Ti-Al micro/nanometer-sized porous alloys through the Kirkendall effect [J]. Adv. Mater.,2007,19: 2102-2106.
    [124]武治锋,贺跃辉,江垚等.多孔TiAI金属间化合物的抗热盐酸腐蚀性能[J].粉末冶金材料科学与工程,2007,12:310-315.
    [125]N.V. Tzenov, M.W. Barsoum. Synthesis and characterization of Ti3AlC2 [J]. J. Am. Ceram. Soc,2000,83:825-832.
    [126]A. Zhou, C. A. Wang, Y. Hunag. Synthesis and mechanical properties of Ti3AlC2 by spark plasma sintering [J]. J. Mater. Sci.,2003,38:3111-3115.
    [127]A. Zhou, C. A. Wang, Z. Ge, et al., Preparation of Ti3AlC2 and Ti2AlC by self-propagating high-temperature synthesis[J]. J. Mater. Sci. Lett.,2001,20: 1971-1973.
    [128]Z. Lin, Y. Zhou, M. Li, et al., In-situ hot pressing/solid-liquid reaction synthesis of bulk Cr2AlC [J]. Z. Metallkd.,2005,96:291-296.
    [129]S. B. Li, H. X. Zhai, G.-P. Bei, et al., Synthesis and microstructure of Ti3AlC2 by mechanically activated sintering of elemental powders [J]. Ceram. Int.,2007, 33:169-173.
    [130]X. Wang, Y. Zhou. Oxidation behavior of Ti3AlC2 at 1000-1400°C in air [J]. Corros. Sci.,2003,45:891-907.
    [131]X. Hong, B. Mei, J. Zhu, et al., Fabrication of Ti2AlC-Ti3AlC2-Ti3SiC2 composite by spark plasma sintering (SPS) method from elemental powders [J]. J. Mater. Sci.,2005,40:2749-2750.
    [132]Z. Huang, H. Zhai, M. Li, et al., Friction Behaviors and Effects on Current-carrying Wear Characteristics of Bulk Ti3AlC2 [J]. Tribol. T.,2013,57: 300-307.
    [133]H. Wu, X. Cui, L. Geng, et al., Fabrication and characterization of in-situ TiAl matrix composite with controlled microlaminated architecture based on SiC/Al and Ti system [J]. Intermetallics,2013,43:8-15.
    [134]D. Li, Y. Liang, X. Liu, et al., Corrosion behavior of Ti3AlC2 in NaOH and H2SO4 [J]. J. Eur. Ceram. Soc.,2010,30:3227.
    [135]X. Wang, Y. Zhou. Microstructure and properties of Ti3AlC2 prepared by the solid-liquid reaction synthesis and simultaneous in-situ hot pressing process [J]. Acta Mater.,2002,50:3143-3151.
    [136]M. Barsoum, H.1. Yoo, I. Polushina, et al., Electrical conductivity, thermopower, and Hall effect of Ti3AlC, Ti4AIN3, and Ti3SiC2 [J]. Phys. Rev. B,2000,62: 10194.
    [137]L. Peng. Preparation and Properties of Ternary Ti3AIC2 and its Composites from Ti-Al-C Powder Mixtures With Ceramic Particulates [J]. J. Am. Ceram. Soc, 2007,90:1312-1314.
    [138]徐学文,朱教群,梅炳初等.Ti3AlC2的制备与性能研究进展[J].陶瓷研究与职业教育,2003,1:43-46.
    [139]X. Wang, Y. Zhou, Oxidation behavior of Ti3AlC2 at 1000-1400° C in air [J]. Corros. Sci.,2003,45:891-907.
    [140]M. Barsoum, N. Tzenov, A. Procopio, et al., Oxidation of Ti n+1AIXn(n= 1-3 and X=C, N):Ⅱ. Experimental Results [J]. J. Electrochem. Soc,2001,148: C551-C562.
    [141]吕振林,刘晶歌,肖琪聃等.Ti3AlC2陶瓷的制备及其摩擦磨损性能[J].硅酸盐学报,2012,40:503-506.
    [142]Y. Jiang, Y. He, N. Xu, et al., Effects of the Al content on pore structures of porous Ti-Al alloys [J]. Intermetallics,2008,16:327-332.
    [143]H. Saffarian, Q. Gan, R. Hadkar, et al., Corrosion behavior of binary titanium aluminide intermetallics [J]. Corrosion,1996,52:626-633.
    [144]J. Lee, W. Gao, Z. Li, et al., Corrosion behaviour of Ti3Al and Ti3Al-11 at.% Nb intermetallics, Mater. Lett.2003,57:1528-1538.
    [145]R. Pather, W. Mitten, P. Holdway, et al., The effect of high temperature exposure on the tensile properties of y-TiAl alloys [J]. Intermetallics.2003,11: 1015-1027.
    [146]V. Gauthier, F. Dettenwanger, M. Schutze, et al., Oxidation-resistant aluminide coatings on γ-TiAl [J]. Oxid. Met.2003,59:233-255.
    [147]R.G Reddy, X. Wen, I. Okafor. Diffusion of oxygen in the Al2O3 oxidation product of TiAl3 [J]. Metallurgical and Materials Transactions A,2000,31: 3023-3028.
    [148]Z. Esen, S. Bor, Characterization of Ti-6A1-4V alloy foams synthesized by space holder technique [J]. Materials Science and Engineering:A,2011,528: 3200-3209.
    [149]何晓宇,刘咏,李为等.采用混合元素法制备多孔Ni3Al材料[J].中南大学学报(自然科学版),2009,40:358.
    [150]O. Lyckfeldt, J. Ferreira, Processing of porous ceramics by'starch consolidation'[J]. J. Eur. Ceram. Soc,1998,18:131-140.
    [151]C. Bowen, A. Perry, A. Lewis, et al., Processing and properties of porous piezoelectric materials with high hydrostatic figures of merit [J]. J. Eur. Ceram. Soc,2004,24:541-545.
    [152]唐竹兴,王树海,陈达谦等.注凝成型微孔梯度陶瓷材料制备新工艺的研究(I)[J].硅酸盐通报,2001,20:23-29.
    [153]沈培智.铁铝金属间化合物多孔材料的制备、性能及在高温烟气除尘中的应用[D].中南大学,2010.
    [154]K. Nielsch, F. Muller, A.P. Li, et al., Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition [J]. Adv. Mater.,2000,12:582-586.
    [155]梁永仁,杨志懋,丁秉钧.金属多孔材料应用及制备的研究进展[J].稀有金属材料与工程,2006,35:30-34.
    [156]杨雪娟,刘颖,李梦等.多孔金属材料的制备及应用[J].材料导报,2007,21:380-383.
    [157]杨亚政,杨嘉陵,曾涛等.轻质多孔材料研究进展[J].力学季刊,2007,28:503-515.
    [158]陈刚,高海燕,贺跃辉等.梯度孔径FeAl金属间化合物多孔材料的制备与性能[J].粉末冶金材料科学与工程,2011,16:44-49.
    [159]俞健,胡小娟,黄彦.多孔不锈钢表面的陶瓷修饰及所负载的透氢钯膜[J].化学进展,2008,20:1208-1215.
    [160]P. Shen, Y. He, H. Gao, et al., Development of a new graded-porosity FeAl alloy by elemental reactive synthesis [J]. Desalination,2009,249:29-33.
    [161]B.L. Bischoff, M.A. Anderson. Peptization process in the sol-gel preparation of porous anatase (TiO2) [J]. Chem. Mater.,1995,7:1772-1778.
    [162]李良,周爱国,李正阳等.TiH2做Ti源合成Ti2AlC/Ti3AlC2及热分析[J].硅酸盐通报,2013,132-137.
    [163]傅献彩,沈文霞,姚天扬.物理化学(上)[M].2005,第四版.高教出版杜2005.
    [164]蔡炳新,张季爽,申成等.基础物理化学[M].科学出版社,2001.
    [165]叶大伦,胡建华.实用无机物热力学数据手册[M].北京:冶金工业出版社,2002,(第二版):26-1153.
    [166]陈秀华.TiC/Si固相反应制备Ti3SiC2/SiC复合材料的反应路径研究[D].2001.
    [167]A. Zhou, C.A. Wang, Z. Ge, et al., Preparation of Ti3AlC2 and Ti2AlC by self-propagating high-temperature synthesis [J]. J. Mater. Sci. Lett.2001,20: 1971-1973.
    [168]Y. Huang, L. Qi, C.Q. Peng, et al., Fabrication of Ti3AlC2 powder with high-purity by pressureless sintering, in:Mater. Sci. Forum., Vol.475, Trans Tech Publ,2005:1247-1250.
    [169]C. Peng, C.A. Wang, Y. Song, et al., A novel simple method to stably synthesize Ti3AlC2 powder with high purity [J]. Materials Science and Engineering:A, 2006,428:54-58.
    [170]J. Yang, C. Liao, J. Wang, et al., Effects of the Al content on pore structures of porous Ti3AlC2 ceramics by reactive synthesis [J]. Ceram. Int.,2014,40: 4643-4648.
    [171]S. Li, W. Xiang, H. Zhai, et al., Formation of a single-phase Ti3AlC2 from a mixture of Ti, Al and TiC powders with Sn as an additive [J]. Mater. Res. Bull., 2008,43:2092-2099.
    [172]D. Lehmhus, G. Rausch. Tailoring titanium hydride decomposition kinetics by annealing in various atmospheres [J]. Adv. Eng. Mater.,2004,6:313-330.
    [173]H.R.Z. Sandim, B.V. Morante, P. A. Suzuki. Kinetics of thermal decomposition of titanium hydride powder using in situ high-temperature X-ray diffraction (HTXRD) [J]. Materials Research,2005,8:293-297.
    [174]D. Yang, P. Hodgson, C.e. Wen. The kinetics of two-stage formation of TiAl3 in multilayered Ti/Al foils prepared by accumulative roll bonding [J]. Intermetallics,2009,17:727-732.
    [175]S. Wohlert, C. Michaelsen, R. Bormann. Phase Selection by Competitive Growth in Ti/Al Thin Film Diffusion Couples [M]. in:MRS Proceedings, Vol. 441, Cambridge Univ Press,1996.
    [176]C. Kao, A. Chang, Formation of Periodic Layered Structures in Ternary Diffusion Couples [J]. Diffusion in Ordered Alloys,1992,161-168.
    [177]T. Novoselova, S. Celotto, R. Morgan, et al., Formation of TiAl intermetallics by heat treatment of cold-sprayed precursor deposits [J]. J. Alloy. Compd.,2007, 436:69-77.
    [178]J.F. Zhu, W.W. Yang, Y.P. Gong. Reaction Synthesis of TiAl/Ti2AlC In Situ Composites, in:Mater. Sci. Forum., Vol.695, Trans Tech Publ,2011,137-140.
    [179]M. Yoshida, Y. Hoshiyama, J. Ommyoji, et al., Reaction mechanism for the synthesis of Ti3AlC2 through an intermediate carbide of Ti3AlC from elemental Ti, Al, and C powder mixture [J]. J. Ceram. Soc,2010,118:37-42.
    [180]W. Zhou, B. Mei, J. Zhu, et al., Fabrication of high purity dense Ti2AlC-Ti3AlC2 composite by spark plasma sintering method [J]. J. Mater. Sci.,2005,40: 3559-3560.
    [181]L. Zheng, F. Li, Y. Zhou. Preparation, Microstructure, and Mechanical Properties of TiB2 Using Ti3AlC2 as a Sintering Aid [J]. J. Am. Ceram. Soc, 2012,95:2028-2034.
    [182]Y. Zou, Z. Sun, S. Tada, et al., Rapid synthesis of single-phase Ti3AlC2 through pulse discharge sintering a TiH2/Al/TiC powder mixture [J]. Scripta Mater., 2007,56:725-728.
    [183]Y. Zou, Z. Sun, H. Hashimoto, et al., Synthesis of high-purity polycrystalline Ti3AlC2 through pulse discharge sintering Ti/Al/TiC powders [J]. J. Alloy. Compd.,2008,456:456-460.
    [184]Y. Kurita, S. Suwa, S. Murata. Filter presses:A review of developments in automatic filter presses [J]. Filtr. Separat.,2010,47:32-35.
    [185]V. Aleksandrov, R. Baranova, A.Y. Valdberg. Filter materials for bag filters with pulsed regeneration [J]. Chem. Petrol. Eng.,2010,46:33-39.
    [186]R. Patel, D. Shah, B.G Prajapti, et al., Overview of Industrial Filtration Technology and its Applications [J]. Indian J. Sci. Technol.2010,3:1121-1127.
    [187]C. Delgado-Alvarado, P. Sundaram. Corrosion evaluation of Ti-48Al-2Cr-2Nb (at.%) in Ringer's solution [J]. Acta biomaterialia 2006,2:701-708.
    [188]王学文,张丰收,肖连生等.膜在TiCl4生产中的应用[J].膜科学与技术,2006,26:90-92.
    [189]邓国珠.钛冶金的进展和发展方向探讨[J].稀有金属,2002,26:391-396.
    [190]许原,白晨光,陈登福等.海绵钛生产工艺研究进展[J].重庆大学学报,2003,26:97-100.
    [191]孙康,刘明月,李伟.吸附法分离粗TiCl4中杂质钒新工艺[J].有色金属2002,54:48-50.
    [192]朱卫平,陈辉.提高氯化尾气TiCl4回收率的试验研究[J].世界有色金属2006,28-29.
    [193]B. Blankert, B.H. Betlem, B. Roffel. Dynamic optimization of a dead-end filtration trajectory:Blocking filtration laws [J]. J. Membrane. Sci.,2006,285: 90-95.
    [194]J. Altmann, S. Ripperger. Particle deposition and layer formation at the crossflow microfiltration [J]. J. Membrane. Sci.,1997,124:119-128.
    [195]P. Bacchin, D. Si-Hassen, V. Starov, et al., A unifying model for concentration polarization, gel-layer formation and particle deposition in cross-flow membrane filtration of colloidal suspensions [J]. Chem. Eng. Sci.,2002,57: 77-91.
    [196]E.M. Hoek, M. Elimelech. Cake-enhanced concentration polarization:a new fouling mechanism for salt-rejecting membranes [J]. Environ. Sci. Technol., 2003,37:5581-5588.
    [197]S. Ripperger, J. Altmann. Crossflow microfiltration-state of the art [J]. Sep. Purif. Technol.,2002,26:19-31.
    [198]S. Metsamuuronen, J. Howell, M. Nystrom. Critical flux in ultrafiltration of myoglobin and baker's yeast [J]. J. Membrane. Sci.,2002,196:13-25.
    [199]H. Choi, K. Zhang, D.D. Dionysiou, et al., Influence of cross-flow velocity on membrane performance during filtration of biological suspension [J]. J. Membrane. Sci.,2005,248:189-199.
    [200]S. Mauran, L. Rigaud, O. Coudevylle. Application of the Carman-Kozeny Correlation to a High-Porosity and Anisotropic Consolidated Medium:The Compressed Expanded Natural Graphite [J]. Transport Porous. Med,2001,43: 355-376.
    [201]徐南平.面向应用过程的陶瓷膜材料设计,制备与应用[M],科学出版社,2005.
    [202]徐南平,李卫星,赵宜江等.面向过程的陶瓷膜材料设计理论与方法(I)膜性能与微观结构关系模型的建立[J].化工学报,2003,54:1284-1289.
    [203]K. Damak, A. Ayadi, B. Zeghmati, et al., A new Navier-Stokes and Darcy's law combined model for fluid flow in crossflow filtration tubular membranes [J]. Desalination,2004,161:67-77.
    [204]M. Vela, S.A. Blanco, J.L. Garcia, et al., Analysis of membrane pore blocking models applied to the ultrafiltration of PEG [J]. Sep. Purif. Technol.,2008,62: 489-498.
    [205]M.H. Al-Malack, G Anderson. Use of crossflow microfiltration in wastewater treatment [J]. Water Res.,1997,31:3064-3072.
    [206]G. Gesan-Guiziou, R. Wakeman, G Daufin. Stability of latex crossflow filtration: cake properties and critical conditions of deposition [J]. J. Chem. Eng.,2002, 85:27-34.
    [207]R. Sondhi, R. Bhave. Role of backpulsing in fouling minimization in crossflow filtration with ceramic membranes [J]. J. Membrane. Sci.,2001,186:41-52.
    [208]J.A. Ramirez, R.H. Davis. Application of cross-flow microfiltration with rapid backpulsing to wastewater treatment [J]. J. Hazard. Mater.,1998,63:179-197.
    [209]B.L. McAlexander, D.W. Johnson. Backpulsing fouling control with membrane recovery of light non-aqueous phase liquids [J]. J. Membrane. Sci.,2003,227: 137-158.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700